
z/OS
2.5

Language Environment
Programming Guide

IBM

SA38-0682-50

Note

Before using this information and the product it supports, read the information in “Notices” on page
537.

This edition applies to Version 2 Release 5 of z/OS® (5650-ZOS) and to all subsequent releases and modifications until
otherwise indicated in new editions.

Last updated: 2022-12-11
© Copyright International Business Machines Corporation 1991, 2022.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures.. xv

Tables...xxi

About this document.. xxvii
Using your documentation..xxvii
How to read syntax diagrams.. xxviii

Symbols.. xxix
Syntax items... xxix
Syntax examples.. xxix

This Programming Guide... xxxi

How to send your comments to IBM... xxxiii
If you have a technical problem.. xxxiii

Summary of changes.. xxxv
Summary of changes for z/OS Language Environment Programming Guide for Version 2 Release 5

(V2R5).. xxxv
Summary of changes for z/OS Language Environment Programming Guide for Version 2 Release 4

(V2R4).. xxxv
Summary of changes for Language Environment for z/OS Version 2 Release 3 (V2R3)......................xxxvi

Part 1. Creating applications with Language Environment.......................................1

Chapter 1. Introduction to Language Environment...3
Components of Language Environment...3
Common runtime environment of Language Environment... 4

Chapter 2. Preparing to link-edit and run under Language Environment...5
Understanding Language Environment library routines ... 5

Planning to link-edit and run...5
Link-editing single-language applications..7
Link-editing ILC applications.. 7

Downward compatibility considerations... 8
Checking which runtime options are in effect... 10
HLL compatibility considerations...10
C/C++ AMODE/RMODE considerations... 10
COBOL considerations... 11

Replacing COBOL library routines in a COBOL load module..11
Using Language Environment resident routines for callable services.. 11

Fortran considerations... 12
Replacing Fortran runtime library modules in a Fortran executable program..............................12
Using the Language Environment library module replacement tool...12
Resolving static common block name conflicts...13
Resolving library module name conflicts between Fortran and C...13

PL/I considerations.. 19
Link-editing PL/I subroutines for later use.. 20
Replacing PL/I library routines in an OS PL/I executable program...20
Link-editing fetchable executable programs... 20

 iii

PL/I link-time considerations... 21
Fetching modules with different AMODEs... 21

Chapter 3. Using Extra Performance Linkage (XPLINK)... 23
What is XPLINK?...23

Objectives... 23
Support for XPLINK...24
XPLINK concepts and terms...24
The XPLINK stack... 25

When XPLINK should be used... 30
When XPLINK should not be used... 30

How is XPLINK enabled?..31
XPLINK compiler option... 31
XPLINK runtime option...31

Building and running an XPLINK application...31
Other considerations.. 32

XPLINK / non-XPLINK compatibility..33
XPLINK restrictions.. 33

Chapter 4. Building and using dynamic link libraries (DLLs).. 35
Support for DLLs...35
DLL concepts and terms...35
Loading a DLL..36

Loading a DLL implicitly.. 37
Loading a DLL explicitly.. 37

Managing the use of DLLs when running DLL applications... 41
Loading DLLs... 41
Sharing DLLs..43
Freeing DLLs..43

Creating a DLL or a DLL application... 43
Building a simple DLL... 43

Writing DLL code .. 43
Compiling your DLL code.. 46
Binding your DLL code.. 46

Building a simple DLL application..48
Creating and using DLLs...51
DLL restrictions...52

Improving performance ... 53
Building complex DLLs... 54

Chapter 5. Link-editing, loading, and running under batch.. 55
Basic link-editing and running under batch...55

Accepting the default runtime options...55
Overriding the default runtime options..56
Specifying runtime options with the CEEOPTS DD card.. 56
Specifying runtime options in the EXEC statement... 56

Providing link-edit input... 57
Writing JCL for the link-edit process.. 58
Binder control statements..62

Link-edit options...62
Loading your application using the loader...63

Writing JCL for the loader... 64
Invoking the loader with the EXEC statement... 64
Using the PARM parameter for loader options...64
Requesting loader options..64
Passing parameters through the loader...65
Using DD statements for the standard loader data sets..66

Running an application under batch.. 66

iv

Program library definition and search order.. 67
Specifying runtime options under batch..67

Chapter 6. Creating and executing programs under TSO/E..69
Basic link-editing and running under TSO/E..69

Accepting the default runtime options...69
Overriding the default runtime options..69
Specifying runtime options with the CEEOPTS DD card.. 69

Link-editing and running.. 70
Link-editing your application using the LINK command... 70
Using CMOD CLIST to invoke the TSO/E LINK command..71
Using the CALL command to run your application.. 72

TSO/E parameter list format...73
Loading and running using the LOADGO command.. 73

Allocating data sets under TSO/E...74
Example of using LOADGO..74
Link-edit and loader options...74

Using the iconv utility and ICONV CLIST for C/C++...75
Using the genxlt utility and GENXLT CLIST for C/C++... 76
Running your application under TSO/E..76

Chapter 7. Creating and executing programs using z/OS UNIX System Services....................................77
Basic link-editing and running C/C++ applications under ..77
Invoking a shell from TSO/E...77
Using the z/OS UNIX c89 utility to link-edit and create executable files... 78
Running z/OS UNIX C/C++ application programs... 78

z/OS UNIX application program environments..78
Placing an MVS application executable program in the file system..79
Restriction on using 24-Bit AMODE programs...79
Running an MVS executable program from a z/OS UNIX shell..79
Running POSIX-enabled programs.. 79

Running COBOL programs under z/OS UNIX...81
Basic link-editing and running PL/I routines under z/OS UNIX with POSIX(ON)............................... 82
Basic link-editing and running PL/I MTF applications under z/OS UNIX..84

Chapter 8. Using IBM-supplied cataloged procedures...85
Invoking cataloged procedures... 85

Step names in cataloged procedures...85
Unit names in cataloged procedures..86
Data set names in cataloged procedures...86

IBM-supplied cataloged procedures... 86
CEEWG — Load and run a Language Environment conforming non XPLINK program..................89
CEEWL — Link a Language Environment conforming non XPLINK program................................. 90
CEEWLG — Link and run a Language Environment conforming non-XPLINK program.................90
CEEXR — Load and run a Language Environment conforming XPLINK program.......................... 91
CEEXL — Link-edit a Language Environment conforming XPLINK program..................................91
CEEXLR — Link and run a Language Environment conforming XPLINK program..........................92
AFHWL — Link a program written in Fortran.. 93
AFHWLG — Link and run a program written in Fortran.. 93
AFHWN — Resolving name conflicts between C and Fortran.. 94

Modifying cataloged procedures..95
Overriding and adding to EXEC statements... 95
Overriding and adding DD statements... 95
Overriding generic link-edit procedures for constructed reentrant programs..............................96

Chapter 9. Using runtime options..99
Methods available for specifying runtime options.. 99
Order of precedence.. 101

 v

Order of precedence examples.. 102
Specifying suboptions in runtime options... 102
Specifying runtime options and program arguments..102
Creating application-specific runtime option defaults with CEEXOPT...103

CEEXOPT invocation for CEEUOPT...104
CEEXOPT coding guidelines for CEEUOPT... 105

Using the CEEOPTS DD statement...106
Runtime compatibility considerations...107

C and C++ compatibility considerations.. 107
COBOL compatibility considerations... 107
Fortran compatibility considerations... 108
PL/I compatibility considerations.. 108
IMS compatibility considerations.. 108

Part 2. Preparing an application to run with Language Environment.................... 109

Chapter 10. Using Language Environment parameter list formats..111
Argument lists and parameter lists... 111
Passing arguments between routines... 112
Preparing your main routine to receive parameters... 114

PL/I argument passing considerations.. 117

Chapter 11. Making your application reentrant..119
Making your C/C++ program reentrant..119

Natural reentrancy..119
Constructed reentrancy..119
Generating a reentrant program executable for C or C++... 120

Making your COBOL program reentrant.. 120
Making your Fortran program reentrant.. 120
Making your PL/I program reentrant... 121
Installing a reentrant load module.. 121

Part 3. Language Environment concepts, services, and models........................... 123

Chapter 12. Initialization and termination under Language Environment...125
The basics of initialization and termination.. 125
Language Environment initialization..126

What happens during initialization...126
Language Environment termination.. 127

What causes termination..128
What happens during termination... 128

Managing return codes in Language Environment.. 130
How the Language Environment enclave return code is calculated... 130
Setting and altering user return codes...131

Termination behavior for unhandled conditions... 133
Determining the abend code.. 134

Chapter 13. Program management model... 137
Model terminology for Language Environment program management..137

Language Environment terms and their HLL equivalents..137
Terminology for data...138

Processes... 138
Enclaves... 139

The enclave defines the scope of language semantics... 139
Additional enclave characteristics... 140

Threads...140
The full Language Environment program management model.. 140

vi

Mapping the POSIX program management model to the Language Environment program
management model..141
Key POSIX program entities and Language Environment counterparts..................................... 141
Scope of POSIX semantics... 142

Chapter 14. Stack and heap storage...145
How Language Environment-conforming languages uses stack and heap storage.........................145
Stack storage overview.. 146

Tuning stack storage...147
COBOL storage considerations...147
PL/I storage considerations... 148

Heap storage overview...148
Using heap pools to improve performance..149
Heap IDs recognized by the Language Environment heap manager.. 150
AMODE considerations for heap storage... 151
Tuning heap storage... 151

Storage performance considerations.. 152
Dynamic storage services.. 152
Examples of callable storage services.. 152

C example of building a linked list..152
COBOL example of building a linked list.. 154
PL/I example of building a linked list...156
C example of storage management... 157
COBOL example of storage management.. 159
PL/I example of storage management...160

User-created heap storage.. 162
Alternative Vendor Heap Manager...162

Using _CEE_HEAP_MANAGER to invoke the alternative Vendor Heap Manager........................163

Chapter 15. Introduction to Language Environment condition handling ..165
Concepts of Language Environment condition handling...165
The stack frame model.. 166

Handle cursor... 167
Resume cursor..167

What is a condition in Language Environment?...167
Steps in condition handling..168

Enablement step...168
Condition step...171
Termination imminent step.. 173

Invoking condition handlers.. 175
Responses to conditions..176
Condition handling scenarios...177

Scenario 1: Simple condition handling.. 177
Scenario 2: User-written condition handler present for T_I_U... 178
Scenario 3: Condition handler present for divide-by-zero.. 180

Chapter 16. Language Environment and HLL condition handling interactions......................................181
C condition handling semantics...181

Comparison of C-Language Environment terminology..182
Controlling condition handling in C.. 183
C condition handling actions.. 184
C signal representation of S/370 exceptions...187

C++ condition handling semantics.. 188
COBOL condition handling semantics... 189

COBOL condition handling examples...189
Resuming execution after an IGZ condition occurs...191
Resuming execution after a COBOL STOP RUN statement... 191
Reentering COBOL programs after stack frame collapse..191

 vii

Handling fixed-point and decimal overflow conditions...192
Fortran condition handling semantics...192

Arithmetic program interruptions from vector instructions.. 192
Restrictions on using vector instructions in user-written condition handlers............................ 193

PL/I condition handling semantics.. 193
PL/I condition handling actions... 193
Promoting conditions to the PL/I ERROR condition.. 194
Mapping non-PL/I conditions to PL/I conditions...194
Additional PL/I condition handling considerations... 195
PL/I condition handling example... 195

Language Environment and POSIX signal handling interactions..197
Synchronous POSIX signal and Language Environment condition handling interactions..........198

Chapter 17. Coding a user-written condition handler.. 201
PL/I considerations..201

Invocation of a procedure registered as a user handler..201
Types of conditions you can handle.. 202
User-written condition handler interface.. 202
Registering user-written condition handlers using USRHDLR.. 204
Nested conditions.. 205

Nested conditions in applications containing a COBOL program..205
Using Language Environment condition handling with nested COBOL programs...................... 205

Examples with a registered user-written condition handler...206
Handling a divide-by-zero condition in C, C++, COBOL, or PL/I..206
Handling an out-of-storage condition in C, C++, COBOL, or PL/I..213
Signaling and handling a condition in a C/C++ routine..221
Handling a divide-by-zero condition in a COBOL program.. 223
Handling a program check in an assembler routine.. 227

Chapter 18. Using condition tokens.. 231
The basics of using condition tokens...231
The effect of coding the fc parameter... 231

Testing a condition token for success.. 232
Testing condition tokens for equivalence.. 232
Testing condition tokens for equality...233

Effects of omitting the fc parameter..233
Understanding the structure of the condition token...233
Using symbolic feedback codes.. 234

Locating symbolic feedback codes for conditions...235
Including symbolic feedback code files...235
Examples using symbolic feedback codes.. 236

Condition tokens for C signals under C and C++... 240
q_data structure for abends.. 242

Usage notes.. 243
Example illustrating retrieval of q_data... 243

q_data structure for arithmetic program interruptions...245
Usage notes.. 247

q_data structure for square-root exception.. 248
q_data structure for math and bit-manipulation conditions...248

Usage notes.. 252
Format of q_data descriptors.. 252

Chapter 19. Using and handling messages...255
How Language Environment messages are handled.. 255
Creating messages... 255

Creating a message source file.. 256
Using the CEEBLDTX utility.. 258
Files created by CEEBLDTX.. 261

viii

Creating a message module table..265
Assigning values to message inserts... 266

Interpreting runtime messages... 267
Specifying national languages... 268
Runtime messages with POSIX... 269
Handling message output.. 270

Using Language Environment MSGFILE...270
Using MSGFILE under z/OS UNIX.. 271
Using C or C++ I/O functions..272
Using COBOL I/O statements... 273
Using Fortran I/O statements...274
Using PL/I I/O statements..275
MSGFILE considerations when using PL/I...276

Examples using multiple message handling callable services... 276
C/C++ example calls to CEEMOUT, CEENCOD, CEEMGET, CEEDCOD, and CEEMSG..................276
COBOL example calls to CEEMOUT, CEENCOD, CEEMGET, CEEDCOD, and CEEMSG................ 278
PL/I example calls to CEEMOUT, CEENCOD, CEEMGET, CEEDCOD, and CEEMSG..................... 280

Chapter 20. Using date and time services.. 283
The basics of using date and time services...283
Working with date and time services...284

Date limits...284
Picture character terms and picture strings.. 285
Notation for eras...285

Performing calculations on date and time values... 285
Century window routines... 286
National Language Support for date and time services.. 286
Examples using date and time callable services.. 286

Examples illustrating calls to CEEQCEN and CEESCEN...287
Examples illustrating calls to CEESECS... 289
Examples illustrating calls to CEESECS and CEEDATM... 292
Examples illustrating calls to CEESECS, CEESECI, CEEISEC, and CEEDATM............................. 296
Examples illustrating calls to CEEDAYS, CEEDATE, and CEEDYWK.. 301
Calls to CEECBLDY in COBOL... 306

Chapter 21. National language support.. 309
Customizing Language Environment output for a given country.. 309
Setting the national language.. 309
Setting the country code..310
Euro support...310
Combining national language support and date and time services..311

Calls to CEE3CTY, CEEFMDT, and CEEDATM in C...311
Calls to CEE3CTY, CEEFMDT, and CEEDATM in COBOL... 312
Example using CEE3CTY, CEEFMDT, and CEEDATM in PL/I.. 313

Chapter 22. Locale callable services...317
Customizing Language Environment locale callable services.. 317
Developing internationalized applications.. 318
Examples of using locale callable services... 318

Example calls to CEEFMON.. 318
Example calls to CEEFTDS... 320
Example calls to CEELCNV and CEESETL...322
Example calls to CEEQDTC and CEESETL.. 325
Example calls to CEESCOL... 327
Example calls to CEESETL and CEEQRYL...329
Example calls to CEEQRYL and CEESTXF.. 331

Chapter 23. General callable services.. 335

 ix

List of general callable services...335
CEE3DLY callable service... 335
CEE3DMP callable service..335
CEE3USR callable service.. 336
CEEDLYM callable service.. 336
CEEENV callable service...336
CEEGPID callable service...337
CEEGTJS callable service... 337
CEEMICT callable service...337
CEERAN0 callable service.. 337
CEETEST callable service... 337
CEEUSGD callable service.. 337

Using basic callable services... 337

Chapter 24. Math services...341
What Language Environment math services does.. 341

Related services... 341
Call interface to math services.. 343

Parameter types: parm1 type and parm2 type... 343
Examples of calling math services.. 343

Calling CEESSLOG in C and C++... 344
Calling CEESSLOG in COBOL.. 345
Calling CEESSLOG in PL/I... 346

Part 4. Using interfaces to other products...347

Chapter 25. Running applications under CICS... 349
Terminology used in the Language Environment program model.. 349

CICS region... 349
CICS transaction...349
CICS run unit...349
Running Language Environment applications under CICS..350

Developing an application under CICS.. 350
PL/I coding considerations under CICS... 350
Assembler considerations..351
Link-edit considerations under CICS... 351
CICS processing program table (PPT) considerations.. 352
Specifying runtime options under CICS... 352
Accessing DLI databases from CICS..355
Using callable services under CICS..355
OS/VS COBOL compatibility considerations under CICS.. 355
Using math services in PL/I under CICS.. 355
Coding program termination in PL/I under CICS...355

Storage management under CICS... 356
CICS short-on-storage condition... 356
CICS storage protect facility...356
PL/I storage considerations under CICS..356

Condition handling under CICS..357
PL/I considerations for using the CICS HANDLE ABEND command...357
Effect of the CICS HANDLE ABEND command.. 358
Effect of the CICS HANDLE CONDITION and CICS HANDLE AID..358
Restrictions on user-written condition handlers under CICS..358
CICS transaction abend codes... 359
Using the CBLPSHPOP runtime option under CICS...359
Restrictions on assembler user exits under CICS... 359
Ensuring transaction rollback under CICS... 360

Runtime output under CICS...360

x

Message handling under CICS... 360
Dump services under CICS...361

Support for calls within the same HLL under CICS... 361
C.. 361
C++..361
COBOL...361
PL/I..362

Chapter 26. Running applications under Db2...363
Language Environment support for Db2 applications...363
Condition handling under Db2... 363
PL/I consideration for Db2 applications..363

Chapter 27. Running applications under IMS...365
Using the interface between Language Environment and IMS...365
z/OS XL C/C++ considerations under IMS... 365
C++ considerations under IMS.. 366
PL/I considerations under IMS..366
IMS communication with your application..366

Link-edit considerations under IMS... 366
Making your IMS application reentrant... 367
Condition handling under IMS... 367

Coordinated condition handling under IMS... 367
Diagnosing abends with the IMS dump... 367

Part 5. Specialized programming tasks...369

Chapter 28. Using runtime user exits..371
User exits supported under Language Environment...371

Using the assembler user exit CEEBXITA.. 372
Using the HLL initialization exit CEEBINT.. 372
PL/I and C compatibility... 372
Using sample assembler user exits... 373

When user exits are invoked.. 373
CEEBXITA behavior during enclave initialization...375
CEEBXITA behavior during enclave termination..375
CEEBXITA behavior during process termination... 376
Specifying abend codes to be percolated by Language Environment.. 376
Actions taken for errors that occur within the exit.. 376

CEEBXITA assembler user exit interface...376
Guidelines for using CEEBXITA.. 377
Parameter values in the assembler user exit.. 380

CEEBINT high-level language user exit interface... 384

Chapter 29. Assembler considerations...389
Compatibility considerations... 389

Control blocks...389
Save areas...389
CICS.. 389
C and Fortran duplicate names.. 390

Register conventions..391
Language Environment-conforming assembler...391
Non-Language Environment conforming assembler routines...392

Considerations for coding or running assembler routines..392
Asynchronous interrupts.. 392
Condition handling..392
Access to the inbound parameter string..393

 xi

Overlay programs... 393
CEESTART, CEEMAIN, and CEEFMAIN...393
Mode considerations.. 393

Language Environment library routine retention (LRR).. 393
Using library routine retention... 394
Library routine retention and preinitialization... 395
CEELRR macro — Initialize or terminate Language Environment library routine retention....... 395

Assembler macros... 397
CEEENTRY macro— Generate a Language-Environment-conforming prolog.............................397
CEETERM macro — Terminate a Language Environment-conforming routine............................401
CEECAA macro — Generate a CAA mapping..402
CEEDSA macro — Generate a DSA mapping.. 402
CEEPPA macro — Generate a PPA..402
CEELOAD macro — Dynamically load a Language Environment-conforming routine.................405
CEEFETCH macro — Dynamically load a routine... 407
CEEFTCH macro — Generate a FTCHINFO mapping... 411
CEEGLOB macro — Extract Language Environment product information...................................413
CEERELES macro — Dynamically delete a routine...414
CEEPCALL macro — Pass control to control sections at specified entry points......................... 415
CEEPDDA macro — Define a data item in the writeable static area (WSA).................................417
CEEPLDA macro — Returns the address of a data item defined by CEEPDDA............................418
Example of assembler main routine.. 419
Example of an assembler main calling an assembler subroutine...420
DSPARM subroutine example...420

Invoking callable services from assembler routines.. 422
System Services available to assembler routines...422

Using the ATTACH macro..424
Using the SVC LINK macro... 426

Chapter 30. Using preinitialization services... 427
Using preinitialization.. 427

Using the PreInit table..428
Reentrancy considerations...430
PreInit XPLINK considerations...430
User exit invocation.. 432
Stop semantics... 432

Preinitialization interface... 433
Initialization.. 434
Application invocation.. 442

Service routines..457
An example program invocation of CEEPIPI... 464

HLLPIPI examples.. 466

Chapter 31. Using nested enclaves...469
Creating child enclaves.. 469

XPLINK considerations...469
COBOL considerations..469
PL/I considerations.. 470

Determining the behavior of child enclaves.. 470
Creating child enclaves with EXEC CICS LINK or EXEC CICS XCTL.. 470
Creating child enclaves by calling a second main program...471
Creating child enclaves using SVC LINK.. 471
Creating child enclaves using the C system() function..473
Creating child enclaves containing a PL/I fetchable main.. 475

Other nested enclave considerations..476
What the enclave returns from CEE3PRM and CEE3PR2.. 476
Finding the return and reason code from the enclave...478
Assembler user exit..478

xii

Message file.. 478
COBOL multithreading considerations...479
C/C++ multithreading considerations.. 479
z/OS UNIX considerations.. 479
AMODE considerations...479

Chapter 32. Restrictions under SRB mode... 481

Appendix A. Prelinking an application.. 483
Which programs need to be prelinked.. 483
What the prelinker does.. 484
Prelinking process... 484

References to currently unresolved symbols (unresolved external references)............................. 486
Processing the prelinker automatic library call...487

Language Environment prelinker map.. 487
Control statement processing... 490

IMPORT control statement.. 490
INCLUDE control statement...490
LIBRARY control statement... 491
RENAME control statement... 491

Mapping L-Names to S-Names..492
Starting the prelinker under batch and TSO/E..493

Under batch..493
Under TSO/E...494
Using the CXXBIND EXEC under TSO/E...496
Using the CXXMOD EXEC under TSO/E... 496

Prelinker options..498

Appendix B. EXEC DLI and CALL IMS Interfaces... 501

Appendix C. Guidelines for writing callable services... 503

Appendix D. Operating system and subsystem parameter list formats................. 505
C and C++ parameter passing considerations.. 505

C PLIST and EXECOPS interactions... 506
C++ PLIST and EXECOPS interactions...509
Case sensitivity under TSO.. 511
Parameter passing considerations with XPLINK C and C++...511

COBOL parameter passing considerations... 511
PL/I main procedure parameter passing considerations... 512

Appendix E. Object library utility..515
Creating an object library.. 515

Under batch..515
Under TSO.. 516

Object library utility map... 517

Appendix F. Using the systems programming environment.................................. 519
Building freestanding applications..519
Special considerations for reentrant modules..520

Notes.. 521
Building system exit routines.. 522
Building persistent C environments..522
Building user-server environments...522
Summary of types..522

 xiii

Appendix G. Sort and merge considerations...525
Invoking DFSORT directly..525
Using the COBOL SORT and MERGE verbs..525

User exit considerations.. 526
Condition handling considerations.. 526

Using the PL/I PLISRTx interface.. 527
User exit considerations.. 527
Condition handling considerations.. 528

Appendix H. Running COBOL programs under ISPF...529

Appendix I. Language Environment macros.. 531

Appendix J. PL/I macros that activate variables... 533

Appendix K. Accessibility...535

Notices..537
Terms and conditions for product documentation... 538
IBM Online Privacy Statement.. 539
Policy for unsupported hardware..539
Minimum supported hardware..539
Programming interface information..540
Trademarks.. 540

Index.. 541

xiv

Figures

1. Components of Language Environment..3

2. The common runtime environment of Language Environment..4

3. Replacing VS FORTRAN runtime library modules under batch, using CEEWL.. 12

4. Replacing VS FORTRAN runtime library modules under TSO/E, using a CLIST.. 13

5. Changing conflicting names in an executable program under MVS...16

6. Changing conflicting names in several executable programs under MVS... 16

7. Changing conflicting names in an executable program under TSO/E..16

8. Changing conflicting names in several executable programs under TSO/E.. 17

9. Changing conflicting names in multiple executable programs under MVS... 17

10. Changing conflicting names in multiple executable programs under TSO/E.. 17

11. Replacing Fortran routines with Language Environment routines under MVS..18

12. Replacing Fortran routines with Language Environment routines under TSO/E.....................................18

13. Relink-editing an executable program to resolve conflicting names under batch..................................19

14. Relink-editing an executable program to resolve conflicting names under TSO/E.................................19

15. Example of link-editing a fetchable executable program.. 20

16. Standard stack storage model..25

17. XPLINK stack storage model.. 26

18. XPLINK stack frame layout... 27

19. Using #pragma export to create a DLL executable module named BASICIO...44

20. Using #pragma export to create a DLL executable module TRIANGLE.. 44

21. Using _export to create DLL executable module TRIANGLE... 45

22. Using Language Environment macros to create an assembler DLL executable named ADLLBEV2....... 46

23. COBOL DLL application calling a COBOL DLL... 50

 xv

24. Assembler DLL application calling an assembler DLL..51

25. Summary of DLL and DLL application preparation and usage... 52

26. Accepting the default runtime options under batch.. 56

27. Overriding the default runtime options under batch... 56

28. Overriding the default runtime options for COBOL.. 56

29. Basic batch link-edit processing...58

30. Creating a non-XPLINK executable program under batch...61

31. Creating an XPLINK executable program under batch.. 61

32. Using the INCLUDE linkage editor control statement..62

33. Using the LIBRARY linkage editor control statement.. 62

34. Basic loader processing.. 64

35. JCL for creating an executable program...66

36. Cataloged procedure CEEWG, which loads and runs a program written in any Language
Environment-conforming HLL..90

37. Cataloged procedure CEEWL, which link-edits a program written in any Language Environment-
conforming HLL.. 90

38. Cataloged procedure CEEWLG, which link-edits and runs a program written in any Language
Environment-conforming HLL..91

39. Cataloged procedure CEEXR, which loads and runs a program-compiled XPLINK................................91

40. Cataloged procedure CEEXL, which link-edits a program-compiled XPLINK... 92

41. Cataloged procedure CEEXLR, which link-edits and runs a program-compiled XPLINK........................93

42. Using AFHWL to link a program written in Fortran...93

43. Procedure AFHWLG, used to link and run a program written in Fortran... 94

44. Cataloged procedure AFHWN, used in resolving name conflicts.. 95

45. Overriding parameters in the CEEWLG cataloged procedure.. 96

46. Sample Invocation of CEEXOPT within CEEUOPT source program...104

47. Example syntax for the CEEOPTS DD statement... 107

xvi

48. Call terminology refresher.. 112

49. Argument passing styles in Language Environment.. 113

50. Language Environment ILC (only one runtime environment to initialize)... 127

51. Program management model illustration of resource ownership...138

52. Overview of the full Language Environment program management model..141

53. Scope of semantics against POSIX processes and Language Environment processes and enclaves. 143

54. Language Environment stack storage model... 147

55. Language Environment heap storage model..149

56. Condition processing.. 171

57. Queues of user-written condition handlers... 176

58. Scenario 1: Division by zero with no user condition handlers present..177

59. Scenario 2: Division by zero with a user-written condition handler present in routine A.....................179

60. Scenario 3: Division by zero with a user handler present in routine B.. 180

61. C370A routine... 185

62. C370B routine...186

63. C370C routine... 186

64. C condition handling example.. 187

65. COBOLA program..190

66. COBOLB program.. 190

67. COBOLC program.. 191

68. PL/I condition processing...194

69. Enablement step for signals under z/OS UNIX.. 199

70. Parameter declarations in a PL/I user-written condition handler...202

71. Restricted type_of_move If COBOL nested programs are present... 206

72. Handle and resume cursor movement as a condition is handled... 207

 xvii

73. DIVZERO program (COBOL)..210

74. Language Environment condition token...233

75. C/C++ example testing for CEEGTST symbolic feedback code CEE0P3... 237

76. COBOL example testing for CEESDEXP symbolic feedback code CEE1UR...238

77. Wrong placement of COBOL COPY statements for testing feedback code...239

78. PL/I example testing for symbolic feedback code CEE000...240

79. Structure of abend qualifying data...243

80. q_data structure for arithmetic program interruption conditions... 246

81. q_data structure for math and bit manipulation routines... 249

82. Format of a q_data descriptor.. 252

83. Example of a message source file.. 256

84. Example of a message module table with one language...265

85. Example of a message module table with two languages...266

86. Example of assigning values to message inserts...267

87. Directing output messages...274

88. Performing calculations on dates...285

89. Default century window..286

90. Using CEESCEN to change the century window...286

91. z/OS XL C/C++ routine with a call to CEEFMDT..338

92. COBOL program with a call to CEEFMDT..339

93. PL/I routine with a call to CEEFMDT...340

94. C/C++ call to CEESSLOG — Logarithm base e.. 344

95. Call to CEESSLOG — Logarithm base e in COBOL...345

96. Call to CEESSLOG — Logarithm base e in PL/I... 346

97. Format of messages sent to CESE..360

xviii

98. Location of user exits..374

99. Interface for the CEEBXITA assembler user exit... 377

100. CEEAUE_FLAGS format.. 378

101. Exit_list and hook_exit control blocks... 386

102. Example calling routine named Bif5 with no parameters:.. 417

103. Example calling routine named Bif5 passing 5 integer parameters:.. 417

104. Example of a simple main assembler routine..419

105. Sample invocation of a callable service from assembler.. 422

106. Issuing an ATTACH to Language Environment-conforming routines.. 424

107. A dynamically-called COBOL program that dynamically calls another COBOL program................... 426

108. Format of service routine vector.. 458

109. Basic prelinker and linkage editor processing... 486

110. Example of prelinking under batch.. 495

111. Example of prelinking under TSO/E... 496

112. Alternate C/C++ parameter passing styles.. 505

113. Accessing parameters using macros __R1 and __osplist... 506

114. Examples of casting and dereferencing...506

115. Object library utility map.. 517

116. Specifying alternate initialization at link-edit time.. 519

117. Simple freestanding routine... 520

118. Link-edit control statements used to build a freestanding MVS routine...520

119. Compile and link by using the cataloged procedure EDCCL..520

120. Sample reentrant freestanding routine..521

121. Building and running a reentrant freestanding MVS routine... 521

 xix

xx

Tables

1. How to use z/OS Language Environment publications...xxviii

2. Syntax examples.. xxx

3. Prerequisite OS/390 release level for the various compilers that support downward compatibility.........9

4. Fortran and C library routine names that are identical.. 13

5. Conflicting names per product and release..14

6. Decision table for name conflict resolution..15

7. Comparing non-XPLINK and XPLINK register conventions... 29

8. Required data sets used for link-editing...59

9. Optional data sets used for link-editing... 60

10. Selected link-edit options...63

11. Selected loader options.. 65

12. Standard loader data sets...66

13. CMOD calls.. 72

14. Selected loader options.. 75

15. IBM-supplied cataloged procedures..86

16. Formats for specifying runtime options and program arguments...102

17. Semantic terms and methods for passing arguments in Language Environment.................................112

18. Default passing style per HLL... 113

19. Coding a main routine to receive an inbound parameter list in TSO/E..114

20. Coding a main routine to receive an inbound parameter list in IMS... 116

21. Coding a main routine to receive an inbound parameter list in CICS..116

22. Coding a main routine to receive an inbound parameter list in MVS...117

23. Fortran reentrancy separation tool and Language Environment cataloged procedures...................... 120

 xxi

24. Return code modifiers used by Language Environment to determine enclave return codes...............132

25. Summary of enclave reason codes...133

26. Termination behavior for unhandled conditions of severity 2 or greater..134

27. Abend codes used by Language Environment when the Assembler user exit requests an abend...... 134

28. Abend code values used by Language Environment with ABTERMENC(ABEND).................................134

29. Program interrupt abend and reason codes in a non-CICS environment... 135

30. Usage of stack and heap storage by Language Environment-conforming languages.......................... 145

31. Runtime options and functions.. 145

32. Callable services options and functions...146

33. Heap IDs recognized by Language Environment heap manager...150

34. Default responses to unhandled conditions.. 172

35. T_I_U condition representation..173

36. T_I_S condition representation..174

37. C conditions and default system actions... 182

38. Mapping of S/370 exceptions to C signals... 188

39. Mapping of abend signals to C signals... 188

40. Valid result codes from user-written condition handlers.. 203

41. Designating requested fixup actions..204

42. Symbolic feedback codes associated with CEEGTST.. 235

43. Language Environment condition tokens and non-POSIX C signals... 240

44. Language Environment condition tokens and POSIX C signals...241

45. Arithmetic program interruptions and corresponding conditions...245

46. Square-root exception and corresponding condition.. 248

47. Abbreviations of math operations in q_data structures.. 251

48. q_data descriptor data types..253

xxii

49. Severity codes for Language Environment runtime messages..268

50. Condition tokens with POSIX..269

51. Operating system, SYSOUT definitions, MSGFILE default attributes..270

52. Defining an I/O device for a ddname..271

53. C and C++ message output...272

54. C/C++ redirected stream output.. 273

55. Allowable OPEN statement specifiers..275

56. Language Environment locale callable services and equivalent C library routines.............................. 317

57. Runtime option behavior under CICS...353

58. User exits supported under Language Environment..371

59. Interaction of assembler user exits... 373

60. Sample assembler user exits for Language Environment... 373

61. Parameter values in the assembler user exit (Part 1)..381

62. Parameter values in the assembler user exit (Part 2)..383

63. C external names and their analogous Fortran names.. 390

64. Structure of version 1 CEEFTCH... 412

65. Cross reference for version 1 CEEFTCH... 413

66. Equivalent host services provided by Language Environment.. 422

67. Invocation of user exits during process and enclave initialization and termination.............................432

68. Preinitialization services accessed using CEEPIPI for initialization..433

69. Preinitialization services accessed using CEEPIPI for application invocation......................................433

70. Preinitialization services accessed using CEEPIPI for termination...434

71. Preinitialization services accessed using CEEPIPI for the addition of an entry to the PreInit table....434

72. Preinitialization services accessed using CEEPIPI for the deletion of an entry to the PreInit table....434

73. Preinitialization services accessed using CEEPIPI for the identification of a PreInit table entry........ 434

 xxiii

74. Preinitialization services accessed using CEEPIPI for the addition of an entry to the PreInit table....434

75. Preinitialization services accessed using CEEPIPI for access to the CAA user word...........................434

76. Mask values for the pipi_environment .. 454

77. Mask values for program_attributes ... 455

78. Return and reason codes from load (output)...459

79. Return and reason codes from delete service (output)... 459

80. Return and reason codes from the @GETSTORE service.. 460

81. Return and reason codes from the @FREESTORE service.. 461

82. Return and reason codes for the exception router.. 462

83. Parameters for Language Environment condition handler.. 462

84. Return and reason codes from the Language Environment condition handler.....................................462

85. Return and reason codes for the @MSGRTN service...464

86. Handling conditions in child enclaves.. 472

87. Unhandled condition behavior in a C, C++, or assembler child enclave... 472

88. Unhandled condition behavior in a COBOL child enclave..473

89. Unhandled condition behavior in a Fortran or PL/I child enclave... 473

90. Unhandled condition behavior in a system()-created child enclave... 474

91. Unhandled condition behavior in a child enclave that contains a PL/I fetchable main........................475

92. Determining the command-line equivalent... 477

93. Determining the order of runtime options and program arguments... 477

94. Prelinker options...499

95. IMS and CICS support of user interfaces to DL/I databases...501

96. Interactions of C PLIST and EXECOPS... 507

97. Interactions of C/C++ PLIST and EXECOPS (compiler options).. 509

98. Case sensitivity of arguments under TSO.. 511

xxiv

99. Interactions of SYSTEM and NOEXECOPS... 513

100. Summary of types...522

101. DFSORT exit called as a function of a PLISRTx interface call..527

102. Variables activated by PL/I macros..533

 xxv

xxvi

About this document

This document supports z/OS (5650-ZOS).

IBM® z/OS Language Environment® (also called Language Environment) provides common services and
language-specific routines in a single runtime environment for C, C++, COBOL, Fortran (z/OS only; no
support for z/OS UNIX or CICS®), PL/I, and assembler applications. It offers consistent and predictable
results for language applications, independent of the language in which they are written.

Language Environment is the prerequisite runtime environment for applications that are generated with
the following IBM compiler products:

• z/OS XL C/C++ (feature of z/OS)
• z/OS C/C++
• OS/390® C/C++
• C/C++ for MVS/ESA
• C/C++ for z/VM®

• XL C/C++ for z/VM
• AD/Cycle C/370
• VisualAge® for Java™, Enterprise Edition for OS/390
• Enterprise COBOL for z/OS
• Enterprise COBOL for z/OS and OS/390
• COBOL for OS/390 and VM
• COBOL for MVS™ & VM (formerly COBOL/380)
• Enterprise PL/I for z/OS
• Enterprise PL/I for z/OS and OS/390
• VisualAge PL/I
• PL/I for MVS and VM (formerly PL/I MVS & VM)
• VS FORTRAN and FORTRAN IV (in compatibility mode)

Although not all compilers listed are currently supported, Language Environment supports the compiled
objects that they created.

Language Environment supports, but is not required for, an interactive debug tool for debugging
applications in your native z/OS environment.

IBM z/OS Debugger is also available as a stand-alone product. For more information, see IBM z/OS
Debugger (developer.ibm.com/mainframe/products/ibm-zos-debugger).

Language Environment supports, but is not required for, VS FORTRAN Version 2 compiled code (z/OS
only).

Language Environment consists of the common execution library (CEL) and the runtime libraries for C/C+
+, COBOL, Fortran, and PL/I.

For more information about VisualAge for Java, Enterprise Edition for OS/390, program number 5655-
JAV, see the product documentation.

Using your documentation
The publications provided with Language Environment are designed to help you:

• Manage the runtime environment for applications generated with a Language Environment-conforming
compiler.

© Copyright IBM Corp. 1991, 2022 xxvii

http://developer.ibm.com/mainframe/products/ibm-zos-debugger
http://developer.ibm.com/mainframe/products/ibm-zos-debugger

• Write applications that use the Language Environment callable services.
• Develop interlanguage communication applications.
• Customize Language Environment.
• Debug problems in applications that run with Language Environment.
• Migrate your high-level language applications to Language Environment.

Language programming information is provided in the supported high-level language programming
manuals, which provide language definition, library function syntax and semantics, and programming
guidance information.

Each publication helps you perform different tasks, some of which are listed in Table 1 on page xxviii.

Table 1. How to use z/OS Language Environment publications

To … Use …

Evaluate Language Environment z/OS Language Environment Concepts Guide

Plan for Language Environment z/OS Language Environment Concepts Guide

z/OS Language Environment Runtime Application
Migration Guide

Install Language Environment z/OS Program Directory in the z/OS
Internet library (www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosInternetLibrary)

Customize Language Environment z/OS Language Environment Customization

Understand Language Environment program
models and concepts

z/OS Language Environment Concepts Guide

z/OS Language Environment Programming Guide

z/OS Language Environment Programming Guide for 64-
bit Virtual Addressing Mode

Find syntax for Language Environment
runtime options and callable services

z/OS Language Environment Programming Reference

Develop applications that run with Language
Environment

z/OS Language Environment Programming Guide and
your language programming guide

Debug applications that run with Language
Environment, diagnose problems with
Language Environment

Using messages in your routines in z/OS Language
Environment Debugging Guide

Get details on runtime messages Language Environment abend codes in z/OS Language
Environment Runtime Messages

Develop interlanguage communication (ILC)
applications

z/OS Language Environment Writing Interlanguage
Communication Applications and your language
programming guide

Migrate applications to Language
Environment

z/OS Language Environment Runtime Application
Migration Guide and the migration guide for each
Language Environment-enabled language

How to read syntax diagrams
This section describes how to read syntax diagrams. It defines syntax diagram symbols, items that
may be contained within the diagrams (keywords, variables, delimiters, operators, fragment references,
operands) and provides syntax examples that contain these items.

xxviii About this document

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

Syntax diagrams pictorially display the order and parts (options and arguments) that comprise a
command statement. They are read from left to right and from top to bottom, following the main path of
the horizontal line.

For users accessing the IBM Documentation using a screen reader, syntax diagrams are provided in
dotted decimal format.

Symbols
The following symbols may be displayed in syntax diagrams:
Symbol

Definition
►►───

Indicates the beginning of the syntax diagram.
───►

Indicates that the syntax diagram is continued to the next line.
►───

Indicates that the syntax is continued from the previous line.
───►◄

Indicates the end of the syntax diagram.

Syntax items
Syntax diagrams contain many different items. Syntax items include:

• Keywords - a command name or any other literal information.
• Variables - variables are italicized, appear in lowercase, and represent the name of values you can

supply.
• Delimiters - delimiters indicate the start or end of keywords, variables, or operators. For example, a left

parenthesis is a delimiter.
• Operators - operators include add (+), subtract (-), multiply (*), divide (/), equal (=), and other

mathematical operations that may need to be performed.
• Fragment references - a part of a syntax diagram, separated from the diagram to show greater detail.
• Separators - a separator separates keywords, variables or operators. For example, a comma (,) is a

separator.

Note: If a syntax diagram shows a character that is not alphanumeric (for example, parentheses, periods,
commas, equal signs, a blank space), enter the character as part of the syntax.

Keywords, variables, and operators may be displayed as required, optional, or default. Fragments,
separators, and delimiters may be displayed as required or optional.
Item type

Definition
Required

Required items are displayed on the main path of the horizontal line.
Optional

Optional items are displayed below the main path of the horizontal line.
Default

Default items are displayed above the main path of the horizontal line.

Syntax examples
The following table provides syntax examples.

About this document xxix

Table 2. Syntax examples

Item Syntax example

Required item.

Required items appear on the main
path of the horizontal line. You must
specify these items.

KEYWORD required_item

Required choice.

A required choice (two or more items)
appears in a vertical stack on the main
path of the horizontal line. You must
choose one of the items in the stack.

KEYWORD required_choice1

required_choice2

Optional item.

Optional items appear below the main
path of the horizontal line.

KEYWORD

optional_item

Optional choice.

An optional choice (two or more items)
appears in a vertical stack below the
main path of the horizontal line. You
may choose one of the items in the
stack.

KEYWORD

optional_choice1

optional_choice2

Default.

Default items appear above the
main path of the horizontal line.
The remaining items (required or
optional) appear on (required) or
below (optional) the main path of the
horizontal line. The following example
displays a default with optional items.

KEYWORD

default_choice1

optional_choice2

optional_choice3

Variable.

Variables appear in lowercase italics.
They represent names or values.

KEYWORD variable

Repeatable item.

An arrow returning to the left above
the main path of the horizontal line
indicates an item that can be repeated.

A character within the arrow means
you must separate repeated items with
that character.

An arrow returning to the left above
a group of repeatable items indicates
that one of the items can be selected,
or a single item can be repeated.

KEYWORD repeatable_item

KEYWORD

,

repeatable_item

xxx About this document

Table 2. Syntax examples (continued)

Item Syntax example

Fragment.

The fragment symbol indicates that
a labelled group is described below
the main syntax diagram. Syntax is
occasionally broken into fragments if
the inclusion of the fragment would
overly complicate the main syntax
diagram.

KEYWORD fragment

fragment
,required_choice1

,required_choice2

,default_choice

,optional_choice

This Programming Guide
You should be familiar with the Language Environment product and one or more of the supported
Language Environment-conforming high-level languages. The term C/C++ is used generically to refer to
information that applies to both C and C++.

Previous versions of the Language Environment-conforming language products provided their own
environment and services for running applications, and their associated application programming guides
including information on how to link-edit and run applications. Language Environment now provides the
runtime support required to run applications compiled under all of the Language Environment-conforming
HLLs, as well as the facility for interlanguage communication between supported languages.

For application programming, you will need to use the following books:

• This book contains information about linking, running, and using services within the Language
Environment environment, the Language Environment program management model, and language- and
operating system-specific information, where applicable.

• z/OS Language Environment Programming Reference contains more detailed information as well as
specific syntax for using runtime options and callable services.

• z/OS Language Environment Writing Interlanguage Communication Applications provides information to
help you create and run interlanguage communication (ILC) applications.

This book is organized as follows:

• Part 1 includes a basic introduction to Language Environment. It also describes linking, loading, and
running under each of the supported operating systems, as well as using IBM-supplied cataloged
procedures, Language Environment runtime options, and Language Environment callable services.

• Part 2 describes how to prepare an application to run in Language Environment.
• Part 3 describes Language Environment concepts, services, and models, including initialization and

termination, program management model, storage, condition handling, messages, callable services, and
math services.

• Part 4 explains using interfaces to other products such as CICS, Db2®, and IMS.
• Part 5 addresses specialized programming tasks, such as using runtime user exits, assembler

considerations, preinitialization services, and using nested enclaves.
• The various appendixes describe interfaces to subsystems, writing callable services, using parameter

list formats, prelinking, using the C object library, systems programming environments, sort and merge
considerations, ISPF, and Language Environment macros.

About this document xxxi

xxxii z/OS: z/OS Language Environment Programming Guide

How to send your comments to IBM

We invite you to submit comments about the z/OS product documentation. Your valuable feedback helps
to ensure accurate and high-quality information.

Important: If your comment regards a technical question or problem, see instead “If you have a technical
problem” on page xxxiii.

Submit your feedback by using the appropriate method for your type of comment or question:
Feedback on z/OS function

If your comment or question is about z/OS itself, submit a request through the IBM RFE Community
(www.ibm.com/developerworks/rfe/).

Feedback on IBM Documentation function
If your comment or question is about the IBM Documentation functionality, for example search
capabilities or how to arrange the browser view, send a detailed email to IBM Documentation Support
at ibmdocs@us.ibm.com.

Feedback on the z/OS product documentation and content
If your comment is about the information that is provided in the z/OS product documentation library,
send a detailed email to mhvrcfs@us.ibm.com. We welcome any feedback that you have, including
comments on the clarity, accuracy, or completeness of the information.

To help us better process your submission, include the following information:

• Your name, company/university/institution name, and email address
• The following deliverable title and order number: z/OS Language Environment Programming Guide,

SA38-0682-50
• The section title of the specific information to which your comment relates
• The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive authority to use or distribute the
comments in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the
issues that you submit.

If you have a technical problem
If you have a technical problem or question, do not use the feedback methods that are provided for
sending documentation comments. Instead, take one or more of the following actions:

• Go to the IBM Support Portal (support.ibm.com).
• Contact your IBM service representative.
• Call IBM technical support.

© Copyright IBM Corp. 1991, 2022 xxxiii

http://www.ibm.com/developerworks/rfe/
http://www.ibm.com/developerworks/rfe/
mailto:ibmdocs@us.ibm.com
mailto:mhvrcfs@us.ibm.com
http://support.ibm.com

xxxiv z/OS: z/OS Language Environment Programming Guide

Summary of changes

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line to the left
of the change.

Note: IBM z/OS policy for the integration of service information into the z/OS product documentation
library is documented on the z/OS Internet Library under IBM z/OS Product Documentation
Update Policy (www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/ibm-zos-doc-update-policy?
OpenDocument).

Summary of changes for z/OS Language Environment Programming
Guide for Version 2 Release 5 (V2R5)

New
The following content is new.
December 2022

The CEEMICT callable service was added. See “List of general callable services” on page 335 and
“CEEMICT callable service” on page 337. (APAR PH415216, which also applies to V2R4 and V2R5)

February 2022

The following sections were added to include the new SIGDSIOER signal type.

• “Condition tokens for C signals under C and C++” on page 240
• “Runtime messages with POSIX” on page 269

(APAR PH41950 for V2R5 only)

Prior to February 2022

• A library function to allocate aligned memory blocks, aligned_alloc(), The following sections were
updated:

– “How Language Environment-conforming languages uses stack and heap storage” on page 145
– “Heap storage overview” on page 148

Changed
The following content is changed.
June 2022

• “C/C++ multithreading considerations” on page 479 was added. (APAR PH45307, 2.5 only)

Summary of changes for z/OS Language Environment Programming
Guide for Version 2 Release 4 (V2R4)

The most recent updates are listed at the top of each section.

New
The following content is new.
March 2021

• Chapter 32, “Restrictions under SRB mode,” on page 481 was added.

© Copyright IBM Corp. 1991, 2022 xxxv

https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/ibm-zos-doc-update-policy?OpenDocument
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/ibm-zos-doc-update-policy?OpenDocument
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/ibm-zos-doc-update-policy?OpenDocument

Prior to March 2021 refresh
The new CEEUSGD callable service allows high-level languages to call the IFAUSAGE service to track
specific price metrics. These sections were updated:

• “List of general callable services” on page 335.
• “CEEUSGD callable service” on page 337.

Summary of changes for Language Environment for z/OS Version 2
Release 3 (V2R3)

New
• To validate stack guards in stacks, STKPROT= was added to these macros:

– “CEEENTRY macro— Generate a Language-Environment-conforming prolog” on page 397
– “CEEPPA macro — Generate a PPA” on page 402.
– “CEEXPIT” on page 429

Changed
• Various updates were made to replace IBM Debug Tool for z/OS with IBM z/OS Debugger.

xxxvi z/OS: z/OS Language Environment Programming Guide

Part 1. Creating applications with Language
Environment

This topic explains the steps for creating and running an executable program, and provides an overview of
runtime options.

Note: The terms having to do with linking (bind, binding, link, link-edit, and so on) refer to the process
of creating an executable program from object modules (the output that is produced by compilers
and assemblers). The program used is the DFSMS program management binder. The binder extends
the services of the linkage editor and is the default program provided for creating an executable. For
information that is specific to the linkage editor, see z/OS MVS Program Management: User's Guide and
Reference and z/OS MVS Program Management: Advanced Facilities.

If you have an application that contains interlanguage calls, you might need to relink-edit it to take
advantage of the Language Environment ILC support. For more information, see Migrating ILC applications
to Language Environment in z/OS Language Environment Runtime Application Migration Guide.

© Copyright IBM Corp. 1991, 2022 1

2 z/OS: z/OS Language Environment Programming Guide

Chapter 1. Introduction to Language Environment

Language Environment provides a common runtime environment for IBM versions of certain high-level
languages (HLLs), namely, C, C++, COBOL, Fortran, and PL/I, in which you can run existing applications
written in previous versions of these languages as well as in the current versions. Before Language
Environment, each of the HLLs had to provide a separate runtime environment.

Language Environment combines essential and commonly used runtime services, such as routines for
runtime message handling, condition handling, storage management, date and time services, and math
functions, and makes them available through a set of interfaces that are consistent across programming
languages. With Language Environment, you can use one runtime environment for your applications,
regardless of the application's programming language or system resource needs because most system
dependencies have been removed.

Language Environment provides compatible support for existing HLL applications; most existing single-
language applications can run under Language Environment without being recompiled or relink-edited.
POSIX-conforming C applications can use all Language Environment services.

Components of Language Environment
As Figure 1 on page 3 shows, Language Environment consists of the following components:

• Basic routines that support starting and stopping programs, allocating storage, communicating with
programs written in different languages, and indicating and handling error conditions.

• Common library services, such as math services and date and time services, that are commonly
needed by programs running on the system. These functions are supported through a library of callable
services.

• Language-specific portions of the common runtime library.

PL/I

language-

specific

library

Language Environment

Language Environment callable service interface,

common services, and support routines

C/C++

language-

specific

library

COBOL

language-

specific

library

Fortran

language-

specific

library

Figure 1. Components of Language Environment

The following IBM language compilers currently participate in this release:

• z/OS XL C/C++
• C/C++ Compiler for MVS/ESA
• AD/Cycle C/370 Compiler
• VisualAge for Java, Enterprise Edition for OS/390
• Enterprise COBOL for z/OS

Introducing Language Environment

© Copyright IBM Corp. 1991, 2022 3

• COBOL for OS/390 & VM
• COBOL for MVS & VM (formerly COBOL/370)
• Enterprise PL/I for z/OS
• PL/I for MVS & VM (formerly PL/I MVS & VM)
• VS FORTRAN and FORTRAN IV (in compatibility mode)

See z/OS Language Environment Runtime Application Migration Guide and z/OS Planning for Installation
for a list of pre-Language Environment IBM language products.

Common runtime environment of Language Environment
The common runtime environment of Language Environment illustrates the common environment that
Language Environment creates.

Figure 2. The common runtime environment of Language Environment

Introducing Language Environment

4 z/OS: z/OS Language Environment Programming Guide

Chapter 2. Preparing to link-edit and run under
Language Environment

This topic discusses what you need to know before link-editing and running applications under Language
Environment. After Language Environment is installed on your system, you should run an existing
application under Language Environment. Although you may need to link-edit to different libraries, the
procedure is similar to that used in pre-Language Environment versions of C, COBOL, Fortran, or PL/I.

To help you get started, this topic describes the following common link-edit and run tasks, which you
might want to try before reading further:

• Link-editing and running an existing object module and accepting the default Language Environment
runtime options

• Link-editing and running an existing object module and specifying new Language Environment runtime
options

• Calling a Language Environment service

Note that several Fortran and C library routines have identical names. This topic describes what you must
do to resolve any potential conflicts in using these names.

This topic also describes basic tasks intended to help give you an idea of what running an application
under Language Environment is like. It is not intended to illustrate every aspect of link-editing and
running you might want to learn. Detailed instructions about link-editing and running existing and new
applications under each supported operating system are provided in other topics in this information, and
in z/OS MVS Program Management: User's Guide and Reference and z/OS MVS Program Management:
Advanced Facilities.

Understanding Language Environment library routines
Language Environment library routines are divided into two categories: resident routines and dynamic
routines. The resident routines are linked with the application and include such things as initialization/
termination routines and pointers to callable services. The dynamic routines are not part of the
application and are dynamically loaded during run time.

The way Language Environment code is packaged keeps the size of application executable programs
small. When maintaining dynamic library code, you need not relink-edit the application code except under
special circumstances, such as when you use an earlier version of code.

The linkage editor converts an object module into an executable program and stores it in a library.
The executable program can then be run from that library at any time. The link-edit process combines
output from compilers, language translators, link-edit programs and control statements to produce an
executable program (load module or program object) and stores it in a library. The executable program
can then be run from that library. Either the program management binder or linkage editor can be used to
perform the link-edit process. All of the services of the linkage editor can be performed by the binder. In
addition, the binder provides additional functionality and usability improvements. See z/OS MVS Program
Management: User's Guide and Reference and z/OS MVS Program Management: Advanced Facilities for
a complete discussion of services to create, load, modify, list, read, transport and copy executable
programs.

Planning to link-edit and run
There are certain considerations that you must be aware of before link-editing and running applications
under Language Environment.

Language Environment resident routines for non-XPLINK applications, including those for callable
services, initialization, and termination, are located in the SCEELKED and SCEELKEX libraries. Language

Preparing to use Language Environment

© Copyright IBM Corp. 1991, 2022 5

Environment resident routines for XPLINK applications are located in the SCEEBIND and SCEEBND2
libraries. Language Environment dynamic routines are located in the SCEERUN and SCEERUN2 libraries.
The Language Environment libraries are located in data sets identified with a high-level qualifier specific
to the installation.

The following is a summary of the Language Environment libraries and their contents:
SCEERUN

A PDS that contains the runtime library routines that are needed during execution of applications
written in C/C++, PL/I, COBOL and FORTRAN.

SCEERUN2
A PDSE that contains the runtime library routines that are needed during execution of applications
written in C/C++ and COBOL.

SCEELKED
Contains Language Environment resident routines for non-XPLINK applications, including those for
callable services, initialization, and termination. This includes language-specific callable services,
such as those for the C/C++ runtime library. Only case-insensitive names of eight or less characters in
length are contained in this library.

Important: This library must be used only when link-editing a non-XPLINK program.

SCEELKEX
Like SCEELKED, contains Language Environment resident routines for non-XPLINK applications.
However, case-sensitive names that can be greater than eight characters in length are contained
in this library. This allows symbols such as the C/C++ printf and pthread_create functions to be
resolved without requiring the names to be uppercased, truncated, or mapped to another symbol.

Important: This library must be used only when link-editing a non-XPLINK program.

SCEEOBJ
Contains Language Environment resident definitions for non-XPLINK applications which may be
required for z/OS UNIX (z/OS UNIX) programs, such as the definition of the external variable symbol
environ..

Important: SCEEOBJ must be used whenever link-editing a z/OS UNIX non-XPLINK program.

SCEECPP
Contains Language Environment resident definitions for non-XPLINK applications which may be
required for C++ programs, such as the definition of the new operator.

Important: SCEECPP must be used whenever link-editing a program that includes any NOXPLINK-
compiled C++ object modules.

SCEEBIND
Contains Language Environment resident routines for XPLINK applications, but is deprecated and may
not be supported in a future release. Use SCEEBND2 instead.

SCEEBND2
Contains all Language Environment resident routines for XPLINK applications. This one library
replaces the four libraries of resident routines for non-XPLINK applications. For XPLINK, this one
library is used wherever the four libraries of resident routines (SCEELKED, SCEELKEX, SCEEOBJ,
SCEECPP) had been used. It provides only a small number of resident routines, since most of the
functions formerly provided in those static libraries are instead provided using dynamic linkage.

Important: SCEEBND2 must be used only when link-editing an XPLINK program.

SCEELIB
Contains side-decks for DLLs provided by Language Environment.

Many of the language-specific callable services available to XPLINK-compiled applications appear
externally as DLL functions. See Chapter 4, “Building and using dynamic link libraries (DLLs),” on
page 35 for information about DLLs. To resolve these references from XPLINK applications, a
definition sidedeck must be included when link-editing the application. The SCEELIB library contains
the following sidedecks in support of XPLINK:

Preparing to use Language Environment

6 z/OS: z/OS Language Environment Programming Guide

CELHS001
The sidedeck to resolve references to Language Environment services when link-editing an
XPLINK application. This includes both Application Writer Interfaces (AWIs) and Compiler Writer
Interfaces (CWIs).

• For more information about AWIs, see z/OS Language Environment Programming Reference.
• For more information about CWIs, see z/OS Language Environment Vendor Interfaces).

The entries in this sidedeck replace the corresponding non-XPLINK resident routines in
SCEELKED.

The AWI stubs also exist as executables in SCEERUN, which can be loaded and run from non-
XPLINK applications. This technique cannot be used with XPLINK applications.

CELHS003
Sidedeck to resolve references to callable services in the C/C++ runtime library when link-editing
an XPLINK application. The entries in this sidedeck replace the corresponding non-XPLINK
resident routines in SCEELKEX, SCEELKED, and SCEEOBJ.

CELHSCPP
Sidedeck to resolve references to XL C/C++ runtime library (RTL) definitions that might be
required when link-editing an XPLINK application. The entries in this sidedeck replace the non-
XPLINK resident routines in SCEECPP.

The functions in these sidedecks can be called from an XPLINK application. However, they cannot be
used as the target of an explicit dllqueryfn() against the DLL.

Link-editing single-language applications
The default main entry point for a C, C++, or PL/I application is CEESTART (PLISTART for code compiled
with OS PL/I); for a Fortran application, it is the name of the main routine. For COBOL, the main entry
point for an application is determined in one of two ways:

• The name of the first object module presented to the link-edit process.
• Explicit specification of the entry point by providing a control statement to the link-edit process.

A copy of CEESTART resides in the Language Environment SCEELKED library. Do not explicitly include it
in the link-edit process, even for Language Environment-conforming languages. The compilers generate
CEESTART or references to it when necessary.

Although CEESTART is not used as an entry point by Language Environment-conforming assembler
programs, it still must be resolved by the link-editor. To ensure this is possible, avoid using the NCAL
link-editor option.

You must link-edit applications before you run them.

Link-editing ILC applications
When mixing languages within an application, presenting the desired main routine to the link-edit process
first nominates it as the entry point. You can specify only one main routine.

To get Language Environment support in using pre-Language Environment C – COBOL ILC applications,
you must relink-edit these applications to replace old HLL library routines with Language Environment
routines. Relink-editing ILC applications of any language combination is usually required, with the
following exceptions:

• Any PL/I – COBOL ILC applications relink-edited using the migration aid provided by OS PL/I Version
2 Release 3. (See the IBM Enterprise PL/I for z/OS library (www.ibm.com/support/docview.wss?
uid=swg27036735) for details.) The PTF numbers for the migration aid are UN76954 and UN76955.

• Any PL/I – C ILC applications.
• Any COBOL – C ILC applications relink-edited using the migration aid provided by the C/370 Version 2

Library. This migration aid was delivered in the fix for APAR PN74931.

Preparing to use Language Environment

Chapter 2. Preparing to link-edit and run under Language Environment 7

http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735

For more information, see the following references:

• Communicating between C and COBOL in z/OS Language Environment Writing Interlanguage
Communication Applications

• z/OS Language Environment Runtime Application Migration Guide
• The migration guides for your primary HLL.

Downward compatibility considerations
As of OS/390 Version 2 Release 10, Language Environment provides downward compatibility support.
Assuming that required programming guidelines and restrictions are observed, this support enables
programmers to develop applications on higher release levels of the operating system, for deployment on
execution platforms that are running lower release levels of the operating system. For example, you may
use OS/390 V2R10 or later (and Language Environment) on a development system where applications
are coded, link edited, and tested, while using any supported lower release of OS/390 (and Language
Environment) on their production systems where the finished application modules are deployed.

Downward compatibility support is not the roll-back of new function to prior releases of the operating
system. Applications developed exploiting the downward compatibility support must not use Language
Environment function that is unavailable on the lower release of the operating system where the
application will be deployed. The downward compatibility support includes toleration PTFs for lower
releases of the operating system (specific PTF numbers can be found in the PSP buckets), to assist in
diagnosis of applications that violate the programming requirements for this support.

The downward compatibility support provided by OS/390 V2R10 and later, and by the toleration PTFs,
does not change Language Environment's upward compatibility. That is, applications coded and link-
edited with one release of Language Environment will continue to execute on later releases of Language
Environment, without a need to recompile or relink-edit the application, independent of the downward
compatibility support.

The application requirements and programming guidelines for downward compatibility are:

• The application must only use Language Environment function that is available on the release level of
the operating system used on the target deployment system.

• The application must only use Language Environment function that is available on the release level
of the operating system used for developing and link-editing the application, by using the appropriate
Language Environment object libraries, header files, and macros.

• The release level of the operating system used for application development and link-editing must be at
least the level that is the prerequisite of the compiler product(s) (C/C++, COBOL, Fortran, PL/I) that are
used to develop the application.

• The release level of the operating system used on the target deployment system must be at least the
level that is the prerequisite of the compiler products that are used to develop the application.

• The release level of the operating system used for application development and link-editing must be at
least OS/390 V2R10.

• The program object format of the application must be no greater than the highest level supported on the
target deployment system.

The term Language Environment function used in the discussion of downward compatibility support refers
to:

• Language Environment callable services.
• Language Environment runtime options
• C/C++ library functions
• UNIX branding functions
• Other new language functionality that has an explicit operating system release prerequisite that

is documented in the user publications. For example, with OS/390 V2R9 Language Environment,
new support was added so that COBOL programs could dynamically call a reentrant C routine with

Preparing to use Language Environment

8 z/OS: z/OS Language Environment Programming Guide

constructed reentrancy without using #pragma(xxx,COBOL). This support is available on OS/390
V2R9 Language Environment or later, but is not available on prior releases.

The compiler products that support development of downward compatible applications are listed in the
table below, along with their prerequisite minimum release level of the operating system. (Prior releases
of the compilers beyond those listed in the table are still supported by Language Environment, but do not
provide downward compatibility. They only support upward compatibility.)

Table 3. Prerequisite OS/390 release level for the various compilers that support downward compatibility

Compiler product OS/390 release level prerequisite

Enterprise COBOL for z/OS OS/390 V2R10

COBOL for MVS & VM, V1R2 OS/390 V2R6

COBOL for OS/390 & VM, V2R1 OS/390 V2R6

COBOL for OS/390 & VM, V2R2 OS/390 V2R6

PL/I for MVS & VM OS/390 V2R6

OS PL/I 2.3 OS/390 V2R6

OS/390 C/C++ compiler OS/390 V2R10

VS Fortran 2.6 OS/390 V2R6

The diagnosis assistance that will be provided by the toleration PTFs includes:

• Options Processing: Whenever an application exploits Language Environment runtime options that are
unavailable on the release of the operating system the application is executed on, a message will
be issued. In order to issue this message, toleration PTFs are available down to OS/390 V2R6, and
you must apply them on the target system. The use of environment variables, even specific Language
Environment ones, is not covered by this support.

• Detection of unsupported function: In many cases where a programmer disregards the requirements
and programming guidelines and exploits a Language Environment function that is unavailable on the
release of the operating system the application is executed on, Language Environment will raise a
new condition. With an unhandled condition, the application is terminated. In order to raise this new
condition, toleration PTFs are available down to OS/390 V2R6, and you must apply them on the target
system.

• C/C++ headers: As of OS/390 V2R10, support has been added to the C/C++ headers shipped with
Language Environment to allow application developers to "target" a specific release, in order to ensure
the application hasn't taken advantage of any new C/C++ library function. For information about how
the TARGET compiler option can be used to create downward-compatible applications and prevent
application developers from using new C/C++ library functions in applications, see TARGET in z/OS XL
C/C++ User's Guide.

• Detection of unsupported program object format: If the program object format is at a level which is
not supported by the target deployment system, then the deployment system will produce an abend
when trying to load the application program. The abend will indicate that DFSMS was unable to find or
load the application program. Correcting this problem does not require the installation of any toleration
PTFs. Rather the application developer will need to recreate the program object which is compatible
with older deployment system. For information about using the Program Management binder COMPAT
option, see COMPAT in z/OS MVS Program Management: User's Guide and Reference.

Note: Starting with z/OS V1R8, the c89 utility is no longer by default passing COMPAT = CURRENT
option to the program management binder. Program objects created by the c89 utility and native
program management binder invocations will use the default COMPAT = MIN.

Preparing to use Language Environment

Chapter 2. Preparing to link-edit and run under Language Environment 9

Checking which runtime options are in effect
Using the Language Environment runtime option RPTOPTS, you can control whether a runtime options
report is produced; with the Language Environment runtime option MSGFILE, you can control where
report output is directed. RPTOPTS generates a report of all the runtime options that are in effect when
your application begins to run. The IBM-supplied default for RPTOPTS is OFF, meaning a report is not
generated when your application finishes running. If you override the default setting of RPTOPTS in any of
the ways described below, a report is sent to the default location:

• On MVS, to the standard system data set SYSOUT. SYSOUT is dynamically allocated when needed, and
is directed to whatever MSGCLASS you specified on the JOB card when you ran the application.

• Under z/OS UNIX, it goes to file descriptor 2.
• Under CICS, with RPTOPTS(ON), Language Environment writes the options report to the CESE queue

when the transaction ends successfully
• On TSO/E, to SYSOUT.

The MSGFILE runtime option is ignored under CICS, so it has no effect on where the options report goes.

If you want to change the options report destination, you can alter the default setting of the MSGFILE
runtime option, which specifies where all runtime diagnostics and messages are written. For example, if
you specify MSGFILE(OPTRPRT), the storage report is written to a file whose ddname is OPTRPRT. You
need to allocate a data set for OPTRPRT under batch and TSO/E.

For the syntax of RPTOPTS and MSGFILE, see RPTOPTS and MSGFILE in z/OS Language Environment
Programming Reference.

HLL compatibility considerations
Some applications link-edited with previous levels of HLL runtime libraries might have to be relink-edited
with Language Environment. Language Environment provides sample JCL and EXECs to help you replace
pre-Language Environment library routines in your applications with equivalent Language Environment
routines. For example:

• The COBOL library routine replacement tools IGZWRLKA, IGZWRLKB and IGZWRLKC, located in
SCEESAMP, can be used to replace OS/VS COBOL and VS COBOL II library routines in a COBOL
executable module with the equivalent Language Environment routines.

– IGZWRLKA – relink a VS COBOL II program.
– IGZWRLKB – relink a OS/VS COBOL program.
– IGZWRLKC – relink a program that contains both VS COBOL II and OS/VS COBOL.

See “COBOL considerations” on page 11 for details.
• The PL/I library routine replacement tools IBMWRLK and IBMWRLKC, located in SCEESAMP, can be

used to replace OS PL/I library routines in an OS PL/I executable program with the equivalent Language
Environment routines. See “PL/I considerations” on page 19 for details.

• The Fortran library module replacement tool, AFHWRLK, also located in SCEESAMP, can be used to
replace VS FORTRAN Version 1 and VS FORTRAN Version 2 runtime library modules with the equivalent
Language Environment modules. See “Fortran considerations” on page 12 for details.

For information on compatibility considerations for a pre-Language Environment library routine, consult
the migration guide for the HLL of the routine.

C/C++ AMODE/RMODE considerations
The following table shows valid AMODE and RMODE combinations when the C/C++ runtime product
is installed with the runtime library, EDCZV, having RMODE=ANY. These settings are the installation
defaults. XPLINK executable programs always run with AMODE=31.

Preparing to use Language Environment

10 z/OS: z/OS Language Environment Programming Guide

Product RMODE AMODE Note

C/C++ with CICS/ESA ANY 31 All programs must use this AMODE and
RMODE combination.

C/C++ with COBOL 24 or ANY 31 For VS COBOL II, all COBOL programs must
be compiled with the RES compiler option,
which causes AMODE=31. For COBOL for
OS/390 & VM, COBOL for MVS & VM and
COBOL/370, AMODE=31 always.

C/C++ with Db2 R2.2 24 or ANY 31 All programs must use this AMODE and
RMODE combination.

C/C++ with IMS/ESA® V3R1 24 or ANY 31 All programs must use the same AMODE
and RMODE combination. There are no
restrictions on IMS/ESA parameters.

One of the following:

• C/C++ only
• C/C++ with ISPF
• C/C++ with PL/I

24 or ANY 31 All programs must use the same AMODE
and RMODE combination.

COBOL considerations
This topic describes what you need to know if you link-edit or relink-edit a COBOL program with Language
Environment.

Replacing COBOL library routines in a COBOL load module
Three sample jobs are provided in the SCEESAMP sample library that can be used to replace all OS/VS
COBOL and VS COBOL II library routines in load modules containing OS/VS COBOL and VS COBOL II
programs. These sample jobs are:

• IGZWRLKA to relink-edit a VS COBOL II load module with Language Environment.
• IGZWRLKB to relink-edit an OS/VS COBOL load module with Language Environment.
• IGZWRLKC to relink-edit a load module that contains both OS/VS COBOL programs and VS COBOL II

programs with Language Environment.

For more information on relink-editing existing OS/VS COBOL and VS COBOL II load modules, see
the Enterprise COBOL V4 Migration Guide in Enterprise COBOL for z/OS library (www.ibm.com/support/
docview.wss?uid=swg27036733).

Using Language Environment resident routines for callable services
For COBOL CALL literal statements, the compiler allows you to specify whether your program uses static
or dynamic calls to Language Environment callable services (or other subroutines):

• When a COBOL program makes a static call to a Language Environment callable service, the Language
Environment resident routine (a callable service stub) is link-edited with the program.

• When a COBOL program makes a dynamic call to a Language Environment callable service, the
Language Environment resident routine is not link-edited with the program.

Only COBOL programs compiled with Enterprise COBOL for z/OS, COBOL for OS/390 & VM, COBOL for
MVS & VM or COBOL/370 can call Language Environment callable services.

Note: You can use dynamic calls from VS COBOL II programs to Language Environment Date/Time
callable services. You cannot use dynamic call from VS COBOLL II programs to other Language

Preparing to use Language Environment

Chapter 2. Preparing to link-edit and run under Language Environment 11

http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733

Environment callable services. You cannot use static calls from VS COBOL II programs to any Language
Environment callable services.

For more information about COBOL static and dynamic calls, see the appropriate version of the COBOL
programming guide in the COBOL library at Enterprise COBOL for z/OS library (www.ibm.com/support/
docview.wss?uid=swg27036733).

For more information about Language Environment callable services that can be used by COBOL, see z/OS
Language Environment Programming Reference.

Fortran considerations
This topic discusses what you need to know if you link-edit or relink-edit a Fortran program.

Replacing Fortran runtime library modules in a Fortran executable program
To relink-edit your existing executable program under Language Environment, you must replace Fortran
runtime library modules in the executable program with the equivalent Language Environment routines.
The Fortran library module replacement tool enables you to do this without having to have the object
modules that make up the executable program. This is most useful when:

• You need to recompile some, but not all, of your own Fortran routines that are within one of your
executable programs.

• You need to upgrade existing programs to contain the Language Environment runtime library modules.
Language Environment data sets can be installed, but the changes are not reflected in your own
executable programs unless you link-edit them again using the updated data sets.

You might have to use your original executable program rather than your object modules as linkage editor
input because you don't have all of your routines available in source form for recompilation or because
you didn't retain the object modules. A problem occurs when you use your previous executable programs
as linkage editor input because the linkage editor retains the non-Language Environment modules that
are in your original executable program while including others from the current SYSLIB input. The solution
is to use the Fortran library module replacement tool as discussed in the following sections.

Using the Language Environment library module replacement tool
The Fortran library module replacement tool provides a set of linkage editor REPLACE statements to
help you replace all of the runtime library modules when your input to the linkage editor is an existing
executable program containing the library modules. The tool supports executable programs created by VS
FORTRAN Version 1, VS FORTRAN Version 2, and Language Environment. The source file containing the
Fortran library module replacement tool is member AFHWRLK in the CEE.SCEESAMP library.

In Figure 3 on page 12, the VS FORTRAN Version 2 runtime library modules in the executable program
MYLMOD are replaced while retaining the compiled code, using the cataloged procedure CEEWL.

//RELINK EXEC PROC=CEEWL,PGMLIB=MYPDS.LOAD,GOPGM=MYLMOD
//SYSPRINT DD SYSOUT=A
//SAMPLIB DD DSN=CEE.SCEESAMP,DISP=SHR
//USERLMOD DD DSN=MYPDS.LOAD,DISP=OLD
//LKED.SYSIN DD *
 INCLUDE SAMPLIB(AFHWRLK)
 INCLUDE USERLMOD(MYLMOD)
 NAME MYLMOD(R)
/*

Figure 3. Replacing VS FORTRAN runtime library modules under batch, using CEEWL

Figure 4 on page 13 shows how you can perform the same replacement under TSO/E, using a CLIST.

Preparing to use Language Environment

12 z/OS: z/OS Language Environment Programming Guide

http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733

PROC 0
CONTROL MSG NOFLUSH NOPROMPT SYMLIST CONLIST
LINK ('CEE.SCEESAMP(AFHWRLK)', +
 'MYPDS.LOAD(MYLMOD)') +
LOAD ('MYPDS.LOAD(MYLMOD)') +
LIB ('CEE.SCEELKED') NOTERM

Figure 4. Replacing VS FORTRAN runtime library modules under TSO/E, using a CLIST

Resolving static common block name conflicts
It is possible for a Fortran static common block name in one program unit to be in conflict with a Fortran
intrinsic function name in another program unit. (A conflict could arise, for example, if you used LOG as a
common block name and invoked the LOG intrinsic function in a different program unit.) To avoid any such
conflict, either rename the common block or recompile with VS FORTRAN Version 2.5 or later.

It is also possible that a Fortran static common block name could conflict with another language's library
routine name. (A conflict could arise, for example, if you used GETS as a common block name, and also
invoked C's gets function.) If you find such a conflict, either:

• Change the common block to be dynamic (using the DC compiler option), or
• Change the name of the common block so it does not conflict with the other language's library routine

name.

Resolving library module name conflicts between Fortran and C
Several Fortran and C library routines, shown in Table 4 on page 13, have identical names. To correctly
run applications that reference one or more of these names, you need to determine if a name conflict
exists, and if so, to resolve it according to the prescription given in this section. Otherwise, a library
routine other than the one you intend is likely to be linked into your executable program, and the results
during execution will not be what you expect.

Before you proceed with this topic, first resolve any static common block name conflicts as discussed in
“Resolving static common block name conflicts” on page 13.

Table 4. Fortran and C library routine names that are identical

Routine names

ABS ACOS ASIN ATAN ATAN2

CLOCK COS COSH ERF ERFC

EXIT EXP GAMMA LOG LOG10

SIN SINH SQRT TAN TANH

Conditions under which your application does not have a name conflict
If all three of the following conditions are true, your application does not have the name conflict discussed
here, and you can therefore skip this topic:

• The Language Environment interface validation exit is available. (The interface validation exit is a routine
that, when used with the binder, automatically resolves conflicting library routine references within
Fortran routines)

– Under batch, this means any link-edit steps (for example, in cataloged procedures) have been
changed to include EXITS(INTFVAL(CEEPINTV)) in the PARM parameter and to include the following
DD statement:

//STEPLIB DD DSN=CEE.SCEELKED,DISP=SHR

Preparing to use Language Environment

Chapter 2. Preparing to link-edit and run under Language Environment 13

– Under TSO/E, this means you have included EXITS(INTFVAL(CEEPINTV)) among your link-edit
options. Use the TSO/E command TSOLIB to dynamically allocate a STEPLIB.

• You are not relink-editing a pre-Language Environment executable program in which none of the
component parts have been changed, but instead are link-editing one or more individual routines.

• None of the routines you are link-editing is an assembler CSECT that references a Fortran library routine
from the list in Table 4 on page 13.

Unless all three of the preceding conditions are true, you need to continue reading this section to be able
to properly link-edit and run your application.

Determining if your application has a name conflict
Examine Table 5 on page 14. If your application contains a routine that is compiled (assembled) with
one of the products shown in column one, and the routine uses one of the functions shown in column two,
it has a name conflict that must be resolved.

Table 5. Conflicting names per product and release

Product used for compilation Names causing conflict

VS FORTRAN Version 2 Release 5–6 CLOCK, EXIT

VS FORTRAN Version 2 Release 1–4, or VS
FORTRAN Version 1

CLOCK, EXIT, or any name in Table 4 on page 13,
if passed as an argument

FORTRAN IV H Extended, or FORTRAN IV G1, or
Assembler, any version

Any name in Table 4 on page 13

To determine how to resolve any name conflicts, determine which of the following conditions (labeled A
through E) are true.
A

The Language Environment interface validation exit is available, as described in “Conditions under
which your application does not have a name conflict” on page 13.

B
You have a fully executable program created with one or more pre-Language Environment products,
and you are not modifying any of its component parts.

C
Condition B is not true, and your application contains at least one assembler CSECT that references a
conflicting name listed in Table 4 on page 13. You want the conflicting names in the CSECTs resolved
to Fortran routines.

D
Condition B is not true, and your application consists only of one or more individual Fortran or
assembler routines, of which at least one references a conflicting name. You want any conflicting
names resolved to Fortran routines.

E
Condition B is not true, and your application consists of one or more individual routines that are not
just Fortran, assembler, or both. At least one Fortran or assembler routine references a conflicting
name, and you want its conflicting names resolved to Fortran routines.

Next, find the row in Table 6 on page 15 that corresponds to the combination of conditions that is true
for your application (true conditions are denoted by X, and "don't-care" conditions by –).

Preparing to use Language Environment

14 z/OS: z/OS Language Environment Programming Guide

Table 6. Decision table for name conflict resolution

A B C D E Do the following:

X X – – Proceed to “Removing Fortran conflicting references” on page
15.

– X Proceed to “Relink-editing a pre-Language Environment
executable program” on page 18.

 – X Use one of the AFHW* cataloged procedures discussed in “IBM-
supplied cataloged procedures” on page 86.

 – X Proceed to “Removing Fortran conflicting references” on page
15.

Removing Fortran conflicting references
For each object or executable program that contains conflicting references that you want resolved to
Fortran routines, you must replace the conflicting names with names that are unambiguous, as shown
in the examples in this section. Under MVS, you will use the cataloged procedure AFHWN, or under
TSO/E, a CLIST, in conjunction with data set SCEESAMP(AFHWNCH) to effect the name replacement. (For
information about cataloged procedure AFHWN, see “AFHWN — Resolving name conflicts between C and
Fortran” on page 94.)

You can change one or several modules per step, as you wish. Use one of the following examples,
adapting it to your application, as needed.

SCEESAMP(AFHWNCH) must be included immediately preceding each individual executable program
whose names are to be changed, as shown in each example. AFHWNCH is a data set containing linkage-
editor CHANGE statements to change all conflicting names in the module to which it is applied to names
known unambiguously as Fortran routines. For example, CHANGE ABS(A#BS) replaces any reference to
ABS, a conflicting name, with a reference to A#BS, the Fortran absolute value routine. A complete list of
the conflicting names and their corresponding unambiguous Fortran names can be seen in Table 63 on
page 390.

The modules resulting from this process have had all their conflicting names replaced. Having no name
conflicts, they can, at any time, be linked as part of one or more executable programs in an application, for
example:

• Under MVS, by using one of the CEEW* cataloged procedures discussed in “IBM-supplied cataloged
procedures” on page 86

• Under TSO/E, by using the LINK command as discussed in “Link-editing your application using the LINK
command” on page 70

When a module has had its conflicting references to CLOCK or EXIT changed, it is no longer usable with
the VS FORTRAN Version 2 library.

Changing one module per step (MVS)
Under MVS, the following example produces one executable program. Conflicting names in
USER.INPUT.LOAD(MEM1) are replaced; USER.RESULT.LOAD(MEM1CHG) is the resulting executable
program.

Preparing to use Language Environment

Chapter 2. Preparing to link-edit and run under Language Environment 15

//CHGNAM EXEC PROC=AFHWN,PGMLIB=USER.RESULT.LOAD,GONAME=MEM1CHG
//USERINP DD DSNAME=USER.INPUT.LOAD,DISP=SHR
//LKED.SYSIN DD *
 INCLUDE SCEESAMP(AFHWNCH)
 INCLUDE USERINP(MEM1)
/*

Figure 5. Changing conflicting names in an executable program under MVS

The following example produces several executable programs. Conflicting names in
USER.INPUT.LOAD(MEM1, MEM2, and MEM3) are replaced; the resulting executable programs are
USER.RESULT.LOAD(MEM1CHG, MEM2CHG, and MEM3CHG).

//CHGNAM1 EXEC PROC=AFHWN,PGMLIB=USER.RESULT.LOAD,GOPGM=MEM1CHG
//USERINP DD DSNAME=USER.INPUT.LOAD,DISP=SHR
//LKED.SYSIN DD *
 INCLUDE SCEESAMP(AFHWNCH)
 INCLUDE USERINP(MEM1)
/*
//CHGNAM2 EXEC PROC=AFHWN,PGMLIB=USER.RESULT.LOAD,GOPGM=MEM2CHG
//USERINP DD DSNAME=USER.INPUT.LOAD,DISP=SHR
//LKED.SYSIN DD *
 INCLUDE SCEESAMP(AFHWNCH)
 INCLUDE USERINP(MEM2)
/*
//CHGNAM3 EXEC PROC=AFHWN,PGMLIB=USER.RESULT.LOAD,GOPGM=MEM3CHG
//USERINP DD DSNAME=USER.INPUT.LOAD,DISP=SHR
//LKED.SYSIN DD *
 INCLUDE SCEESAMP(AFHWNCH)
 INCLUDE USERINP(MEM3)
/*

Figure 6. Changing conflicting names in several executable programs under MVS

Changing one module per step (TSO/E)
Under TSO/E, the example in Figure 7 on page 16 produces a single executable program.
Conflicting names in USER.INPUT.LOAD(MEM1) are replaced; the resulting executable program is
USER.RESULT.LOAD(MEM1CHG).

PROC 0
CONTROL MSG NOFLUSH NOPROMPT SYMLIST CONLIST
LINK ('CEE.SCEESAMP(AFHWNCH)', +
 'USER.INPUT.LOAD(MEM1)') +
LOAD ('USER.RESULT.LOAD(MEM1CHG)') +
LIB ('CEE.SAFHFORT', +
 'CEE.SCEELKED') NOTERM LET NCAL

Figure 7. Changing conflicting names in an executable program under TSO/E

Figure 8 on page 17 shows an example that produces several executable programs. Conflicting names
in USER.INPUT.LOAD(MEM1, MEM2, and MEM3) are replaced; the resulting executable programs are
USER.RESULT.LOAD(MEM1CHG, MEM2CHG, and MEM3CHG).

Preparing to use Language Environment

16 z/OS: z/OS Language Environment Programming Guide

PROC 0
CONTROL MSG NOFLUSH NOPROMPT SYMLIST CONLIST
LINK ('CEE.SCEESAMP(AFHWNCH)', +
 'USER.INPUT.LOAD(MEM1)') +
LOAD ('USER.RESULT.LOAD(MEM1CHG)') +
LIB ('CEE.SAFHFORT', +
 'CEE.SCEELKED') NOTERM LET NCAL

LINK ('CEE.SCEESAMP(AFHWNCH)', +
 'USER.INPUT.LOAD(MEM2)') +
LOAD ('USER.RESULT.LOAD(MEM2CHG)') +
LIB ('CEE.SAFHFORT', +
 'CEE.SCEELKED') NOTERM LET NCAL

LINK ('CEE.SCEESAMP(AFHWNCH)', +
 'USER.INPUT.LOAD(MEM3)') +
LOAD ('USER.RESULT.LOAD(MEM3CHG)') +
LIB ('CEE.SAFHFORT', +
 'CEE.SCEELKED') NOTERM LET NCAL

Figure 8. Changing conflicting names in several executable programs under TSO/E

Changing multiple modules per step (MVS)
Figure 9 on page 17 shows an example for MVS. Conflicting names in USER.INPUT.LOAD(MEM1, MEM2,
and MEM3) are replaced; USER.RESULT.LOAD(MEM1CHG) is the resulting executable program. You must
explicitly include AFHWNCH before each individual program.

//CHGNAM EXEC PROC=AFHWN,PGMLIB=USER.RESULT.LOAD,GOPGM=MEM1CHG
//USERINP DD DSNAME=USER.INPUT.LOAD,DISP=SHR
//LKED.SYSIN DD *
 INCLUDE SCEESAMP(AFHWNCH)
 INCLUDE USERINP(MEM1)
 INCLUDE SCEESAMP(AFHWNCH)
 INCLUDE USERINP(MEM2)
 INCLUDE SCEESAMP(AFHWNCH)
 INCLUDE USERINP(MEM3)
/*

Figure 9. Changing conflicting names in multiple executable programs under MVS

Changing multiple modules per step (TSO/E)
The following example contains an example for TSO/E. Conflicting names in USER.INPUT.LOAD(MEM1,
MEM2, and MEM3) are replaced; the resulting executable program is USER.RESULT.LOAD(MEM1CHG). You
must explicitly link-edit AFHWNCH before each individual executable program.

PROC 0
CONTROL MSG NOFLUSH NOPROMPT SYMLIST CONLIST
LINK ('CEE.SCEESAMP(AFHWNCH)', +
 'USER.INPUT.LOAD(MEM1)', +
 'CEE.SCEESAMP(AFHWNCH)', +
 'USER.INPUT.LOAD(MEM2)', +
 'CEE.SCEESAMP(AFHWNCH)', +
 'USER.INPUT.LOAD(MEM3)', +
LOAD ('USER.RESULT.LOAD(MEM1CHG)') +
LIB ('CEE.SAFHFORT', +
 'CEE.SCEELKED') NOTERM LET NCAL

Figure 10. Changing conflicting names in multiple executable programs under TSO/E

Preparing to use Language Environment

Chapter 2. Preparing to link-edit and run under Language Environment 17

Relink-editing a pre-Language Environment executable program
The action to take to relink-edit a pre-Language Environment executable program depends on whether it
contains a reference to one or more of the conflicting names shown in Table 4 on page 13:

• If the executable program contains no reference to any of the conflicting names, but contains parts
that reference Fortran routines not in the list of conflicting names, replace the Fortran routines with
the equivalent Language Environment routines by using the module as input to the Fortran library
module replacement tool, SCEESAMP(AFHWRLK), which is discussed in “Replacing Fortran runtime
library modules in a Fortran executable program” on page 12.

• If the executable program does contain parts that reference one or more of the conflicting names, and
the names are to be resolved to Fortran routines, the action you take depends on whether C parts are
present in the executable program:

– If the executable program does not contain any C part that references a conflicting name, replace the
Fortran routines with the equivalent Language Environment routines by using the executable program
as input to the Fortran library module replacement tool, SCEESAMP(AFHWRLK), and link-edit:

- Under MVS, by using the AFHWL cataloged procedure (see “AFHWL — Link a program written in
Fortran” on page 93), as shown in the following example.

//REPFORT EXEC PROC=AFHWL,PGMLIB=USER.FORT.LOAD
//USERINP DD DSN=USER.FORT.LOAD,DISP=SHR
//LKED.SYSIN DD *
 INCLUDE SCEESAMP(AFHWRLK)
 INCLUDE USERINP(MEM1)
 NAME MEM1(R)
/*

Figure 11. Replacing Fortran routines with Language Environment routines under MVS

Fortran routines are replaced with the equivalent Language Environment routines using the Fortran
library module replacement tool, AFHWRLK. The existing and resulting executable program is
USER.FORT.LOAD(MEM1). No DD statement is needed for the SCEESAMP library because it is
already included in the AFHWL cataloged procedure.

- Under TSO/E, by using a CLIST as shown in Figure 12 on page 18, Fortran routines are replaced
with the equivalent Language Environment routines using the Fortran library module replacement
tool, AFHWRLK. The existing and resulting executable program is USER.FORT.LOAD(MEM1).

PROC 0
CONTROL MSG NOFLUSH NOPROMPT SYMLIST CONLIST
LINK ('CEE.SCEESAMP(AFHWRLK)', +
 'USER.FORT.LOAD(MEM1)') +
LOAD ('USER.FORT.LOAD(MEM1)') +
LIB ('CEE.SAFHFORT', +
 'CEE.SCEELKED') NOTERM

Figure 12. Replacing Fortran routines with Language Environment routines under TSO/E

– If the executable program contains at least one C part that references a conflicting name, you can
take one of two possible courses of action depending on whether the individual object modules of the
executable program are available to you:

- If the individual object modules are available, relink-edit the whole application following the name
conflict procedure from the beginning to check for possible conflicts, or

- If the individual object modules are not available, link-edit the executable program:

• In MVS, using the CEEWL cataloged procedure, as shown in Figure 13 on page 19
• In TSO/E, using a CLIST, as shown in Figure 14 on page 19

Do the following in the link-edit step, as shown in the following examples:

Preparing to use Language Environment

18 z/OS: z/OS Language Environment Programming Guide

1. Include the SAFHFORT library Fortran routines to which the conflicting names should resolve.
2. Include the Fortran library module replacement tool, SCEESAMP(AFHWRLK).
3. Do the CSECT replacement necessary to make the C parts of the executable program

compatible. There could be CSECTs that you need to replace in addition to those shown in
Figure 13 on page 19 or Figure 14 on page 19. For details, see z/OS XL C/C++ Compiler and
Runtime Migration Guide for the Application Programmer.

The following example relink-edits an executable program containing both C and Fortran (or assembler)
routines, where C references SQRT, and Fortran references SIN, LOG, and CLOCK. (The language
of the main program here is C. If it were Fortran, the ENTRY CEESTART statement would be
rewritten to instead name the Fortran main program.) The existing and resulting executable program
is USER.FORTC.LOAD(MEM1).

//FORTC EXEC PROC=CEEWL,PGMLIB=USER.FORTC.LOAD
//USERINP DD DSNAME=USER.FORTC.LOAD,DISP=OLD
//SAFHFORT DD DSNAME=CEE.SAFHFORT,DISP=SHR
//SCEESAMP DD DSNAME=CEE.SCEESAMP,DISP=SHR
//LKED.SYSIN DD *
 INCLUDE SAFHFORT(SIN)
 INCLUDE SAFHFORT(LOG)
 INCLUDE SAFHFORT(CLOCK)
 INCLUDE SCEESAMP(AFHWRLK)
 INCLUDE USERINP(MEM1)
 NAME MEM1(R)
 INCLUDE SYSLIB(EDCSTART)
 INCLUDE SYSLIB(CEEROOTB)
 INCLUDE SYSLIB(@@FTOC)
 INCLUDE SYSLIB(@@CTOF)
 INCLUDE USERINP(MEM1)
 ENTRY CEESTART
 NAME MEM1(R)
/*

Figure 13. Relink-editing an executable program to resolve conflicting names under batch

The following example relink-edits an executable program containing both C and Fortran (or assembler)
routines, where C references SQRT, and Fortran references SIN, LOG, and CLOCK. The existing and
resulting executable program is USER.FORTC.LOAD(MEM1).

PROC 0
CONTROL MSG NOFLUSH NOPROMPT SYMLIST CONLIST
LINK ('CEE.SAFHFORT(SIN)', +
 'CEE.SAFHFORT(LOG)', +
 'CEE.SAFHFORT(CLOCK)', +
 'CEE.SCEESAMP(AFHWRLK)', +
 'USER.FORTC.LOAD(MEM1)') +
LOAD ('USER.FORTC.LOAD(MEM1)') +
LIB ('CEE.SCEELKED') NOTERM
LINK ('CEE.SCEELKED(EDCSTART)', +
 'CEE.SCEELKED(CEEROOTB)', +
 'CEE.SCEELKED(@@FTOC)', +
 'CEE.SCEELKED(@@CTOF)', +
 'USER.FORTC.LOAD(MEM1)') +
LOAD ('USER.FORTC.LOAD(MEM1)') +
LIB ('CEE.SCEELKED') NOTERM

Figure 14. Relink-editing an executable program to resolve conflicting names under TSO/E

PL/I considerations
This section discusses what you need to know if you link-edit or relink-edit in PL/I.

Preparing to use Language Environment

Chapter 2. Preparing to link-edit and run under Language Environment 19

Link-editing PL/I subroutines for later use
To prelink PL/I subroutines, store them in a load library, and later INCLUDE them with main procedures.
The subroutines must be linked with the NCAL link-edit option which causes unresolved external
reference error messages from the link-edit process, but these are resolved when the PL/I main
procedure is linked with the subroutines. The NCAL option is needed because, in a PL/I load module, all
the resident modules must be at the same level. This consistency is ensured because external references
are not resolved until the final link.

Replacing PL/I library routines in an OS PL/I executable program
Two jobs, IBMWRLK for batch and IBMWRLKC for CICS, located in the sample library SCEESAMP,
replace OS PL/I library routines in an OS PL/I executable program with Language Environment routines.
For more information about using IBMWRLK or IBMWRLKC, see IBM Enterprise PL/I for z/OS library
(www.ibm.com/support/docview.wss?uid=swg27036735).

Link-editing fetchable executable programs
The PL/I FETCH and RELEASE statements dynamically load separate executable programs that can
be subsequently invoked from the PL/I routine that fetches the executable program. There are
some restrictions on the PL/I for MVS & VM statements that can be used in fetched procedures.
These are described in the IBM Enterprise PL/I for z/OS library (www.ibm.com/support/docview.wss?
uid=swg27036735).

Many of those restrictions have been removed with Enterprise PL/I for z/OS. See the IBM Enterprise PL/I
for z/OS library (www.ibm.com/support/docview.wss?uid=swg27036735) for the use of FETCH with that
compiler.

Fetchable (or dynamically loaded) modules should be link-edited into an executable program library that
is subsequently made available for the job step by means of a JOBLIB or STEPLIB DD statement. The
FETCH statement can access modules stored in link-pack areas (both the LPA and the ELPA). The search
order for modules is defined by z/OS; see “Program library definition and search order” on page 67 for
details.

The step that link-edits a fetchable executable program into a library requires the following linkage editor
control statements:

• An ENTRY statement to define the entry point into the PL/I routine.
• A NAME statement to define the name used for the fetchable executable program. This statement is

required if the NAME compiler option is not used and if the name is not specified in the DSN parameter
in the SYSLMOD DD statement used to define the executable program library.

The name or any alias by which the fetchable executable program is identified in the executable
program library must appear in a FETCH or RELEASE statement within the scope of the invoking
procedure.

//FETCH JOB
//STP EXEC IEL1CL
//PLI.SYSIN DD *
⋮
 PL/I source(fetchable)
⋮
/*
//LKED.SYSLIN DD *
 ENTRY procedure-name
 INCLUDE OBJMOD
 NAME FETCH1
/*
//LKED.SYSLMOD DD DSN=PRVLIB,...
//LKED.OBJMOD DD DSN=&&LOADSET,DISP=(OLD,...

Figure 15. Example of link-editing a fetchable executable program

Preparing to use Language Environment

20 z/OS: z/OS Language Environment Programming Guide

http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735

Language Environment-conforming COBOL or C modules can be loaded dynamically by the PL/I FETCH
statement. The cataloged procedure IEL1CL includes both the compilation and the link-editing of the
fetchable PL/I module. For more details on cataloged procedure IEL1CL, see the IBM Enterprise PL/I for
z/OS library (www.ibm.com/support/docview.wss?uid=swg27036735).

PL/I link-time considerations
The product structure for PL/I has changed from the previous PL/I version. Most JCL and CLISTs that
link-edit a PL/I application using the OS PL/I library must be changed. These changes include:

• The OS PL/I multitasking library PLITASK has been replaced by SIBMTASK, which is required to have
multitasking support. SIBMTASK must be concatenated before SCEELKED.

Enterprise PL/I for z/OS does not support multitasking. Language Environment continues to support
PL/I multitasking for PL/I for MVS & VM as well as previous, supported levels of the PL/I product.

• The PLIBASE and SIBMBASE libraries have been replaced by:

– SCEELKED, which contains resident routines that are linked with the application and are used to
resolve external references at link-edit time.

– SIBMMATH, which contains the stubs for old OS PL/I V2R3 math library routines. In link-edit steps,
this library must precede SCEELKED if old math results are desired in a particular executable
program.

– SIBMCALL, which is required to provide PLICALLA and PLICALLB compatibility if PL/I for MVS & VM
applications use OS PL/I PLICALLA or PLICALLB as an entry point. SIBMCALL must be concatenated
before SCEELKED.

– SIBMCAL2, which is very similar to SIBMCALL, but is only used with Enterprise PL/I for z/OS.

Note: SCEELKED and SIBMCAL2 are the only libraries that apply for Enterprise PL/I for z/OS.

Fetching modules with different AMODEs
Language Environment supports the PL/I FETCH/RELEASE facility. No special considerations apply to
this support when both the fetching executable program and the fetched executable programs have the
AMODE(ANY) attribute or both have the AMODE(24) attribute.

Language Environment also supports the fetching of a load module that has a different AMODE attribute
than the executable program issuing the FETCH statement. Language Environment performs the AMODE
switches in this case, and the following constraints apply:

• If any fetched module is to execute in 24-bit addressing mode, the fetching module must be loaded into
storage below 16M, and must have the RMODE(24) attribute regardless of its AMODE attribute.

• Any variables passed as parameters to a fetched routine must be addressable in the AMODE of the
fetched procedure. For any fetched executable program that is to be executed in 24-bit addressing
mode, you must ensure that:

– If any parameter resides in a HEAP area, the BELOW suboption of the HEAP option is specified.
– If any parameter resides in STATIC storage of the fetching executable program, the fetching

executable program has the RMODE(24) attribute so that its STATIC storage is below 16M.
– If any parameter resides in AUTOMATIC storage, no special considerations apply because

ALL31(OFF) and STACK(,,BELOW) runtime options have been used. If the two constraints described
previously cause problems, then you can copy the variable to a like variable with the AUTOMATIC
attribute and pass the copy to the fetched AMODE(24) procedure, with the BELOW suboption of the
HEAP option specified.

• PL/I object modules can be link-edited into overlay executable programs and run as overlay executable
programs. Such programs have the attributes AMODE(24) and RMODE(24).

When a PL/I routine fetches another PL/I procedure, it is possible for a condition to arise in the fetched
procedure for which a PL/I ON-unit was established in the fetching procedure.

Preparing to use Language Environment

Chapter 2. Preparing to link-edit and run under Language Environment 21

http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735

PL/I imposes the restriction that if an ON-unit is established while the current addressing mode is 24-bit,
and the condition is raised while the addressing mode is 31-bit, the ON-unit is not invoked. This is
because PL/I must invoke the ON-unit in the addressing mode in which it was established. If the ON-unit
was established in 24-bit addressing mode but the condition arose in 31-bit addressing mode, the code
and data required to process the error might not even be addressable in 24-bit addressing mode.

Preparing to use Language Environment

22 z/OS: z/OS Language Environment Programming Guide

Chapter 3. Using Extra Performance Linkage
(XPLINK)

What is XPLINK?
Extra Performance Linkage (XPLINK) is a call linkage between programs that has the potential for a
significant performance increase when used in an environment of frequent calls between small functions
or subprograms.

Objectives
The C/C++ subroutine linkage on z/OS cannot be considered state-of-the art with respect to performance.
It represents a disproportionate percentage of total execution time, higher yet for C++ than for C due to
the many, typically small, functions. Depending on the style of programming, the total prolog/epilog cost
may reach a double digit percentage even for C, and thus represents a significant potential for further
program optimization.

The objective of XPLINK is to significantly speed up the linkage for C and C++ routines by using a
downward-growing stack and by passing parameters in registers. It includes support for reentrant and
non-reentrant code, for calls to functions in DLLs, and compatibility with old code.

With XPLINK, the linkage and parameter passing mechanisms for C and C++ are identical. If you link to a
C function from a C++ program, you should still specify extern C to avoid name mangling.

The primary objective of XPLINK is to make subroutine calls as fast and efficient as possible by removing
all nonessential instructions from the main path.

This is achieved by introducing the following:

• Stack growth from higher to lower addresses ("negative-" or "downward-growing"):

– To eliminate overhead in stack frame allocation
– To eliminate the need to check for inline stack overflow
– To allow an improved epilog
– To allow addressability to information (such as parameters) in the caller's stack frame

• Biasing the stack pointer (by 2048 bytes), so that small functions can save registers in their own stack
frame before updating the stack pointer, avoiding address generation interlocks.

• Reassignment of registers (see “XPLINK register conventions” on page 29) to support more efficient
saving and restoring of registers in function prologs and epilogs.

• Parameter passing in registers and accepting return values in registers.
• Elimination of Interlanguage Call (ILC) overhead (marking of stack frame) for non-ILC calls.
• Faster call sequences for inter-module calls.
• Passing the address of the data area associated with a function, its "environment," to the function on

entry.
• No branching around Language Environment words.
• Use of relative branching for function calls where possible.
• Unification of the various (RENT and NORENT, DLL, and NODLL) function pointer implementations,

reducing the costs of all operations involving function pointers.

An important additional objective is reducing the module size in memory, which is accomplished by
eliminating unused information in function blocks.

Using XPLINK

© Copyright IBM Corp. 1991, 2022 23

Support for XPLINK
XPLINK support is available for applications running under the following environments:

• Batch
• TSO/E
• z/OS UNIX

It is not available for applications running under CICS before CICS TS 3.1.

XPLINK support is available with the compiler for the following programming language:

• z/OS C and C++

There is limited XPLINK support in the following areas:

• Db2 — EXEC SQL calls are defined using linkage OS which is supported from XPLINK callers.
• IMS — Language Environment provides the CTDLI interface (a ctdli() function call) for C and C++

callers. This interface is defined in the ims.h header as using linkage OS which is supported from
XPLINK callers.

• In general, any system service that is defined as using linkage OS is a supported call from an XPLINK
program.

– If it requires OS linkage conventions but not a Language Environment-conforming stack (that is, it
only needs a 72-byte save area), then the function can be defined as OS_NOSTACK (the default when
#pragma linkage(...,OS) is specified). This option provides the best performance because the
compiler generates OS linkage calling conventions directly – no call through glue code is required.

– If it requires OS linkage conventions and a Language Environment-conforming stack, then the
function can be defined as OS_UPSTACK. For this option, the compiler generates a call through
Language Environment glue code that switches to OS linkage conventions and the non-XPLINK
upward-growing stack.

For more information, see “XPLINK restrictions” on page 33.

XPLINK concepts and terms
XPLINK

Extra Performance Linkage (XPLINK) is a new call linkage between programs which has the potential
for a significant performance increase when used in an environment of frequent calls between small
functions or subprograms.

non-XPLINK application
A non-XPLINK application is one in which none of the executables involved have been compiled with
the XPLINK compiler option specified.

XPLINK application
An XPLINK application is one in which at least one of the executables involved as been compiled
with the XPLINK compiler option specified. XPLINK and non-XPLINK compiled source code cannot be
link-edited together into the same executable, but XPLINK and non-XPLINK executables (for example,
DLLs) can be mixed in the same application. The performance advantage from XPLINK is increased as
the percentage of XPLINK executables in an application increases.

XPLINK environment
An XPLINK environment is one in which Language Environment has initialized the necessary resources
to run an XPLINK application (for example, a downward-growing stack). This is accomplished by
either invoking an initial program that was compiled with the XPLINK compiler option specified, or
specifying the XPLINK(ON) runtime option.

downward-growing stack
The standard Language Environment stack is upward-growing. For XPLINK, a main feature of its more
efficient program prolog code is a program stack which grows from higher to lower addresses. This
provides implicit protection against exceeding available stack storage, rather than having to make an
explicit test, and therefore reduces path length.

Using XPLINK

24 z/OS: z/OS Language Environment Programming Guide

guard page
A write-protected area of storage at the low address end of a downward-growing stack segment. This
allows a stack frame (smaller than the size of the guard page) to be allocated by storing into the
low address of the stack frame. Stack segment overflow and extension is triggered by the exception
resulting from a prolog storing into the guard page (implicit stack overflow detection).

glue code
With respect to XPLINK compatibility, glue code refers to the code inserted between XPLINK and
non-XPLINK executables, which converts the stack structure, registers and parameter list into a
format suitable for the called function, and then restores the environment upon return.

The XPLINK stack
Stack storage is automatically created by Language Environment and is used for routine linkage and
automatic storage. This topic describes the way the XPLINK stack differs from the standard Language
Environment stack, which is described in detail in “Stack storage overview” on page 146.

The prolog of a function usually allocates space (referred to as a "frame", "Stack Frame", or "DSA" -
dynamic storage area) in the Language Environment-provided stack segment for its own purposes and to
support calls to other routines.

Figure 16 on page 25 shows the structure of the standard Language Environment stack. Note that
the DSAs in the standard (upward-growing) Language Environment stack are allocated from lower to
higher addresses. Figure 17 on page 26 shows how the XPLINK (downward-growing) stack is different,
specifically that the DSAs are allocated from higher to lower addresses, with the presence of the guard
page to mark the bottom of the stack.

UPWARD-GROWING STACK

HIGH

LOW

init_size incr_size incr_size

DSA 4

DSA 3

DSA 2 DSA 6

DSA 7

INITIAL SEGMENT INCREMENT 1 . . . INCREMENT n

DSA 1

DSA 8

DSA n

DSA 5

Figure 16. Standard stack storage model

Using XPLINK

Chapter 3. Using Extra Performance Linkage (XPLINK) 25

DOWNWARD-GROWING STACK

HIGH

LOW

init_size incr_size incr_size

DSA 2

DSA 3

DSA 4 DSA 7

GUARD
PAGE

GUARD
PAGE

GUARD
PAGE

DSA 6

INITIAL SEGMENT INCREMENT 1 . . . INCREMENT n

DSA 1

DSA 5 DSA n

Figure 17. XPLINK stack storage model

The XPLINK stack frame layout
Figure 18 on page 27 shows the XPLINK stack frame layout.

The XPLINK stack register (general-purpose register (GPR) 4) is biased, meaning it points to a location
2048 bytes before the stack frame for the currently active routine. It grows from numerically higher
storage addresses to numerically lower ones, that is, the stack frame for a called function is normally at a
lower address than the calling function. The stack frame is aligned on a 32-byte boundary.

Using XPLINK

26 z/OS: z/OS Language Environment Programming Guide

Guard Page (4 KB)

Stack Frames for called functions

Backchain

Environment
Entry Point

Return Address
R8
R9

R10
R11
R12
R13
R14
R15

Reserved (8 bytes)

Debug Area (4 bytes)

Arg Area Prefix (4 Bytes)

Argument Area:
Parm 1
Parm 2

Local (automatic) Storage

Savearea
(48 bytes)

Saved FPRs Saved ARs

High
Addresses

Low
Addresses

Stack
Pointer (R4)

+2048

+2096

+2104

+2108

+2112

Saved VRs

Figure 18. XPLINK stack frame layout

Save area (48 bytes)
This area is always present when a stack frame is required. It holds up to 12 registers. The first two
words hold, optionally, GPRs 4 and 5, which contain the address of the previous stack frame and the
environment address passed into the function. This is followed by the two words containing GPR 6, which
may or may not hold the actual entry point address (depending on the type of call), and GPR 7, the return
address. GPR 8 through GPR 15, as used by the called function, are saved in the following 32 bytes. Table
7 on page 29 shows the XPLINK register conventions.

Except when registers are saved in the prolog, this area may not be altered by compiled code. The PPA1
GPR Save Mask indicates which GPRs are saved in this area by the prolog.

Stack overflow is detected when the STM instruction stores into the write-protected guard page while
trying to save the registers in this save area.

Storage of the Backchain field in the save area is triggered by the optional XPLINK(BACKCHAIN) compiler
option (or at the convenience of the compiler). This adds slightly to the cost of the prolog code, but may
increase the serviceability characteristics of the application by providing a DSA backchain pointer in the
save area. Note that this backchain pointer may or may not be valid, depending on the options specified
when a function was compiled.

The third slot in the save area contains the value in GPR 6 on entry to the routine. If the routine was called
with a BASR instruction, this will be the address of the function's entry point. The fourth slot contains
the return address. The return point can be examined to determine how the function was called: if with
a BASR instruction then the entry point address can be found in the third slot of the save area; if with a
branch relative instructive, then the entry point can be computed from the return address and the branch
offset contained in the branch relative instruction.

Using XPLINK

Chapter 3. Using Extra Performance Linkage (XPLINK) 27

Reserved (8 bytes)
This area is always present and is for the exclusive use of the runtime environment. It is uninitialized by
compiled code.

Argument area prefix (4 bytes)
This area is always present and is for the exclusive use of the runtime environment. It is uninitialized by
compiled code.

Argument area (minimum 16 bytes)
This area (at a fixed DSA offset of 64 bytes into the caller's stack frame) contains the argument lists
which are passed on function calls made by the function associated with this stack frame. The called
function finds its parameters in the caller's stack frame. Arguments passed in registers are not present
in the argument area in the save area. This can be overridden by the optional XPLINK(STOREARGS)
compiler option. This adds slightly to the cost of the prolog code, but might increase the serviceability
characteristics of the application by providing a complete record of the arguments passed as input to a
function.

A minimum of four words (16 bytes) is always allocated.

Local storage
Local storage is the space owned by the executing procedure. It can be used for its local variables and
temporaries.

Total stack frame size
The total stack frame size is calculated by adding the preceding fields and by rounding the sum up to a
quadword boundary.

Stack overflow
To maximize function call performance, XPLINK replaces the explicit inline check for overflow with a
storage protect mechanism that detects stores past the end of the stack segment.

The stack floor is the lowest usable address of the current stack segment. Toward lower addresses, it is
preceded by a store-protected guard page used to detect stack overflows.

Availability of space for a stack frame is ensured in the function prolog usually by storing into the start
of the called function's frame. In case of overflow, this triggers an exception which in turn causes a
discontiguous extension of the stack by Language Environment. Functions with a DSA larger than the
guard page use the stack floor address in the CAA to verify space availability. Allocation and deallocation
of extensions is transparent to the application.

To make the stack appear contiguous to the application, a small stack frame containing all fields up to
and including the Argument area will be allocated in the new stack segment for use by the called function,
and the contents of the caller's stack, up to the end of the argument area, is copied into the new stack
segment. The length of the argument list expected is available in the called function's PPA1 except for
vararg functions, where the entire argument area in the calling function must be copied.

Stores into the guard page done outside the prolog done outside alloca() built-in processing should be
treated as invalid and cause the application to be terminated.

Stack overflow is detected by the STM instruction that is used to save registers in this save area.

Initial stack segment size and the stack segment increment size are controlled by the STACK runtime
option. For more information about STACK, see STACK in z/OS Language Environment Programming
Reference.

Using XPLINK

28 z/OS: z/OS Language Environment Programming Guide

XPLINK register conventions
XPLINK introduces a register scheme which is different from standard OS linkage, in order to optimize
the performance of saving and restoring registers in function prologs and epilogs. The registers, which are
saved in the register save area of the XPLINK stack frame, are described in “Save area (48 bytes)” on page
27.

Table 7 on page 29 shows the layout of the XPLINK interface.

Table 7. Comparing non-XPLINK and XPLINK register conventions

Interface part Non-XPLINK XPLINK

Stack pointer Reg 13 Reg 4 (biased; see “The XPLINK stack
frame layout” on page 26)

Return address Reg 14 Reg 7

Entry point on entry Reg 15 Reg 6 (not guaranteed; a routine may be
called via branch relative)

Environment Reg 0 (writable static) Reg 5

CAA Address Reg 12 Reg 12

Input parameter
list

address in R1 Located at offset 2112 ('840'x) off R4
(fixed location in caller's stack frame). First
three words are passed in R1-R3, floating
point values in FPR0, 2, 4, 6.

Return code Reg 15 R3 (extended return value in R1,R2)

Start address of
callee's stack frame

Caller's NAB value Caller's Reg 4 - DSA size

End address of
callee's stack frame

Caller's NAB value + DSA size Caller's Reg 4

Where caller's
registers are saved R0-R12 saved in caller's stack frame

R13 saved in callee's stack frame
R14-R15 saved in caller's stack frame

R0 not saved, not preserved
R1-R3 not saved, not preserved
R4 not saved, recalculated
(or saved, restored)
R5 not saved, not preserved
R6 saved in callee's stack frame,
not restored
R7-R15 saved in callee's stack frame
(R7 is the return register and is
not guaranteed to be restored)

For more information about register usage and conventions, see Common interfaces and conventions in
z/OS Language Environment Vendor Interfaces.

XPLINK parameter passing and return code conventions
XPLINK uses a logical argument list consisting of contiguous 32-bit words, where some arguments are
passed in registers and some in storage.

The argument list is located in the caller's stack frame at a fixed offset (+2112) from the stack register
(GPR 4). It provides space for all arguments, including those passed in registers. It also includes an extra
unused word (4 bytes), which might be required in compatibility situations, at the end of the argument
area. Its size is sufficient to contain all the arguments passed on any call statement from a procedure
associated with the stack frame.

Using XPLINK

Chapter 3. Using Extra Performance Linkage (XPLINK) 29

Function return values are also returned in registers. When the return value will not fit in registers, it is
always returned in a buffer allocated by the caller. For more information about the XPLINK parameter
and return value conventions, see Extra Performance Linkage (XPLINK) CALL linkage conventions in z/OS
Language Environment Vendor Interfaces.

When XPLINK should be used
The type of application that could benefit most from using XPLINK is an application that makes many
calls to small functions. C++ is a good example, since the OO programming model makes this possible. C
applications that make many function calls might also be suitable for XPLINK.

To further enhance the performance of an XPLINK application, the IEEE binary floating-point math library
should be used by specifying the FLOAT(IEEE) compiler option. This math library has been recompiled
entirely in XPLINK, while the Hexadecimal math library remains non-XPLINK and therefore requires a call
through glue code from XPLINK applications.

When XPLINK should not be used
Functions compiled XPLINK and NOXPLINK cannot be combined in the same program object (except
when the #pragma linkage(OS) directive is used in C, or extern in C++.

While XPLINK can provide a significant performance enhancement to the right application, it can also
degrade the performance of an application that is not suitable for XPLINK.

One way to call an XPLINK function from non-XPLINK is to use the DLL call mechanism. But there is an
overhead cost associated with calls made from non-XPLINK to XPLINK, and from XPLINK to non-XPLINK.
This overhead includes the need to swap from one stack type to another and to convert the passed
parameters to the style accepted by the callee. Applications that make many "cross-linkage" calls might
lose any benefit obtained from the parts that were compiled XPLINK, and in fact performance could be
degraded from the pure non-XPLINK case. If the number of pure XPLINK function calls is significantly
greater than the number of "cross-linkage" calls, then the cost saved on XPLINK calls will recover some of
the costs associated with calls that involve stack swapping.

When you introduce an XPLINK program object into your application, for example an XPLINK version of a
vendor-DLL which your application uses, then your application must now run in an XPLINK environment
(this is controlled by the XPLINK runtime option). In an XPLINK environment, an XPLINK version of the
C/C++ runtime library (RTL) is used. You cannot have both the non-XPLINK and XPLINK versions of the
C/C++ RTL active at the same time, so in an XPLINK environment, non-XPLINK callers of the C/C++
runtime library also incurs this stack swapping overhead.

The maximum performance improvement can be achieved by recompiling an entire application XPLINK.
The further the application gets from pure XPLINK, the less the performance improvement, and at some
point you might see a performance degradation.

The only compiler that supports the XPLINK compiler option is the z/OS XL C/C++ compiler. All COBOL
and PL/I programs are non-XPLINK, and therefore calls between COBOL or PL/I and XPLINK-compiled
C/C++ are cross-linkage calls and will incur the stack swapping overhead. For more information about
making ILC calls with XPLINK, see ILC calls between XPLINK and non-XPLINK routines in z/OS Language
Environment Writing Interlanguage Communication Applications.

If the application contains C or C++ and the XPLINK(ON) runtime option is specified, then the XPLINK-
compiled version of the C runtime library (RTL) is loaded, which will run on the downward-growing stack.
When non-XPLINK functions call C RTL functions in this environment, a swap from the upward-growing
stack to the downward-growing stack will occur. This results in additional overhead that could cause a
performance penalty. Applications that make heavy use of the C RTL from non-XPLINK callers should be
aware of this, and if necessary for performance reasons, either run in a pure non-XPLINK environment
with XPLINK(OFF) (the default in this case), or convert as much of the application to XPLINK as possible
and run with XPLINK(ON).

Using XPLINK

30 z/OS: z/OS Language Environment Programming Guide

Applications that use Language Environment environments that are not supported in an XPLINK
environment, or that use products that are not supported in an XPLINK environment (for example, CICS
before CICS TS 3.1), cannot be recompiled as XPLINK applications.

How is XPLINK enabled?
XPLINK is enabled on several levels, including a compiler option and several runtime options.

XPLINK compiler option
The z/OS XL C/C++ XPLINK compiler option produces an object that uses the XPLINK calling conventions.
This compiler option is described in detail in z/OS XL C/C++ User's Guide.

XPLINK runtime option
Language Environment initializes the enclave as an XPLINK environment if the initial program is compiled
XPLINK or the XPLINK(ON) runtime option is specified. If the initial program is non-XPLINK but may call
an XPLINK program later in its execution, then the XPLINK(ON) runtime option is required so that the
XPLINK resources will be allocated and available when they are needed.

Applications that consist only of non-XPLINK functions (for example COBOL or PL/I) should not execute
with the XPLINK(ON) runtime option, because this option provides no benefit when not running an
XPLINK application, and could result in performance degradation. In fact, for non-XPLINK applications,
enabling this runtime option could result in abends for applications that have not been tested to run in an
XPLINK environment, for example, if they use resources or subsystems that are restricted in an XPLINK
environment. See “XPLINK restrictions” on page 33.

No AMODE 24 routines are allowed in an enclave that uses XPLINK. When an application is running in an
XPLINK environment (that is, either the XPLINK(ON) runtime option was specified, or the initial program
was compiled XPLINK), the ALL31 runtime option will be forced to ON. No message will be issued to
indicate this action. In this case, if a Language Environment runtime options report is generated using the
RPTOPTS runtime option, the ALL31 option will be reported as "Override" under the LAST WHERE SET
column.

When an application is running in an XPLINK environment (that is, either the XPLINK(ON) runtime option
was specified, or the initial program was compiled XPLINK), the STACK runtime option will be forced to
STACK(,,ANY). Only the third suboption of the STACK runtime option is changed by this action, to indicate
that stack storage can be allocated anywhere in storage. No message will be issued to indicate this action.
In this case, if a Language Environment runtime options report is generated using the RPTOPTS runtime
option, the STACK option will be reported as Override under the LAST WHERE SET column.

Related runtime options
The STACK runtime option controls the allocation of the thread's stack storage for the standard Language
Environment upward growing stack and the XPLINK downward-growing stack. STACK controls storage
allocation for the initial thread in a multi-threaded application.

Similarly, the THREADSTACK runtime option controls the allocation of stack storage for the upward
and downward-growing stacks, for other than the initial thread in a multi-threaded application. The
THREADSTACK runtime option replaces the NONIPTSTACK runtime option. The NONIPTSTACK runtime
option remains for compatibility, but was not enhanced for XPLINK.

Building and running an XPLINK application
The detailed procedures for building and running non-XPLINK Language Environment-conforming
applications can be found in other topics in this information.

The procedures for building XPLINK Language Environment-conforming applications can be summarized
as:

Using XPLINK

Chapter 3. Using Extra Performance Linkage (XPLINK) 31

1. Compile the application with an XPLINK compiler (the z/OS XL C/C++ compiler) using the XPLINK
compiler option.

2. Link edit, with the DFSMS binder, the application (specifying a PDSE or HFS file as the output data set)
with the object files and the following Language Environment input:

• Where SYSLIB for non-XPLINK applications usually lists the SCEELKED, SCEELKEX, SCEEOBJ,
and SCEECPP data sets, the SYSLIB for link-editing an XPLINK application replaces these with
the SCEEBND2 data set. SCEEBND2 contains all object files necessary for building Language
Environment-conforming XPLINK applications. If you attempt to link edit an XPLINK application
using the non-XPLINK static libraries, or vice versa, you will receive the binder error message
IEW2469E indicating a mismatch in linkage type between function reference and definition.

• If the XPLINK application calls C runtime library (RTL) functions, it must include the XPLINK C RTL
sidedeck CELHS003 that is in the SCEELIB data set. This is included automatically by c89 when the
-Wl,xplink option is specified.

• If the XPLINK application calls Language Environment AWIs or CWIs, it must include the XPLINK
Language Environment sidedeck CELHS001 that is in the SCEELIB data set.

• If the XPLINK application is written in C++, it picks up Language Environment C++ RTL definitions
from the XPLINK C++ sidedeck CELHSCPP that is in the SCEELIB data set. This sidedeck is used
instead of the SCEECPP data set (the SCEECPP data set is used by non-XPLINK applications).

3. Run the application by providing both SCEERUN and SCEERUN2 data sets in the MVS program search
order, for example STEPLIB or LNKLST.

SCEERUN and SCEERUN2 can be specified in any search order. The XPLINK(ON) runtime option is
required if the initial program in the application is non-XPLINK and XPLINK programs can be called (via
DLL).

Other considerations
When you compile and link edit a program, the resulting executable is either XPLINK or non-XPLINK.
That is, XPLINK-compiled parts and NOXPLINK-compiled parts cannot be link-edited together in the same
program object. The one exception to this is the use of the #pragma linkage(OS) directive for C
(or extern "OS" for C++). The intent here is to allow the calling of existing assembler programs that
typically perform some function that cannot be done in C or C++ without having to rewrite the assembler
program using XPLINK conventions. This calling could also be done if performance is critical; for more
information, see Combining C or C++ and Assembler programs in z/OS XL C/C++ Programming Guide.
XPLINK and non-XPLINK executables can be mixed at run time, for example by using DLL function calls.
An XPLINK function can call a non-XPLINK function in a separate DLL, and vice versa. If needed, glue
code is inserted automatically by Language Environment to perform the necessary stack switching and
parameter passing adjustments.

The existing static/resident libraries cannot be used when building XPLINK applications. They contain
static parts that get resolved by the binder before the entries in the XPLINK side decks.

The DFSMS binder must be used to create an XPLINK application. The resulting program module exploits
the format of the PM3 Program Object.

There are also XPLINK versions of locales and iconv converters that are provided for use by XPLINK
applications.

There is an PLINK-compiled version of the Curses archive file. It is called libcursesxp.a, and resides
in /usr/lib. The usage is the same as the old archive file except the compiler and environment must
be set up using XPLINK. The following example shows how to compile test.c with the Curses XPLINK
archive:

 c89 -o test -Wc,xplink -Wl,xplink test.c -lcursesexp

Using XPLINK

32 z/OS: z/OS Language Environment Programming Guide

XPLINK / non-XPLINK compatibility
Compatibility with XPLINK only exists for Language Environment-conforming non-XPLINK applications
that are able to run AMODE(31).

XPLINK Compatibility Support is defined as the ability for programs compiled NOXPLINK to transparently
call programs that are compiled XPLINK, and vice versa. The programs can be non-XPLINK C or C++
(Fastlink), COBOL, PL/I or OS Linkage Assembler.

This transparent compatibility is provided at the Program Object boundary. It is also provided at the load
module boundary, for compatibility with prelinker-built executables. That is, a Program Object (or load
module) containing a caller of one linkage type (XPLINK or NOXPLINK) can call a function compiled with
the opposite linkage type as long as the called function resides in a different Program Objector or load
module. Program Objects can reside in either a PDSE or the HFS; load modules reside in PDSs.

Compatibility requires that the differences between stack structures, register conventions, and parameter
lists are handled. Language Environment will automatically insert the glue code that performs the
necessary transitions between XPLINK and non-XPLINK functions.

The main call linkage supporting XPLINK Compatibility is the DLL call mechanism, but C's fetch() and
Language Environment’s CEEFETCH Assembler macro are also supported.

The following are not supported for XPLINK:

• COBOL dynamic call of an XPLINK function
• PL/I FETCH
• CEELOAD

XPLINK restrictions
• In general, XPLINK-compiled objects cannot be statically bound with non-XPLINK-compiled objects. A

program object (or load module) consists of either XPLINK objects or non-XPLINK objects.

The one exception to this is when an XPLINK function calls a function that is defined as either
OS_UPSTACK or OS_NOSTACK. In this case, the called function is non-XPLINK and uses OS linkage
conventions. However, since the bind step of XPLINK and non-XPLINK executables uses different data
sets (see “Planning to link-edit and run” on page 5), all external references from the non-XPLINK
function must be resolved using the XPLINK link-edit data sets. For example, if a called OS_UPSTACK
function makes a call to the C runtime (RTL), the C RTL function must be resolved via the CELHS003
sidedeck in SCEELIB. It cannot use the SCEELKED static stubs since these are not used to bind XPLINK
objects.

The intent of OS_UPSTACK is to be able to call a non-XPLINK function that is not going to be recompiled
or rewritten as XPLINK, but is itself a leaf routine and does not make any further calls. The intent of
OS_NOSTACK is to call non-XPLINK functions that only need an OS linkage register save area, and are
either leaf routines or make calls to other system services that do not use the Language Environment
stack.

• XPLINK Assembler programs cannot resolve the address and environment of other XPLINK functions
in order to call them. If a function pointer is passed to an XPLINK Assembler program, it can be used
to call that function as long as XPLINK calling conventions are used (see z/OS Language Environment
Vendor Interfaces). There is no CALL macro support for XPLINK.

The intent of the XPLINK Assembler support is to be able to call an Assembler function that was
rewritten using XPLINK conventions (either for performance reasons or to perform some function that is
not easily implemented in C or C++), but is itself a leaf routine and does not make any further calls.

• Calls between XPLINK and non-XPLINK functions are allowed when they cross program object (or load
module) boundaries. The use of DLLs is the primary method, where a function in a non-XPLINK DLL calls
another function in an XPLINK DLL (or vice versa). The fetch() function also provides compatibility
between XPLINK and non-XPLINK functions.

• The following do not support calls to XPLINK functions:

Using XPLINK

Chapter 3. Using Extra Performance Linkage (XPLINK) 33

– COBOL dynamic call
– PL/I FETCH

• XPLINK functions can only call non-XPLINK functions that are also Language Environment-conforming,
that is, they were compiled using a Language Environment-conforming compiler.

• XPLINK applications must run AMODE 31, so the ALL31 runtime option will be forced ON. This means all
non-XPLINK applications that can call or be called by an XPLINK application must also run AMODE 31.

• Make a reference from XPLINK code into non-XPLINK code only if the reference is by an imported
function or variable, or the function pointer is a parameter into the XPLINK code. This prevents
incompatible references to a non-XPLINK function entry point.

• XPLINK applications must be built using the DFSMS Binder, and they must reside in either a PDSE or the
HFS. The Prelinker cannot be used to create an XPLINK application.

• The following environments and subsystems do not support applications that have been compiled
XPLINK:

– Releases of CICS TS before CICS TS 3.1 (Chapter 25, “Running applications under CICS,” on page
349)

– Procedures stored by Db2 cannot be compiled XPLINK (Chapter 26, “Running applications under
Db2,” on page 363)

– A nested (child) enclave must run with the same XPLINK environment as its parent (Chapter 31,
“Using nested enclaves,” on page 469)

– The CEEBXITA and CEEBINT user exits cannot be XPLINK (Chapter 28, “Using runtime user exits,” on
page 371

– PICI
– System Programmer C (SPC)
– C Multitasking Facility (C MTF)
– PL/I Multitasking

Using XPLINK

34 z/OS: z/OS Language Environment Programming Guide

Chapter 4. Building and using dynamic link libraries
(DLLs)

The z/OS dynamic link library (DLL) facility provides a mechanism for packaging programs and data into
load modules (DLLs) that may be accessed from other separate load modules. A DLL can export symbols
representing routines that may be called from outside the DLL, and can import symbols representing
routines or data or both in other DLLs, avoiding the need to link the target routines into the same load
module as the referencing routine. When an application references a separate DLL for the first time, it is
automatically loaded into memory by the system.

There are two types of DLLs: simple and complex. A simple DLL contains only DLL code in which special
code sequences are generated by the compiler for referencing functions and external variables, and using
function pointers. With these code sequences, a DLL application can reference imported functions and
imported variables from a DLL as easily as it can non-imported ones.

A complex DLL contains mixed code, that is, some DLL code and some non-DLL code. A typical complex
DLL might contain some C++ code, which is always DLL code, and some C object modules compiled with
the NODLL compiler option bound together.

This topic defines DLL concepts and shows how to build simple DLLs and DLL Applications.

Support for DLLs
DLL support is available for applications running under the following systems:

• z/OS batch
• CICS
• IMS
• TSO
• z/OS UNIX

It is not available for applications running under SP C, CSP or MTF.

Note: For CICS, all potential DLL executable modules are registered in the CICS PPT control table in the
CICS environment and are invoked at run time.

DLL support is available with the compilers for the following programming languages:

• C and C++
• Enterprise COBOL for z/OS
• COBOL for OS/390 & VM
• Enterprise PL/I for z/OS and OS/390
• High Level Assembler (HLASM) Release 5

Note: PL/I for MVS & VM and OS PL/I 2.3 do not support the creation of DLLs or the calling of DLLs.

DLL concepts and terms
Function

In this topic, function is used to generically refer to a callable routine or program, and is specifically
applicable to C and C++. In COBOL a function would be a COBOL program or method. In Enterprise
PL/I a function would be a PL/I procedure.

Variable
In this topic, variable is used to generically refer to a data item, such as a static variable in C/C++.

Dynamic link libraries (DLLs)

© Copyright IBM Corp. 1991, 2022 35

Application
All the code executed from the time an executable program module is invoked until that program, and
any programs it directly or indirectly calls, is terminated.

DLL
An executable module that exports functions, variable definitions, or both, to other DLLs or DLL
applications. The executable code and data are bound to the program at run time. The code and
data in a DLL can be shared by several DLL applications simultaneously. It is important to note that
compiling code with the DLL option does not mean that the produced executable will be a DLL. To
create a DLL, you must compile with the DLL option and export one or more symbols.

DLL application
An application that references imported functions, imported variables, or both, from other DLLs.

DLL code
DLL code is code that is compiled with the DLL option of the C and COBOL compilers, code that is
compiled with the RENT option of the Enterprise PL/I compiler, or any code compiled with the C++
compiler.

Executable program (or executable module)
A file which can be loaded and executed on the computer. z/OS supports two types:
Load module

An executable residing in a PDS.
Program object

An executable residing in a PDSE or in the z/OS UNIX file system.
Object code (or object module)

A file output from a compiler after processing a source code module, which can subsequently be used
to build an executable program module.

Source code (or source module)
A file containing a program written in a programming language.

Imported functions and variables
Functions and variables that are not defined in the executable module where the reference is made,
but are defined in a referenced DLL.

Non-imported functions and variables
Functions and variables that are defined in the same executable module where a reference to them is
made.

Exported functions or variables
Functions or variables that are defined in one executable module and can be referenced from another
executable module. When an exported function or variable is referenced within the executable
module that defines it, the exported function or variable is also nonimported.

Writable Static Area (WSA)
An area of memory that is modifiable during program execution. Typically, this area contains global
variables and function and variable descriptors for DLLs.

Function descriptor
An internal control block containing information needed by compiled code to call a function.

Variable descriptor
An internal control block containing information about the variable needed by compiled code.

Loading a DLL
A DLL is loaded implicitly when an application references an imported variable or calls an imported
function. DLLs can be explicitly loaded by calling dllload() or dlopen(). Due to optimizations
performed, the DLL implicit load point may be moved and is only done before the actual reference occurs.

Dynamic link libraries (DLLs)

36 z/OS: z/OS Language Environment Programming Guide

Loading a DLL implicitly
When an application uses functions or variables defined in a DLL, the compiled code loads the DLL.
This implicit load is transparent to the application. The load establishes the required references to
functions and variables in the DLL by updating the control information contained in function and variable
descriptors.

If a C++ DLL contains static classes, their constructors are run when the DLL is loaded, typically before the
main function runs. Their destructors run once after the main function returns.

To implicitly load a DLL from C or C++, do one of the following:

• Statically initialize a variable pointer to the address of an exported DLL variable.
• Reference a function pointer that points to an exported function.
• Call an exported function.
• Reference (use, modify, or take the address of) an exported variable.
• Call through a function pointer that points to an exported function.

To implicitly load a DLL from COBOL, do one of the following:

• Call a function that is exported from the DLL.
• Set a COBOL procedure-pointer to a function that is exported from the DLL.
• Invoke a method that is defined in a class contained in the DLL.

When the first reference to a DLL is from static initialization of a C or C++ variable pointer, the DLL is
loaded before the main function is invoked. Any C++ constructors are run before the main function is
invoked.

Loading a DLL explicitly
The use of DLLs can also be explicitly controlled by C/C++ application code at the source level. The
application uses explicit source-level calls to one or more runtime services to connect the reference to
the definition. The connections for the reference and the definition are made at runtime.

The DLL application writer can explicitly call the following C runtime services:

• dllload(), which loads the DLL and returns a handle to be used in future references to this DLL
• dllqueryfn(), which obtains a pointer to a DLL function
• dllqueryvar(), which obtains a pointer to a DLL variable
• dllfree(), which frees a DLL loaded with dllload()

The following runtime services are also available as part of the Single UNIX Specification, Version 3:

• dlopen(), which loads the DLL and returns a handle to be used in future references to this DLL
• dlclose(), which frees a DLL that was loaded with dlopen()
• dlsym(), which obtains a pointer to an exported function or exported variable
• dlerror(), which returns information about the last DLL failure on this thread that occurred in one of

the dlopen() family of functions

While you can use both families of explicit DLL services in a single application, you cannot mix usage
across those families. So a handle returned by dllload() can only be used with dllqueryfn(),
dllqueryvar(), or dllfree(). And a handle returned by dlopen() can only be used with dlsym()
and dlclose().

Since the dlopen() family of functions are part of the Single UNIX Specification, Version 3, they should
be used in new applications if cross-platform portability is a concern.

For more information about the C runtime services, see z/OS XL C/C++ Runtime Library Reference.

To explicitly call a DLL in your application:

Dynamic link libraries (DLLs)

Chapter 4. Building and using dynamic link libraries (DLLs) 37

• Determine the names of the exported functions and variables that you want to use. You can get this
information from the DLL provider's documentation or by looking at the definition sidedeck file that
came with the DLL. A definition sidedeck is a directive file that contains an IMPORT control statement
for each function and variable exported by that DLL.

• If you are using the dllload() family of functions, include the DLL header file <dll.h> in your
application. If you are using the dlopen() family of functions, include the DLL header file <dlfcn.h> in
your application.

• Compile your source as usual.
• Bind your object with the binder using the same AMODE value as the DLL.

Note: You do not need to bind with the definition sidedeck if you are calling the DLL explicitly with the
runtime services, since there are no references from the source code to function or variable names in
the DLL for the binder to resolve. Therefore the DLL will not be loaded until you explicitly load it with the
dllload() or dlopen() runtime service.

“Explicit use of a DLL in a C application” on page 38 and “Explicit use of a DLL in a COBOL/C application”
on page 40 have examples of applications that use explicit DLL calls.

Explicit use of a DLL in a C application
The following example shows explicit use of a DLL in a C application.

#include <dll.h>
#include <stdio.h>
#include <string.h>

#ifdef __cplusplus
 extern "C" {
#endif

 typedef int (DLL_FN)(void);

#ifdef __cplusplus
 }
#endif

#define FUNCTION "FUNCTION"
#define VARIABLE "VARIABLE"

static void Syntax(const char* progName) {
 fprintf(stderr, "Syntax: %s <DLL-name> <type> <identifier>\n"
 " where\n"
 " <DLL-name> is the DLL to load,\n"
 " <type> can be one of FUNCTION or VARIABLE\n"
 " and <identifier> is the function or variable\n"
 " to reference\n", progName);
 return;
}

main(int argc, char* argv[]) {
 int value;
 int* varPtr;
 char* dll;
 char* type;
 char* id;
 dllhandle* dllHandle;

 if (argc != 4) {
 Syntax(argv[0]);
 return(4);
 }
 dll = argv[1];
 type = argv[2];
 id = argv[3];

 dllHandle = dllload(dll);
 if (dllHandle == NULL) {
 perror("DLL-Load");
 fprintf(stderr, "Load of DLL %s failed\n", dll);
 return(8);
 }

 if (strcmp(type, FUNCTION)) {

Dynamic link libraries (DLLs)

38 z/OS: z/OS Language Environment Programming Guide

 if (strcmp(type, VARIABLE)) {
 fprintf(stderr,
 "Type specified was not " FUNCTION " or " VARIABLE "\n");
 Syntax(argv[0]);
 return(8);
 }
 /*
 * variable request, so get address of variable
 */
 varPtr = (int*)(dllqueryvar(dllHandle, id));
 if (varPtr == NULL) {
 perror("DLL-Query-Var");
 fprintf(stderr, "Variable %s not exported from %s\n", id, dll);
 return(8);
 }
 value = *varPtr;
 printf("Variable %s has a value of %d\n", id, value);
 }
 else {
 /*
 * function request, so get function descriptor and call it
 */
 DLL_FN* fn = (DLL_FN*) (dllqueryfn(dllHandle, id));
 if (fn == NULL) {
 perror("DLL-Query-Fn");
 fprintf(stderr, "Function %s() not exported from %s\n", id, dll);
 return(8);
 }
 value = fn();
 printf("Result of call to %s() is %d\n", id, value);
 }
 dllfree(dllHandle);

 return(0);
}

The following example shows explicit use of a DLL in an application using the dlopen() family of functions.

 #define _UNIX03_SOURCE

 #include <dlfcn.h>
 #include <stdio.h>
 #include <string.h>

 #ifdef __cplusplus
 extern "C" {
 #endif

 typedef int (DLL_FN)(void);

 #ifdef __cplusplus
 }
 #endif

 #define FUNCTION "FUNCTION"
 #define VARIABLE "VARIABLE"

 static void Syntax(const char* progName) {
 fprintf(stderr, "Syntax: %s <DLL-name> <type> <identifier>\n"
 " where\n"
 " <DLL-name> is the DLL to open,\n"
 " <type> can be one of FUNCTION or VARIABLE,\n"
 " and <identifier> is the symbol to reference\n"
 " (either a function or variable, as determined by"
 " <type>)\n", progName);
 return;
 }

main(int argc, char* argv[]) {
 int value;
 void* symPtr;
 char* dll;
 char* type;
 char* id;
 void* dllHandle;
 if (argc != 4) {
 Syntax(argv[0]);
 return(4);
 }
 dll = argv[1];

Dynamic link libraries (DLLs)

Chapter 4. Building and using dynamic link libraries (DLLs) 39

 type = argv[2];
 id = argv[3];

 dllHandle = dlopen(dll, 0);
 if (dllHandle == NULL) {
 fprintf(stderr, "dlopen() of DLL %s failed: %s\n", dll, dlerror());
 return(8);
 }

 /*
 * get address of symbol (may be either function or variable)
 */
 symPtr = (int*)(dlsym(dllHandle, id));
 if (symPtr == NULL) {
 fprintf(stderr, "dlsym() error: symbol %s not exported from %s: %s\n"
 , id, dll, dlerror());
 return(8);
 }
 if (strcmp(type, FUNCTION)) {
 if (strcmp(type, VARIABLE)) {
 fprintf(stderr,
 "Type specified was not " FUNCTION " or " VARIABLE "\n");
 Syntax(argv[0]);
 return(8);
 }
 /*
 * variable request, so display its value
 */
 value = *(int *)symPtr;
 printf("Variable %s has a value of %d\n", id, value);
 }
 else {
 /*
 * function request, so call it and display its return value
 */
 value = ((DLL_FN *)symPtr)();
 printf("Result of call to %s() is %d\n", id, value);
 }
 dlclose(dllHandle);

 return(0);
 }

Explicit use of a DLL in a COBOL/C application
The following example shows explicit use of a DLL in a COBOL/C application.

 CBL NODYNAM
 IDENTIFICATION DIVISION.
 PROGRAM-ID. 'COBOL1'.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 DATA DIVISION.
 FILE SECTION.
 WORKING-STORAGE SECTION.
 01 DLL-INFO.
 03 DLL-LOADMOD-NAME PIC X(12).
 03 DLL-PROGRAM-NAME PIC X(160).
 03 DLL-PROGRAM-HANDLE POINTER.
 77 DLL-RC PIC S9(9) BINARY.
 77 DLL-PROGRAM-PTR PROCEDURE-POINTER.

 77 DLL-STATUS PIC X(1) VALUE 'N'.
 88 DLL-LOADED VALUE 'Y'.
 88 DLL-NOT-LOADED VALUE 'N'.

 PROCEDURE DIVISION.

 IF DLL-NOT-LOADED
 THEN
 * Move the names in. They must be null terminated.
 MOVE Z'OOC05R' TO DLL-LOADMOD-NAME
 MOVE Z'ooc05r' TO DLL-PROGRAM-NAME

 * Call the C routine to load the DLL and to get the
 * function descriptor address.
 CALL 'A1CCDLGT' USING BY REFERENCE DLL-INFO

Dynamic link libraries (DLLs)

40 z/OS: z/OS Language Environment Programming Guide

 BY REFERENCE DLL-RC
 IF DLL-RC = 0
 THEN
 SET DLL-LOADED TO TRUE
 ELSE
 DISPLAY 'A1CCLDGT failed with rc = '
 DLL-RC
 MOVE 16 TO RETURN-CODE
 STOP RUN
 END-IF
 END-IF

 * Move the function pointer to a procedure pointer
 * so that we can use the call statement to call the
 * program in the DLL.
 SET DLL-PROGRAM-PTR TO DLL-PROGRAM-HANDLE

 * Call the program in the DLL.
 CALL DLL-PROGRAM-PTR

 GOBACK.
#include <stdio.h>
#include <dll.h>
#pragma linkage (A1CCDLGT,COBOL)

 typedef struct dll_lm {
 char dll_loadmod_name[12];
 char dll_func_name[160];
 void (*fptr) (void); /* function pointer */
 } dll_lm;

 void A1CCDLGT (dll_lm *dll, int *rc)
 {
 dllhandle *handle;
 void (*fptr1)(void);
 *rc = 0;

 /* Load the DLL */
 handle = dllload(dll->dll_loadmod_name);
 if (handle == NULL) {
 perror("A1CCDLGT failed on call to load DLL.\n");
 *rc = 1;
 return;
 }

 /* Get the address of the function */
 fptr1 = (void (*)(void))
 dllqueryfn(handle,dll->dll_func_name);
 if (fptr1 == NULL) {
 perror("A1CCDLGT failed on retrieving function.\n");
 *rc = 2;
 return;
 }
 /* Return the function pointer */
 dll->fptr = fptr1;
 return;
 }

Managing the use of DLLs when running DLL applications
This topic describes how Language Environment manages loading, sharing and freeing DLLs when you run
a DLL application.

Loading DLLs
When you load a DLL for the first time, either implicitly or via an explicit dllload() or dlopen(),
writable static is initialized. If the DLL is written in C++ and contains static objects, then their constructors
are run.

You can load DLLs from a z/OS UNIX file system as well as from conventional data sets. The following list
specifies the order of a search for unambiguous and ambiguous file names.

• Unambiguous file names

Dynamic link libraries (DLLs)

Chapter 4. Building and using dynamic link libraries (DLLs) 41

– If the file has an unambiguous z/OS UNIX name (it starts with a ./ or contains a /), the file is
searched for only in the z/OS UNIX file system.

– If the file has an unambiguous MVS name, and starts with two slashes (//), the file is only searched
for in MVS.

• Ambiguous file names

For ambiguous cases, the settings for POSIX are checked.

– When specifying the POSIX(ON) runtime option, the runtime library attempts to load the DLL as
follows:

1. An attempt is made to load the DLL from the z/OS UNIX file system. This is done using the system
service BPX1LOD. For more information about this service, see loadhfs (BPX1LOD, BPX4LOD) —
Load a program into storage by path name in z/OS UNIX System Services Programming: Assembler
Callable Services Reference.

If the environment variable LIBPATH is set, each directory listed will be searched for the DLL.
Otherwise the current directory will be searched for the DLL. Note that a search for the DLL in the
z/OS UNIX file system is case-sensitive.

2. If the DLL is found and contains an external link name of eight characters or less, the uppercase
external link name is used to attempt a LOAD from the caller's MVS load library search order. If the
DLL is not found or the external link name is more than eight characters, then the load fails.

3. If the DLL is found and its sticky bit is on, any suffix is stripped off. Next, the name is converted to
uppercase, and the base DLL name is used to attempt a LOAD from the caller's MVS load library
search order. If the DLL is not found or the base DLL name is more than eight characters, the
version of the DLL in the z/OS UNIX file system is loaded.

4. If the DLL is found and does not fall into one of the previous two cases, a load from the z/OS UNIX
file system is attempted.

If the DLL could not be loaded from the z/OS UNIX file system because the file was not found or
the application does not have sufficient authority to search for or read that file (that is, BPX1LOD
fails with errnos ENOENT, ENOSYS, or EACCESS), then an attempt is made to load the DLL from the
caller's MVS load library search order. For all other failures from BPX1LOD, the load of the DLL is
terminated. For an implicit DLL load, the error is reported with the errno and errnojr displayed in
message CEE3512S. For an explicit DLL load, the dllload() service returns with the failing errno
and errnojr values set. Correct the indicated error and rerun the application.

If the DLL could not be loaded from the z/OS UNIX file system, an attempt is made to load the DLL
from the caller's MVS load library search order. This is done by calling the LOAD service with the DLL
name, which must be eight characters or less (it will be converted to uppercase). LOAD searches for it
in the following sequence:

1. Runtime library services (if active)
2. Job pack area (JPA)
3. TASKLIB
4. STEPLIB or JOBLIB. If both are allocated, the system searches STEPLIB and ignores JOBLIB.
5. LPA
6. Libraries in the linklist

– When POSIX(OFF) is specified the sequence is reversed.

- An attempt to load the DLL is made from the caller's MVS load library search order.
- If the DLL could not be loaded from the caller's MVS load library then an attempt is made to load

the DLL from the z/OS UNIX file system.

Remember: All DLLs used by an application should be referred to by unique names, whether ambiguous
or not. Using multiple names for the same DLL (for example, aliases or symbolic links) might result in a
decrease in DLL load performance. The use of symbolic links by themselves will not degrade performance,
as long as the application refers to the DLL solely through the symbolic link name. To help ensure this,

Dynamic link libraries (DLLs)

42 z/OS: z/OS Language Environment Programming Guide

when building an application with implicit DLL references always use the same side deck for each DLL.
Also, make sure that explicit DLL references with dllload() specify the same DLL name (case matters
for loads).

Changing the search order for DLLs while the application is running (for example, changing LIBPATH)
might result in errors if ambiguous file names are used.

Sharing DLLs
DLLs are shared at the enclave level (as defined by Language Environment). A referenced DLL is loaded
only once per enclave and only one copy of the writable static is created or maintained per DLL per
enclave. Thus, one copy of a DLL serves all modules in an enclave regardless of whether the DLL is loaded
implicitly or explicitly. A copy is implicit through a reference to a function or variable. A copy is explicit
through a DLL load. You can access the same DLL within an enclave both implicitly and by explicit runtime
services.

All accesses to a variable in a DLL in an enclave refer to the single copy of that variable. All accesses to a
function in a DLL in an enclave refer to the single copy of that function.

Although only one copy of a DLL is maintained per enclave, multiple logical loads are counted and used
to determine when the DLL can be deleted. For a given DLL in a given enclave, there is one logical load
for each explicit dllload() or dlopen() request. DLLs that are referenced implicitly may be logically
loaded at application initialization time if the application references any data exported by the DLL, or the
logical load may occur during the first implicit call to a function exported by the DLL.

DLLs are not shared in a nested enclave environment. Only the enclave that loaded the DLL can access
functions and variables.

Freeing DLLs
You can free explicitly loaded DLLs with a dllfree() or dlclose() request. This request is optional
because the DLLs are automatically deleted by the runtime library when the enclave is terminated.

Implicitly loaded DLLs cannot be deleted from the DLL application code. They are deleted by the runtime
library at enclave termination. Therefore, if a DLL has been both explicitly and implicitly loaded, the DLL
can only be deleted by the runtime when the enclave is terminated.

Creating a DLL or a DLL application
Building a DLL or a DLL application is similar to creating a C, C++, COBOL or Enterprise PL/I application. It
involves the following steps:

1. Writing your source code.
2. Compiling your source code.
3. Binding your object modules.

For more information, see z/OS XL C/C++ Programming Guide, the appropriate version of the programming
guide in the COBOL library at Enterprise COBOL for z/OS library (www.ibm.com/support/docview.wss?
uid=swg27036733), or the IBM Enterprise PL/I for z/OS library (www.ibm.com/support/docview.wss?
uid=swg27036735).

Building a simple DLL
This topic shows how to build a simple DLL. See “Building a simple DLL application” on page 48 for
information about building a simple DLL application.

Writing DLL code

Dynamic link libraries (DLLs)

Chapter 4. Building and using dynamic link libraries (DLLs) 43

http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735

Writing your C DLL code
To build a simple C DLL, write code using the #pragma export directive to export specific external
functions and variables as shown in Figure 19 on page 44.

 #pragma export(bopen)
 #pragma export(bclose)
 #pragma export(bread)
 #pragma export(bwrite)
 int bopen(const char* file, const char* mode) {
 ...
 }
 int bclose(int) {
 ...
 }
 int bread(int bytes) {
 ...
 }
 int bwrite(int bytes) {
 ...
 }
 #pragma export(berror)
 int berror;
 char buffer[1024];
 ...

Figure 19. Using #pragma export to create a DLL executable module named BASICIO

For the previous example, the functions bopen(), bclose(), bread(), and bwrite() are exported; the
variable berror is exported; and the variable buffer is not exported.

Note: To export all defined functions and variables with external linkage in the compilation unit to the
users of the DLL, compile with the EXPORTALL compile option. All defined functions and variables with
external linkage will be accessible from this DLL and by all users of this DLL. However, exporting all
functions and variables has a performance penalty, especially when compiling with the C/C++ IPA option.
When you use EXPORTALL you do not need to include #pragma export in your code.

Writing your C++ DLL code
To create a simple C++ DLL:

• Ensure that classes and class members are exported correctly, especially if they use templates.
• Use _Export or the #pragma export directive to export specific functions and variables.

For example, to create a DLL executable module TRIANGLE, export the getarea() function, the
getperim() function, the static member objectCount and the static constructor for class
triangle using #pragma export:

 class triangle : public area
 {
 public:
 static int objectCount;
 getarea();
 getperim();
 triangle::triangle(void);
 };
 #pragma export(triangle::objectCount)
 #pragma export(triangle::getarea())
 #pragma export(triangle::getperim())
 #pragma export(triangle::triangle(void))

Figure 20. Using #pragma export to create a DLL executable module TRIANGLE

• Do not inline the function if you apply the _Export keyword to the function declaration.

Dynamic link libraries (DLLs)

44 z/OS: z/OS Language Environment Programming Guide

 class triangle : public area
 {
 public:
 static int _Export objectCount;
 double _Export getarea();
 double _Export getperim();
 _Export triangle::triangle(void);
 };

Figure 21. Using _export to create DLL executable module TRIANGLE

• Always export static constructors and destructors when using the _Export keyword.
• Apply the _Export keyword to a class. This keyword automatically exports static members and defined

functions of that class, constructors, and destructors.

 _class Export triangle
 {
 public:
 static int objectCount;
 double getarea();
 double getperim();
 triangle::triangle(void);
 };

• To export all external functions and variables in the compilation unit to the users of this DLL, you
can also use the compiler option EXPORTALL. For more information about this compiler option, see
EXPORTALL | NOEXPORTALL in z/OS XL C/C++ User's Guide. For more information about #pragma
export directives , see #pragma export in z/OS XL C/C++ Language Reference. If you use the
EXPORTALL option, you do not need to include #pragma export or _Export in your code.

Writing your COBOL DLL code
There are no special DLL conditions for writing your COBOL code.

Writing your Enterprise PL/I DLL code
Any PL/I routine other than an OPTIONS(MAIN) procedure can go into a DLL. A package containing a
MAIN procedure cannot go into a DLL. Only those external variables that have the RESERVED attribute are
exported from a package.

Writing your Language Environment-conforming assembler DLL code
To build a simple assembler DLL, your assembler routine must conform to Language Environment
conventions. To do this, begin by using the Language Environment macros CEEENTRY and CEETERM.
The EXPORT= keyword parameter on the CEEENTRY macro allows you to identify specific assembler entry
points for export. The CEEPDDA macro allows you to define data in your assembler routine that can be
exported. Details on all Language Environment assembler macros are in “Assembler macros” on page
397.

Figure 22 on page 46 shows how to use Language Environment macros to create an Assembler DLL. The
CEEENTRY prolog macro has EXPORT=YES specified to mark this entry point exported. In this particular
case we want the exported function known externally in lower case, so the CEEENTRY is followed by an
assembler ALIAS statement. The ALIAS can be used to "name" the exported function with a mixed-case
name up to 256 characters long. This assembler DLL also has two exported variables, "DllVar" (initial
value = 123) and "DllStr" (initial value is the C string "Hello World"). When the exported function "dllfunc"
is called, it sets "DllVar" to 456 and truncates the "DllStr" C string to "Hello".

Dynamic link libraries (DLLs)

Chapter 4. Building and using dynamic link libraries (DLLs) 45

DLLFUNC CEEENTRY MAIN=NO,PPA=DLLPPA,EXPORT=YES
DLLFUNC ALIAS C'dllfunc'
* Symbolic Register Definitions and Usage
R8 EQU 8 Work register
R9 EQU 9 Work register
R15 EQU 15 Entry point address
*
 WTO 'ADLLBEV2: Exported function dllfunc entered',ROUTCDE=11
*
 WTO 'ADLLBEV2: Setting DllVar to 456',ROUTCDE=11
*
 CEEPLDA DllVar,REG=9
 LA R8,456
 ST R8,0(R9)
*
 WTO 'ADLLBEV2: Truncating exported string to "Hello"', X
 ROUTCDE=11
*
 CEEPLDA DllStr,REG=9
 LA R8,0
 STC R8,5(R9)
*
 WTO 'ADLLBEV2: Done.',ROUTCDE=11
*
 SR R15,R15
RETURN DS 0H
 CEETERM RC=(R15),MODIFIER=0
*
 CEEPDDA DllVar,SCOPE=EXPORT
 DC A(123)
 CEEPDDA END
 CEEPDDA DllStr,SCOPE=EXPORT
 DC C'Hello World'
 DC X'00'
 CEEPDDA END
*
DLLPPA CEEPPA
 CEEDSA
 CEECAA
 END DLLFUNC

Figure 22. Using Language Environment macros to create an assembler DLL executable named ADLLBEV2

Compiling your DLL code
For C source, compile with the DLL compiler option. When you specify the DLL compiler option, the
compiler generates special code when calling functions and referencing external variables. Even if a
simple application or DLL does not reference any imported functions or imported variables from other
DLLs, you should specify the DLL compiler option. Compiling an application or DLL as DLL code eliminates
the potential compatibility problems that may occur when binding DLL code with non-DLL code.

Compiling your C source with the XPLINK compiler option will automatic generate DLL-enabled code, so in
this case the DLL compiler option is not necessary.

For C++ source, compile as you would any C++ program.

For COBOL source code that defines DLLs, compile with the RENT, DLL and EXPORTALL compiler options.
For source code that only references DLLs, compile with the RENT, DLL, and NOEXPORTALL compiler
options. An alternative to the DLL compiler option for Enterprise COBOL V6, you can use the CallInterface
DLL.

For Enterprise PL/I source, you must compile with the RENT option.

For Assembler source, you must use the GOFF option.

Note: DLLs must be reentrant; you should use the RENT C compiler option. (C++ is always reentrant).

Binding your DLL code
Use the DLL support in the DFSMS binder, rather than the linkage editor, for linking DLL applications.
Binder-based DLLs must reside in PDSEs, rather than PDS data sets. If a DLL must reside in a PDS
load library, the application must be prelinked with the Language Environment prelinker before standard

Dynamic link libraries (DLLs)

46 z/OS: z/OS Language Environment Programming Guide

linkage editing. For more information, see Appendix A, “Prelinking an application,” on page 483. When
binding a DLL application using the DFSMS binder, the following binder externals are used:

• The binder option CASE(MIXED) is required when binding DLLs that use mixed-case exported names.
• The binder options RENT, DYNAM(DLL), and COMPAT(PM3) or COMPAT(CURRENT) are required.
• When binding a DLL, a SYSDEFSD DD statement must be specified, indicating the data set where the

binder should create a DLL definition sidedeck. The DLL definition sidedeck contains IMPORT control
statements for each of the symbols exported by a DLL. If you are using z/OS UNIX, specify the following
option for the bind step for c89 or the c++ command:

-W l,DLL

If the code in the DLL was compiled with the XPLINK compiler option, specify:

-W l,DLL,XPLINK

• The binder SYSLIN input, the binding code that references DLL code, must include the DLL definition
side-decks for the DLLs that are to be dynamically referenced from the module being bound. For more
information, see z/OS MVS Program Management: User's Guide and Reference and z/OS MVS Program
Management: Advanced Facilities.

Binding C
When binding the C object module as shown in Figure 19 on page 44, the binder generates the following
definition sidedeck:

IMPORT CODE 'BASICIO' bopen
IMPORT CODE ,BASICIO, bclose
IMPORT CODE ,BASICIO, bread
IMPORT CODE ,BASICIO, bwrite
IMPORT DATA ,BASICIO, berror

You can edit the definition sidedeck to remove any functions or variables that you do not want to
export. For instance, in the preceding example, if you do not want to expose berror, remove the control
statement IMPORT DATA ,BASICIO, berror from the definition sidedeck.

Note:

1. You should also provide a header file that contains the prototypes for exported functions and external
variable declarations for exported variables.

2. Sidedecks are created without newline characters, therefore you cannot edit them with an editor that
expects newline characters, such as vi in z/OS UNIX.

For more information about binding C, see Binding z/OS XL C/C++ programs in z/OS XL C/C++ User's
Guide.

Binding C++
When binding the C++ object modules shown in Figure 20 on page 44, the binder generates the following
definition sidedeck.

IMPORT CODE ,TRIANGLE, getarea__8triangleFv
IMPORT CODE ,TRIANGLE, getperim__8triangleFv
IMPORT CODE ,TRIANGLE, __ct__8triangleFv

You can edit the definition sidedeck to remove any functions and variables that you do not want to export.
In the preceding example, if you do not want to expose getperim(), remove the control statement
IMPORT CODE ,TRIANGLE, getperim__8triangleFv from the definition sidedeck.

Note:

1. Removing functions and variables from the definition sidedeck does not minimize the performance
impact caused by specifying the EXPORTALL compiler option.

Dynamic link libraries (DLLs)

Chapter 4. Building and using dynamic link libraries (DLLs) 47

2. Side-decks are created without newline characters, therefore you cannot edit them with an editor that
expects newline characters, such as vi in z/OS UNIX.

The definition sidedeck contains mangled names, such as getarea__8triangleFv. To find the original
function or variable name in your source module, review the compiler listing created or use the CXXFILT
utility. This will permit you to see both the mangled and demangled names. For more information about
the CXXFILT utility, see Filter utility in z/OS XL C/C++ User's Guide.

Binding COBOL
When binding a module that contains COBOL programs compiled with the DLL and EXPORTALL compiler
options, the binder generates a definition side-deck. If there are programs in the module that you do not
want to make available with DLL linkage, you can edit the definition side-deck to remove programs that
you do not want to export.

Binding Enterprise PL/I
The considerations for binding Enterprise PL/I are the same as for binding C++ in“Binding C++” on page
47.

Binding Assembler
When binding the Assembler object module as shown in Figure 22 on page 46, the binder generates the
following definition side-deck:

 IMPORT CODE,'ADLLBEV2','dllfunc'
 IMPORT DATA,'ADLLBEV2','DllStr'
 IMPORT DATA,'ADLLBEV2','DllVar'

The Assembler DLL support requires use of the binder.

Building a simple DLL application
A simple DLL application contains object modules that are made up of only DLL-code. The application
may consist of multiple source modules. Some of the source modules may contain references to imported
functions, imported variables, or both.

It is not necessary for DLL applications to be reentrant. However, for some compilers it is necessary to
compile code that references DLLs with the RENT option in order to provide support for the DLL call
mechanism.

To use a load-on-call DLL in your simple DLL application, perform the following steps:

• Writing your DLL application code

Write your code as you would if the functions were statically bound. Assembler code that will access
imported functions and imported variables must use the Language Environment macros.

• Compiling your DLL application code

– Compile your C source files with the following compiler options:

- DLL (not necessary if the XPLINK compiler option is specified)
- RENT
- LONGNAME

These options instruct the compiler to generate special code when calling functions and referencing
external variables.

– Compile your C++ source files normally. A C++ application is always DLL code.
– Compile your COBOL source files with the following compiler options:

- DLL

Dynamic link libraries (DLLs)

48 z/OS: z/OS Language Environment Programming Guide

- RENT
- NOEXPORTALL

– Compile your Enterprise PL/I source files with the RENT option.
– Assembler DLL Application source files must be assembled using the GOFF option.

• Binding your DLL application code

– The binder option CASE(MIXED) is required when binding DLLs applications that use mixed-case
exported names.

– The binder options RENT, DYNAM(DLL), and COMPAT(PM3) or COMPAT(CURRENT) are required.

Include the definition sidedeck from the DLL provider in the set of object modules to bind. The binder
uses the definition sidedeck to resolve references to functions and variables defined in the DLL. If you
are referencing multiple DLLs, you must include multiple definition side decks.

Note: Because definition side decks in automatic library call (autocall) processing will not be resolved,
you must use the INCLUDE statement.

After final autocall processing of DD SYSLIB is complete, all DLL-type references that are not statically
resolved are compared to IMPORT control statements. Symbols on IMPORT control statements are
treated as definitions, and cause a matching unresolved symbol to be considered dynamically rather
than statically resolved. A dynamically resolved symbol causes an entry in the binder B_IMPEXP to be
created. If the symbol is unresolved at the end of DLL processing, it is not accessible at run time.

Addresses of statically bound symbols are known at application load time, but addresses of dynamically
bound symbols are not. Instead, the runtime library that loads the DLL that exports those symbols finds
their addresses at application run time. The runtime library also fixes up the importer's linkage blocks
(descriptors) in C_WSA during program execution.

The following code fragment illustrates how a C++ application can use the TRIANGLE DLL described
in“Writing your C++ DLL code” on page 44. Compile normally and bind with the definition sidedeck
provided with the TRIANGLE DLL.

 extern int getarea(); /* function prototype */
 main() {
 ...
 getarea(); /* imported function reference */
 ...
 }

The following COBOL code sample illustrates how a simple COBOL-only DLL application (A1C4DL01) calls
a COBOL DLL (A1C4DL02):

Dynamic link libraries (DLLs)

Chapter 4. Building and using dynamic link libraries (DLLs) 49

 CBL PGMNAME(LONGMIXED),DLL,RENT
 IDENTIFICATION DIVISION.
 PROGRAM-ID. 'A1C4DL01'.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 DATA DIVISION.
 FILE SECTION.
 WORKING-STORAGE SECTION.
 01 TODAYS-DATE-YYYYMMDD PIC 9(8).
 PROCEDURE DIVISION.
 Display 'A1C4DL01: Entered'
 MOVE FUNCTION CURRENT-DATE(1:8) TO TODAYS-DATE-YYYYMMDD
 Call 'A1C4DL02' using todays-date-yyyymmdd
 Display 'A1C4DL01: All done'
 GOBACK
 .

 CBL PGMNAME(LONGMIXED),DLL,EXPORTALL,RENT
 IDENTIFICATION DIVISION.
 PROGRAM-ID. 'A1C4DL02'.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 DATA DIVISION.
 FILE SECTION.
 WORKING-STORAGE SECTION.
 LINKAGE SECTION.
 01 TODAYS-DATE-YYYYMMDD PIC 9(8).
 PROCEDURE DIVISION using todays-date-yyyymmdd.
 Display 'A1C4DL02: Todays date is ' todays-date-yyyymmdd
 GOBACK
 .

Figure 23. COBOL DLL application calling a COBOL DLL

The following code fragment illustrates how an Assembler routine can use the ADLLBEV2 DLL described
in “Writing your Language Environment-conforming assembler DLL code” on page 45. Assemble and bind
with the definition side-deck provided with the ADLLBEV2 DLL.

Dynamic link libraries (DLLs)

50 z/OS: z/OS Language Environment Programming Guide

DLLAPPL CEEENTRY MAIN=YES,PPA=DLLPPA
* Symbolic Register Definitions and Usage
R8 EQU 8 Work register
R9 EQU 9 Work register
R15 EQU 15 Entry point address
*
 WTO 'ADLABIV4: Calling imported function dllfunc',ROUTCDE=11
*
 CEEPCALL dllfunc,MF=(E,)
*
 WTO 'ADLABIV4: Getting address of imported var DllVar', X
 ROUTCDE=11
*
 CEEPLDA DllVar,REG=9
*
* Set value of imported variable to 789
*
 LA R8,789
 ST R8,0(,R9)
*
 WTO 'ADLABIV4: Done.',ROUTCDE=11
*
 SR R15,R15
RETURN DS 0H
 CEETERM RC=(R15),MODIFIER=0
*
*
 CEEPDDA DllVar,SCOPE=IMPORT
DLLPPA CEEPPA
 LTORG
 CEEDSA
 CEECAA
 END DLLAPPL

Figure 24. Assembler DLL application calling an assembler DLL

See Figure 25 on page 52 for a summary of the processing steps required for the application and related
DLLs.

Creating and using DLLs
Figure 25 on page 52 summarizes the use of DLLs for both the DLL provider and for the writer of
applications that use them. In this example, application ABC is referencing functions and variables from
two DLLs, XYZ and PQR. The connection between DLL preparation and application preparation is shown.
Each DLL shown contains a single compilation unit. The same general scheme applies for DLLs composed
of multiple compilation units, except that they have multiple compilers and a single bind for each DLL. For
simplicity, this example assumes that ABC does not export variables or functions and that XYZ and PQR
do not use other DLLs.

Dynamic link libraries (DLLs)

Chapter 4. Building and using dynamic link libraries (DLLs) 51

DLL DLLAPPLICATION

DLL Source:

hooVar definition
kooVar definition
foo() definition
goo() definition

DLL Source:

rooVar definition
sooVar definition
boo() definition
soo() definition

XYZ.c

XYZ.obj

XYZ.objdef

ABC.c

ABC.obj

PQR.c

PQR.obj

PQR.objdef

Compile with
EXPORTALL, DLL

Compile
with
DLL

Compile with
EXPORTALL, DLL

DLL TEXT DLL TEXTAPPL TEXT

Import code 'XYZ' foo
Import code 'XYZ' goo
Import data 'XYZ hooVar
Import data 'XYZ' kooVar

Import code 'PQR' boo
Import code 'PQR' soo
Import data 'PQR' rooVar
Import data 'PQR' sooVar

Link

Bind

XYZ.pobj ABC.pobj PQR.pobj

DLL program DLL programApplication program

foo() ref
goo() ref
boo() ref
hooVar ref
kooVar ref
rooVar ref

Application Source:

Bind Bind

Figure 25. Summary of DLL and DLL application preparation and usage

DLL restrictions
Consider the following restrictions when creating DLLs and DLL applications:

• The entry point for a DLL must be in a program compiled with a Language Environment-conforming
compiler that includes DLL support capability. Otherwise, Language Environment issues an error and
terminates the application.

• DLLs must be REENTRANT. Be sure to specify the RENT option when you bind your code. Unpredictable
results will occur if you link-edit a DLL as NORENT. One possible symptom you may see that indicates
the DLL was link-edited as NORENT is more than one writable static area for the same DLL.

• In a C/C++ DLL application that contains main(), main() cannot be exported.

Dynamic link libraries (DLLs)

52 z/OS: z/OS Language Environment Programming Guide

• The AMODE of a DLL application must be the same as the AMODE of the DLL that it calls.
• DLL facilities are not available:

– Under MTF, CSP or SP C
– To application programs with main() written in PL/I that dynamically call C functions. (This

restriction does not apply to Enterprise PL/I.)
• In C++ applications, you cannot implicitly or explicitly perform a physical load of a DLL while running

static destructors. However, a logical load of a DLL (meaning that the DLL has previously been loaded
into the enclave) is allowed from a static destructor. In this case, references from the load module
containing the static destructor to the previously-loaded DLL are resolved.

• You cannot use the C functions set_new_handler() or set_unexpected() in a DLL if the DLL
application is expected to invoke the new handler or unexpected function routines.

• If a fetched C module is compiled as a DLL, it can import variables and functions from the other DLL
modules, but it cannot export variables or functions.

• A COBOL dynamic call cannot be made to a load module that is a DLL.
• A COBOL dynamic call cannot be made to a COBOL for OS/390 & VM program that is compiled with the

DLL compiler option.
• COBOL data declared with the EXTERNAL attribute are independent of DLL support; these data items

are managed by the COBOL runtime environment and are accessible by name from any COBOL program
in the run-unit that declares them, regardless of whether the programs are in DLLs or not.

In particular, the facilities for exporting and importing external variables from DLLs implemented in
C/C++ do not apply to COBOL external data.

• When using the explicit C DLL functions in a multithreaded environment, avoid any situation where one
thread frees a DLL while another thread calls any of the DLL functions. For example, this situation occurs
when a main() function uses dllload() or dlopen() to load a DLL, and then creates a thread that
uses the ftw() function. The ftw() target function routine is in the DLL. If the main() function uses
dllfree() or dlclose() to free the DLL, but the created thread uses ftw() at any point, you will get
an abend.

To avoid a situation where one thread frees a DLL while another thread calls a DLL function, do either of
the following:

– Do not free any DLLs by using dllfree() or dlclose() (Language Environment will free them
when the enclave is terminated).

– Have the main() function call dllfree() or dlclose() only after all threads have been
terminated.

• For C/C++ DLLs to be processed by IPA, they must contain at least one function or method. Data-only
DLLs will result in a compilation error.

• The use of circular C++ DLLs may result in unpredictable behavior related to the initialization of non-
local static objects. For example, if a static constructor (being run as part of loading DLL "A") causes
another DLL "B" to be loaded, then DLL "B" (or any other DLLs that "B" causes to be loaded before static
constructors for DLL "A" have completed) cannot expect non-local static objects in "A" to be initialized
(that is what static constructors do). You should ensure that non-local static objects are initialized
before they are used, by coding techniques such as counters or by placing the static objects inside
functions.

Improving performance
This topic contains some hints on using DLLs efficiently. Effective use of DLLs may improve the
performance of your application.

• If you are using a particular DLL frequently across multiple address spaces, the DLL can be installed in
the LPA or ELPA. When the DLL resides in a PDSE, the dynamic LPA services should be used. Installing in
the LPA/ELPA may give you the performance benefits of a single rather than multiple load of the DLL.

• Group external variables into one external structure.

Dynamic link libraries (DLLs)

Chapter 4. Building and using dynamic link libraries (DLLs) 53

• When using z/OS UNIX avoid unnecessary load attempts.

Language Environment supports loading a DLL residing in the z/OS UNIX file system or a data set.
However, the location from which it tries to load the DLL first varies depending whether your application
runs with the runtime option POSIX(ON) or POSIX(OFF).

If your application runs with POSIX(ON), Language Environment tries to load the DLL from the z/OS
UNIX file system first. If your DLL is a data set member, you can avoid searching the directories. To
direct a DLL search to a data set, prefix the DLL name with two slashes (//) as is in the following
example:

//MYDLL

If your application runs with POSIX(OFF), Language Environment tries to load your DLL from a data set.
If your DLL is a z/OS UNIX file, you can avoid searching a data set. To direct a DLL search to the z/OS
UNIX file system, prefix the DLL name with a period and slash (./) as is done in the following example.

./mydll

Note: DLL names are case sensitive in the z/OS UNIX file system. If you specify the wrong case for your
DLL that resides in the z/OS UNIX file system, it will not be found.

• For C/C++ IPA, you should only export subprograms (functions and C++ methods) or variables that
you need for the interface to the final DLL. If you export subprograms or variables unnecessarily (for
example, by using the EXPORTALL option), you severely limit IPA optimization. In this case, global
variable coalescing and pruning of unreachable or 100% inlined code does not occur. To be processed
by IPA, DLLs must contain at least one subprogram. Attempts to process a data-only DLL will result in a
compilation error.

• The suboption NOCALLBACKANY of the C compiler option DLL is more efficient than the CALLBACKANY
suboption. The CALLBACKANY option calls a Language Environment routine at runtime. This runtime
service enables direct function calls. Direct function calls are function calls through function pointers
that point to actual function entry points rather than function descriptors. The use of CALLBACKANY will
result in extra overhead at every occurrence of a call through a function pointer. This is unnecessary if
the calls are not direct function calls.

Building complex DLLs
Before you attempt to build complex DLLs it is important to understand the differences between the
terms DLL, DLL code, and DLL application, as described in “DLL concepts and terms” on page 35.

Note that not all source files that make up a DLL application have to be compiled with the DLL option.
However, source files that reference exported functions and exported global variables must be compiled
with the DLL option.

A key characteristic of a complex DLL or DLL application is that linking DLL code with non-DLL code
creates it. The following are reasons you might compile your code as non-DLL:

1. Source modules do not use C or C++.
2. To prevent problems which occur when a non-DLL function pointer call uses DLL code. This problem

takes place when a function makes a call through a function pointer that points to a function entry
rather than a function descriptor.

For more information about building complex DLLs, see Building complex DLLs in z/OS XL C/C++
Programming Guide.

Dynamic link libraries (DLLs)

54 z/OS: z/OS Language Environment Programming Guide

Chapter 5. Link-editing, loading, and running under
batch

You process an application under batch by submitting batch jobs to the operating system. A job might
consist of one or more of the following job steps:

• Compiling a program
• Link-editing an application
• Running an application

The terms in this topic having to do with linking (bind, binding, link, link-edit, and so forth) refer to
the process of creating an executable program from object modules (the output produced by compilers
and assemblers). The program used is the DFSMS program management binder. The binder extends
the services of the linkage editor and is the default program provided for creating an executable. For
information specific to the linkage editor, see z/OS MVS Program Management: User's Guide and Reference
and z/OS MVS Program Management: Advanced Facilities.

IBM-supplied cataloged procedures allow you to compile, link-edit or load, and run an application without
supplying all the job control language (JCL) required for a job step. For information about cataloged
procedures, see Chapter 8, “Using IBM-supplied cataloged procedures,” on page 85. If the statements
in the cataloged procedures do not match your requirements exactly, you can modify them or add new
statements for the duration of a job.

The following section provides an overview of link-editing, loading, and running Language Environment-
conforming applications under batch. For detailed information about link-editing, see z/OS MVS Program
Management: User's Guide and Reference and z/OS MVS Program Management: Advanced Facilities. For
information about the Language Environment prelinker, see Appendix A, “Prelinking an application,” on
page 483.

Several Fortran and C library routines have identical names. If your application contains any Fortran
or assembler routine that uses a Fortran library routine, see “Resolving library module name conflicts
between Fortran and C” on page 13 to resolve any potential name conflicts.

TSO/E has its own section on link-editing, loading, and running (see Chapter 6, “Creating and executing
programs under TSO/E,” on page 69).

z/OS UNIX has its own section on link-editing, loading, and running C applications (see Chapter 7,
“Creating and executing programs using z/OS UNIX System Services,” on page 77).

Basic link-editing and running under batch
This topic describes how to accept and to override the default Language Environment runtime options
under MVS.

Accepting the default runtime options
To run an existing object module under batch and accept all of the default Language Environment
runtime options, use the following sample JOB with the Language Environment-provided link-edit and run
cataloged procedure CEEWLG (see “CEEWLG — Link and run a Language Environment conforming non-
XPLINK program” on page 90 for more information). The CEEWLG procedure identifies the Language
Environment libraries that your object module needs to link-edit and run; you do not need to explicitly
identify these in your JCL.

There is also a cataloged procedure, CEEXLR, for XPLINK. See “CEEXLR — Link and run a Language
Environment conforming XPLINK program” on page 92.

Running under batch

© Copyright IBM Corp. 1991, 2022 55

//CEEWLG JOB
//*
//LINKGO EXEC CEEWLG
//LKED.SYSIN DD DSN='userid.MYLIB.OBJLIB(MYPROG)',...DISP=SHR
//*

Figure 26. Accepting the default runtime options under batch

Overriding the default runtime options
In Figure 27 on page 56, an object module called MYPROG is created and run using the cataloged
procedure CEEWLG. The code in the example overrides the Language Environment defaults for the
RPTOPTS and MSGFILE runtime options.

//CEEWLG JOB
//*
//LINKGO EXEC CEEWLG,
// PARM.GO='RPTOPTS(ON),MSGFILE(OPTRPRT)/'
//*
//LKED.SYSIN DD DSN='userid.MYLIB.OBJLIB(MYPROG)',...DISP=SHR
//GO.OPTRPRT DD SYSOUT=A
//*

Figure 27. Overriding the default runtime options under batch

The trailing slash after the runtime options is required for C, Fortran, PL/I and for COBOL users who
have specified the CBLOPTS(OFF) runtime option. For COBOL users who have specified the CBLOPTS(ON)
runtime option at installation, the slash should go before the runtime options, as in Figure 28 on page
56.

⋮
// PARM.GO='/RPTOPTS(ON),MSGFILE(OPTRPRT)'
⋮

Figure 28. Overriding the default runtime options for COBOL

Specifying runtime options with the CEEOPTS DD card
Language Environment supports the ability to provide additional runtime options through a DD card. The
name of the DD must be CEEOPTS. The DD must be available during initialization of the "enclave" so that
the options can be merged.

In the Language Environment Runtime Options report, when an option was last set in the CEEOPTS DD
card, DD:CEEOPTS will be used in the "LAST WHERE SET" column.

The CEEOPTS DD is ignored under CICS, SPC, and for programs invoked using one of the exec family of
functions.

The general form for specifying runtime options with the CEEOPTS DD card is:

//CEEWLG JOB
//*
//LINKGO EXEC CEEWLG
//LKED.SYSIN DD DSN='userid.MYLIB.OBJLIB(MYPROG)',...DISP=SHR
//GO.OPTRPRT DD SYSOUT=A
//GO.CEEOPTS DD *
RPTOPTS(ON),MSGFILE(OPTRPRT)
//*

Specifying runtime options in the EXEC statement
If the first program in your application is Language Environment-conforming or was compiled by a pre-
Language Environment compiler supported by Language Environment, you can pass runtime options by

Running under batch

56 z/OS: z/OS Language Environment Programming Guide

using the PARM= parameter in your JCL. The general form for specifying runtime options in the PARM
parameter of the EXEC statement is:

//[stepname] EXEC PGM=program_name,
// PARM='[runtime options/][program parameters]'

For example, if you want to generate a storage report and runtime options report for program PROGRAM1,
specify the following:

//GO1 EXEC PGM=PROGRAM1,PARM='RPTSTG(ON),RPTOPTS(ON)/'

The runtime options that are passed to the main routine must be followed by a slash (/) to separate them
from program parameters. For HLL considerations to keep in mind when specifying runtime options, see
“Specifying runtime options and program arguments” on page 102. The EXECOPS option for C and C++
is used to specify that runtime options passed as parameters at execution time are to be processed by
Language Environment. The option NOEXECOPS specifies that runtime options are not to be processed
from execution parameters and are to be treated as program parameters.

For z/OS XL C/C++, a user can specify either EXECOPS or NOEXECOPS in a #pragma runopts directive
or as a compiler option. EXECOPS is the default for z/OS XL C/C++. When EXECOPS is in effect, you can
pass runtime options in the EXEC statement in your JCL.

For Enterprise PL/I for z/OS and PL/I for MVS & VM, runtime options can be passed in your JCL if a
PROCEDURE statement includes the OPTIONS(MAIN) clause. If the PROCEDURE statement specifies
OPTIONS(MAIN NOEXECOPS), then runtime options cannot be passed in your JCL. Note that no PL/I
compiler has an NOEXECOPS or EXECOPS compiler option, but they have the equivalent function by the
specification of NOEXECOPS along with OPTIONS(MAIN).

Providing link-edit input
Input to the link-edit process can be:

• One or more object modules.
• Control statements for the link-edit process.
• Previously link-edited executable programs you want to combine into a single executable module.
• A DLL side-deck if your application implicitly references DLL functions or data.

Figure 29 on page 58 shows the basic batch link-edit process for your application.

Running under batch

Chapter 5. Link-editing, loading, and running under batch 57

Prelink step,
if necessary
(C, C++, and
COBOL only if
target library
is a PDS)

Binder

Object
Module

Language
Environment
resident
libraries

User
libraries
(if required)

SYSLIB
(automatic
call library)

SYSLIN
(primary input)

Executable
Program

SYSLMOD
(load module library)

Figure 29. Basic batch link-edit processing

Writing JCL for the link-edit process
You can use cataloged procedures rather than supply all the JCL required for a job step. You can use JCL
statements to override the statements of the cataloged procedure to tailor the information provided by
the link-edit process.

For a description of the IBM-supplied cataloged procedures that include a link-edit step, see Table 15 on
page 86.

• Invoking with the EXEC statement.

Use the EXEC job control statement in your JCL to invoke the binder. The EXEC statement is:

//LKED EXEC PGM=HEWL

• Using the PARM parameter.

Use the PARM parameter of the EXEC job control statement to select one or more of the optional
facilities provided by the binder. For example, if you want a mapping of the executable program
produced by the link-edit process, specify:

//LKED EXEC PGM=HEWL,PARM='MAP'

• Required DD statements.

The link-edit process requires three standard data sets. You must define these data sets in DD
statements with the ddnames SYSLIN, SYSLMOD, and SYSPRINT. If the linkage editor is being used
then an additional data set must be defined with ddname SYSUT1. The required data sets and their
characteristics are shown in Table 8 on page 59.

Running under batch

58 z/OS: z/OS Language Environment Programming Guide

Table 8. Required data sets used for link-editing

ddname Type Function

SYSLIN Input Primary input to the link-edit process consists of a sequential data
set, members from a PDS or PDSE, or an in-stream data set.
The primary input must be composed of one or more separately
compiled object modules or link-edit control statements. An
executable program cannot be part of the primary input, although
it can be introduced by the INCLUDE control statement (see “Using
the INCLUDE statement” on page 62).

SYSLMOD Output The data set where output (executable program) from the link-edit
process is stored.

SYSPRINT Output SYSPRINT defines the location for the listing that includes reference
tables for the executable program.

Output from the link-edit process:

– Diagnostic messages
– Informational messages
– Module map
– Cross-reference list

SYSUT1 Utility A data set used by the linkage editor as a temporary workspace (the
data set must be on a direct access device). This data set is not
required for the binder.

• Optional DD statements.

If you want to use the automatic call library, you must define a data set using a DD statement with
the name SYSLIB. You can also specify additional data sets containing object modules and executable
programs as additional input to the link-edit process. These data set names and their characteristics are
shown in Table 9 on page 60.

Running under batch

Chapter 5. Link-editing, loading, and running under batch 59

Table 9. Optional data sets used for link-editing

ddname Type Function

SYSLIB1 Library Secondary input to the linkage editor consists of object modules
or load modules that are included in the executable program from
the automatic call library. The automatic call library contains load
modules or object modules that are used as secondary input to the
linkage editor to resolve external symbols left undefined after all
the primary input has been processed. The automatic call library
can include:

– Libraries that contain object modules, with or without linkage
editor control statements

– Libraries that contain executable programs
– The libraries that contain the Language Environment resident

routines, such as SCEELKED, SCEELKEX, SCEEOBJ, and SCEECPP
(for a description of these data sets see “Planning to link-edit and
run” on page 5).

SYSLIB is input to the linkage editor only if the CALL=NO link-edit
option is not in effect. You can also identify secondary input to the
linkage editor with the INCLUDE statement.

A routine compiled with a Language Environment-conforming
compiler cannot be executed until the appropriate Language
Environment resident routines have been linked into the executable
program. The Language Environment resident routines are
contained in the SCEELKED library; the data set name could be
CEE.SCEELKED. If you are unsure where SCEELKED has been
installed at your location, contact your system administrator. This
data set must be specified in the SYSLIB statement in your JCL.

In the following example, the SYSLIB DD statement is written so
that Language Environment resident library routines are included as
secondary input into your executable program:

//SYSLIB DD DSNAME=CEE.SCEELKED,DISP=SHR

User-specified2 Input You can use ddnames to get additional executable programs and
object modules.

Notes:
1

Required for library runtime routines
2

Optional data set
• Examples of link-edit JCL.

A typical sequence of job control statements for link-editing an object module (compiled NOXPLINK)
into an executable program is shown in Figure 30 on page 61. The NAME linkage editor control
statement in the figure puts PROGRAM1 in USER.LOADLIB with the member name PROGRAM1.

Running under batch

60 z/OS: z/OS Language Environment Programming Guide

//LKED EXEC PGM=HEWL,PARM='MAP'
//SYSPRINT DD SYSOUT=A
//SYSLMOD DD DSNAME=USER.LOADLIB,UNIT=SYSDA,
// DISP=(NEW,KEEP),SPACE=(CYL,(10,10,1))
//SYSLIB DD DSNAME=CEE.SCEELKED,DISP=SHR
//SYSLIN DD DSNAME=USER.OBJLIB(PROGRAM1),DISP=SHR
// DD DDNAME=SYSIN
//SYSIN DD *
 NAME PROGRAM1(R)
/*

Figure 30. Creating a non-XPLINK executable program under batch

A similar sequence of job control statements for link-editing an XPLINK object module is shown in
Figure 31 on page 61.

//LKEDX EXEC PGM=IEWL,REGION=20M,
// PARM='AMODE=31,RENT,DYNAM=DLL,CASE=MIXED,MAP,LIST=NOIMP'
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DSNAME=USER.PDSELIB,UNIT=SYSALLDA,
// DISP=(NEW,KEEP),SPACE=(TRK,(7,7,1)),DSNTYPE=LIBRARY
//SYSLIB DD DSNAME=CEE.SCEEBND2,DISP=SHR
//SYSLIN DD DSNAME=USER.OBJLIB(PROGRAM1),DISP=SHR
// DD DSNAME=CEE.SCEELIB(CELHS003),DISP=SHR
// DD DSNAME=CEE.SCEELIB(CELHS001),DISP=SHR
//SYSDEFSD DD DUMMY
//SYSIN DD *
 NAME PROGRAM1(R)
/*

Figure 31. Creating an XPLINK executable program under batch

• Adding members to a library.

The output from the binder is usually placed in a private program library.

The automatic call library that is used as input to the binder can be a Language Environment library (for
example, SCEELKED/SCEELKEX for non-XPLINK applications, and SCEEBND2 for XPLINK applications),
a compiler library, a private program library, or a subroutine library.

When you are adding a member to a library, you must specify the member name as follows:

– When a single module is produced as output from the linkage editor, the member name can be
specified as part of the data set name in the SYSLMOD.

– When more than one module is produced as output from the linkage editor, the member name for
each module must be specified in the NAME option or the NAME control statement. The member
name cannot be specified as part of the data set name.

• Link-editing multiple object modules.

When an Enterprise PL/I for z/OS or PL/I for MVS & VM main procedure is link-edited with other object
modules produced by the Enterprise PL/I for z/OS or the PL/I for MVS & VM compilers, the entry
point of the resulting executable program is resolved to the external symbol CEESTART. This happens
automatically because the CEESTART CSECT is generated first in the object module and is specified in
the END statement of the object module. Runtime errors occur if the executable program entry point is
forced to some other symbol by use of the linkage editor ENTRY control statement.

If an Enterprise PL/I for z/OS or PL/I for MVS & VM main procedure is link-edited with object modules
produced by other language compilers or by assembler, and is the first module to receive control, the
user must ensure that the entry point of the resulting executable program is resolved to the external
symbol CEESTART. This happens automatically if the Enterprise PL/I for z/OS or PL/I for MVS & VM main
procedure is first in the input to the linkage editor. Runtime errors occur if the executable program entry
point is forced to some other symbol by use of the linkage editor ENTRY control statement.

Running under batch

Chapter 5. Link-editing, loading, and running under batch 61

Alternatively, the following linkage editor ENTRY control statement can be included in the input to the
linkage editor:

ENTRY CEESTART

Binder control statements
The following sections describe when and how to use the INCLUDE and LIBRARY control statements with
the binder.

Using the INCLUDE statement
Use the INCLUDE control statement to specify additional object modules or executable programs that
you want included in the output executable program. Figure 32 on page 62 contains an example of how
to link-edit the CEEUOPT CSECT with your application. In the example, CEEUOPT is used to establish
application runtime option defaults; see Chapter 9, “Using runtime options,” on page 99 for more
information.

//SYSLIB DD DSNAME=CEE.SCEELKED,DISP=SHR
//SYSLIN DD DSNAME=USER.OBJLIB(PROGRAM1),DISP=SHR
// DD DDNAME=SYSIN
//SYSIN DD *
 INCLUDE SYSLIB(CEEUOPT)⋮
/*

Figure 32. Using the INCLUDE linkage editor control statement

Using the LIBRARY statement
Use the LIBRARY statement to direct the binder to search a library other than that specified in the SYSLIB
DD statement. This method resolves only external references listed on the LIBRARY statement. All other
unresolved external references are resolved from the library in the SYSLIB DD statement.

In Figure 33 on page 62 the LIBRARY statement is used to resolve the external reference PROGRAM2
from the library described in the TESTLIB DD statement.

//SYSLIN DD DSNAME=USER.OBJLIB(PROGRAM1),DISP=SHR
// DD DDNAME=SYSIN
//TESTLIB DD DSNAME=USER.TESTLIB,DISP=SHR
//SYSIN DD *
 LIBRARY TESTLIB(PROGRAM2)⋮
/*

Figure 33. Using the LIBRARY linkage editor control statement

Data sets specified by the INCLUDE statement are incorporated as the linkage editor encounters the
statement. In contrast, data sets specified by the LIBRARY statement are used only when there are
unresolved references after all the other input is processed.

Link-edit options
SYSLMOD and SYSPRINT are the data sets used for output. The output varies, depending on the options
you select, as shown in Table 10 on page 63.

Running under batch

62 z/OS: z/OS Language Environment Programming Guide

Table 10. Selected link-edit options

Option Function

XREF | NOXREF Specifies if a cross-reference list of data variables is generated. The
default is NOXREF.

LIST | NOLIST Specifies if a listing of the link-edit control statements is generated. The
default is NOLIST.

NCAL | CALL Specifies if the automatic library call mechanism should be used
to locate the modules referred to by the executable program being
processed. Use the NCAL command to suppress resolution of external
differences. The default is CALL.

If you do not specify NCAL, the automatic call library mechanism is
used to locate the modules referred to by the executable program being
processed. Do not use NCAL if your application calls external routines
that need to be resolved by an automatic library call.

PRINT | NOPRINT Specifies if link-edit messages are written on the data set defined by the
SYSLOUT DD statement. The default is PRINT.

MAP | NOMAP Specifies if a map of the load modules is generated and placed in the
PRINT data set. The default is NOMAP.

RENT | NORENT Specifies if a module is reenterable, that is it can be executed by more
than one task at a time. The default is RENT.

A task may begin executing the module before a previous task
has completed execution. See Chapter 11, “Making your application
reentrant,” on page 119 for additional information.

You always receive diagnostic and informational messages as the result of link-editing, even if you do not
specify any options. You can get the other output items by specifying options in the PARM parameter of
the EXEC statement in your JCL for link-editing. See “Writing JCL for the link-edit process” on page 58 for
more information.

Loading your application using the loader
Your input to the loader can be:

• One or more HLL object modules.
• One or more previously link-edited HLL load modules that you want to combine into a single load

module.
• A combination of both.

If you include any linkage control statements (such as LIBRARY or INCLUDE) as input to the loader, an
informational error message is printed in the output listing only if you have a SYSLOUT DD statement in
your input JCL (see Figure 35 on page 66). Otherwise, the linkage control statements are ignored.

In basic loader processing, as shown in Figure 34 on page 64, the loader accepts data from its primary
input source, a data set defined by the SYSLIN DD statement. This data set is the object module produced
by the compiler. The loader uses the external symbol dictionary in SYSLIN to determine whether the
object module includes any external references that have no corresponding external symbols in SYSLIN.

The loader searches the automatic call library, SYSLIB, (as shown in Figure 34 on page 64) for the
routines in which the external symbols are defined and includes them in the load module if they exist. If
all external references are resolved, the load module is executed.

Your application cannot be executed until the appropriate runtime routines have been included.

Running under batch

Chapter 5. Link-editing, loading, and running under batch 63

Language
Environment

dynamic
library

Main storage

Load Module
executed

Loader

User
libraries

(if required)

Language
Environment

resident
library

SYSLIB
(automatic
call library)

HLL object
and

load modules

loads

SYSLIN
(primary input)

.

.

.

.

.

.

.

Dynamic

Figure 34. Basic loader processing

Writing JCL for the loader
If you use cataloged procedures (rather than supply all of the JCL required for a job step that invokes the
loader), you should be familiar with JCL statements for the loader so you can make the best use of the
loader and, if necessary, override the statements of the cataloged procedure.

The following sections describe the basic JCL statements for loading. For a description of the IBM-
supplied cataloged procedures that include a loader step, see Table 15 on page 86.

Invoking the loader with the EXEC statement
Use the EXEC statement to invoke the loader. The EXEC statement to invoke the loader is:

//GO EXEC PGM=LOADER

Using the PARM parameter for loader options
Use the PARM parameter of the EXEC statement to specify loader options in your JCL for loader
processing. For example, if you want your application to run even if abnormal conditions are detected, and
you want a mapping of the executable program, specify the following:

//GO EXEC PGM=LOADER,PARM='MAP,LET'

Requesting loader options
Table 11 on page 65 shows you which options you can specify as PARM parameters when running the
loader.

Running under batch

64 z/OS: z/OS Language Environment Programming Guide

Table 11. Selected loader options

Option Function

MAP | NOMAP Specifies if a map of the executable program is produced on SYSPRINT.
NOMAP is the default. f the map is produced, it gives the length and location
of the main routine and all subroutines.

LET | NOLET Specifies if the loader allows the executable program to run, even when
abnormal conditions have been detected. NOLET is the default.

CALL | NOCALL Specifies if the loader attempts to resolve external references. CALL is the
default.

EP=name Specifies the name of the entry point of the application being loaded.

PRINT | NOPRINT Specifies if loader messages are listed in the data set defined by the SYSLOUT
DD statement. PRINT is the default.

RES | NORES Specifies if the link pack area should be searched to resolve external
references. RES is the default.

SIZE=size Specifies the amount of storage allocated by loader processing; size includes
the size of your executable program.

When you run the loader, you can request the options shown in Table 11 on page 65 using the PARM
parameter of the EXEC statement. For more information about specifying and using loader options,
see z/OS MVS Program Management: User's Guide and Reference and z/OS MVS Program Management:
Advanced Facilities.

Passing parameters through the loader
Code the PARM parameter as follows:

PARM='[loader-options] [/runtime-options] [/pgmparm]'

where loader-options is a list of loader options, runtime-options is a list of runtime options, and pgmparm
is a parameter string passed to the main routine of the application to run. The following examples refer to
the routine parameter as PP. If you specify NOEXECOPS on the main routine, you must omit the slash in
front of pgmparm.

If you specify loader options and either runtime options or a routine parameter (or both) in the PARM
parameter, the loader options are given first and are separated from the runtime options or routine
parameter by a slash. If there are loader options but no runtime options or routine parameters, the slash
is omitted. If there are only runtime options or routine parameters, you must code the slash or slashes. If
there is more than one option, separate the option keywords by commas.

The PARM field can have one of the following formats:

• If you use the special characters / or =, you must enclose the field in single quotes. For example:

PARM='MAP,EP=FIRST/RPTOPTS(ON)/PP'
PARM='MAP,EP=FIRST'
PARM='//PP'

• If you do not use the / or = characters, and there is more than one loader option, you must enclose the
options in parentheses. For example:

PARM=(MAP,LET)

• If you do not use the / or = characters, and there is only one loader option, neither quotes nor
parentheses are required. For example:

PARM=MAP

Running under batch

Chapter 5. Link-editing, loading, and running under batch 65

Using DD statements for the standard loader data sets
The loader always requires one standard data set, defined by the SYSLIN DD statement. Three other
standard data sets are optional, and, if you use them, you must define them in DD statements with the
names SYSLOUT, SYSPRINT, and SYSLIB. The four data set names and characteristics are shown in Table
12 on page 66.

Table 12. Standard loader data sets

ddname Type Function

SYSLIN Input Primary input data (normally the compiler output)

SYSLOUT Output Loader messages and module map listing

SYSPRINT Output Runtime messages and problem output listing

SYSLIB Library Automatic call library

Figure 35 on page 66 is an example of the general job control procedure for creating and running an
executable program under batch.

//STEP1 EXEC PGM=LOADER,PARM='MAP,LET'
//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR
// DD DSN=CEE.SCEERUN2,DISP=SHR
//SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR
// DD DSN=USER.LOADLIB,DISP=SHR
//SYSLIN DD DSN=USER.OBJLIB(PROGRAM1),DISP=SHR
//SYSLOUT DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
⋮
/*

Figure 35. JCL for creating an executable program

Running an application under batch
Under batch, you can request the execution of an executable program in an EXEC statement in your JCL.
The EXEC statement marks the beginning of each step in a job or procedure, and identifies the executable
program or cataloged procedure that executes.

The general form of the EXEC statement is:

//[stepname] EXEC PGM=program_name

The program_name is the name of the member or alias of the program to be executed. The specified
program must be one of the following:

• An executable program that is a member of a private library specified in a STEPLIB DD statement in your
JCL.

• An executable program that is a member of a private library specified in a JOBLIB DD statement in your
JCL.

• An executable program that has been loaded into shared system storage, either the Link Pack Area
(LPA) or the Extended Link Pack Area (ELPA).

• An executable program that is a member of a system library. Examples of system libraries are
SYS1.LINKLIB and libraries specified in the LNKLST.

Unless you have indicated that the executable program is in a private library, it is assumed that the
executable program is in a system library and the system libraries are searched for the name you specify.

Running under batch

66 z/OS: z/OS Language Environment Programming Guide

Program library definition and search order
You can define the library in a DD statement in the following ways:

• With the ddname STEPLIB at any point in the job step. The STEPLIB is searched before any system
library or JOBLIB specified in a JOBLIB DD statement for the job step in which it appears (although an
executable program can also be passed to subsequent job steps in the usual way). When a STEPLIB and
JOBLIB are both present, the STEPLIB is searched for the step in which it appears and, for that step, the
JOBLIB is ignored.

The system searches for executable programs in the following order of precedence:

1. Library specified in STEPLIB statement
2. Library specified in JOBLIB statement
3. LPA or ELPA
4. The system library SYS1.LINKLIB and libraries concatenated to it through the active LNKLSTxx

member of SYS1.PARMLIB

In the following example, the system searches USER.LOADLIB for the routine PROGRAM1 and
USER.LOADLIB2 for the routine PROGRAMA:

//JOB8 JOB DAVE,MSGLEVEL=(2,0)
//STEP1 EXEC PGM=PROGRAM1
//STEPLIB DD DSNAME=USER.LOADLIB,DISP=SHR
//*
//STEP2 EXEC PGM=PROGRAMA
//STEPLIB DD DSNAME=USER.LOADLIB2,DISP=SHR

• With the ddname JOBLIB immediately after the JOB statement in your JCL. This library is searched
before the system libraries. If any executable program is not found in the JOBLIB, the system looks for it
in the system libraries.

In the following example, the system searches the private library USER.LOADLIB for the member
PROGRAM1, reads the member into storage, and executes it.

//JOB8 JOB DAVE,MSGLEVEL=(2,0)
//JOBLIB DD DSNAME=USER.LOADLIB,DISP=SHR
//STEP1 EXEC PGM=PROGRAM1

Specifying runtime options under batch
Each time your application runs, a set of runtime options must be established. These options
determine many of the properties of how the application runs, including its performance, error handling
characteristics, storage management, and production of debugging information. Under batch, you can
specify runtime options in any of the following places (for additional information about the ways to specify
runtime options, see “Methods available for specifying runtime options” on page 99):

• In the CEEROPT CSECT, where region-level defaults are specified. For more information, see Creating
region-level runtime option defaults with CEEXOPT in z/OS Language Environment Customization.

• In the CEEUOPT CSECT where user-supplied default options are located. For more information, see
“CEEXOPT invocation for CEEUOPT” on page 104).

• In the CEEPRMxx parmlib member where system-level defaults are specified. For more information, see
Creating system-level option defaults with CEEPRMxx in z/OS Language Environment Customization.

• #pragma runopts in C/C++ source code (for more information, see “Methods available for specifying
runtime options” on page 99).

• In a PLIXOPT string in PL/I source code (for more information, see “Methods available for specifying
runtime options” on page 99).

• In the PARM parameter of the EXEC statement in your JCL.
• In z/OS on the GPARM parameter of the IBM-supplied cataloged procedure. For more information, see

z/OS XL C/C++ User's Guide.

Running under batch

Chapter 5. Link-editing, loading, and running under batch 67

• In the assembler user exit (for more information, see “CEEBXITA assembler user exit interface” on page
376).

• In the _CEE_RUNOPTS environment variable, when your application is running under z/OS UNIX and is
invoked by one of the exec family of functions.

Running under batch

68 z/OS: z/OS Language Environment Programming Guide

Chapter 6. Creating and executing programs under
TSO/E

Under TSO/E, you process an application by compiling and link-editing the programs that make up the
application, and then running the application.

The compiler produces an object module; the link-edit process takes the object module and produces an
executable program. You can link-edit and run your application as separate steps (LINK and CALL) or you
can link-edit and run your application as a single step (LOADGO).

Note: Several Fortran and C library routines have identical names. If your application contains any Fortran
or assembler routine that uses a Fortran library routine, see “Resolving library module name conflicts
between Fortran and C” on page 13 to resolve any potential name conflicts.

Basic link-editing and running under TSO/E
This topic describes how to accept and to override the default Language Environment runtime options
under TSO/E.

Accepting the default runtime options
Use the LOADGO command to run an existing NOXPLINK-compiled object module under TSO/E and to
accept the default Language Environment runtime options. See “Specifying runtime options and program
arguments” on page 102 for more information on using runtime options. For example, the command

LOADGO ('userid.MYLIB.OBJLIB(MYPROG)') LIB ('CEE.SCEELKED')

does the following:

• Takes the existing object module MYPROG from the object library in which you have it stored
• Links in the Language Environment (text) link library SCEELKED
• Runs the new executable program

Overriding the default runtime options
The following example overrides the Language Environment defaults for the RPTOPTS and MSGFILE
runtime options, and loads and runs the XPLINK-compiled program MYPROG:

LOADGO ('userid.MYLIB.OBJLIB(MYPROG)') 'RPTOPTS(ON), MSGFILE(OPTRPRT)/'
LIB ('CEE.SCEEBIND')

The Language Environment data sets SCEELKED link library, SCEEBND2 link library, and the SCEERUN
dynamic library (needed before you can run your executable program) could have been installed with a
different high-level qualifier than CEE. Check with your system administrator for the correct names.

The LOADGO command is described in detail in “Loading and running using the LOADGO command” on
page 73.

Specifying runtime options with the CEEOPTS DD card
Language Environment supports the ability to provide additional runtime options through a DD card. The
name of the DD must be CEEOPTS. The DD must be available during initialization of the "enclave" so that
the options can be merged.

In the Language Environment Runtime Options report, when an option was last set in the CEEOPTS DD
card, DD:CEEOPTS will be used in the "LAST WHERE SET" column.

Running under TSO/E

© Copyright IBM Corp. 1991, 2022 69

Link-editing and running
The LINK command link-edits a compiled external procedure or combines two or more procedures to
form a single executable program. You can run an executable program by using the CALL command. Use
the LINK-and-CALL method of processing when you want to:

• Keep a copy of the executable program in an external data set
• Link-edit two or more external procedures to form a single executable program
• Run a program repeatedly, without changing the source code

To run a compiled program without keeping a copy of the executable program, use the LOADGO
command.

Link-editing your application using the LINK command
The LINK command invokes the linkage editor, which converts one or more object modules into an
executable program suitable for execution. Later, you can run the executable program using the CALL
command (see “Using the CALL command to run your application” on page 72). The general form of the
LINK command is:

LINK (data-set-list)

LOAD (data-set-name)

LIB (data-set-list) options

LINK (data-set-list)
Specifies the names of the data sets containing the object modules to be link-edited. The variable
data-set-list must contain at least one object module, but can also contain binder control statements.
If you have only one name, you can omit the parentheses. If there are several names, you must
separate them by commas or blanks within the parentheses. The rules for positioning control
statements in relation to object modules are the same as for batch mode. If you specify a simple
data set name, the system assumes the descriptive qualifier OBJ; that is, the data set name is of the
form userid.data-set-name.OBJ.

LOAD (data-set-name)
Specifies the name of the data set to contain the executable program generated by the link-edit
process. If you specify a simple name, the system adds the user-identification qualifier and the
descriptive qualifier LOAD (userid.data-set-name.LOAD), and uses that as the data set name. The
resulting executable program must be stored as a member in a PDS or PDSE. If you do not supply
a member name, the executable program is placed in member TEMPNAME of the userid.data-set-
name.LOAD data set. If you do not specify LOAD, userid.LOAD is used.

LIB (data-set-list)
Specifies the names of data sets that contain user-supplied modules that you want to be link-edited
by the automatic library call facility.

The appropriate link-edit libraries, including the Language Environment link-edit libraries, must be
specified. See “Planning to link-edit and run” on page 5 for a description of the Language Environment
link-edit libraries.

options
Specifies a list of link-edit processing options. You must separate the options with a valid delimiter
such as a comma or blank. Table 14 on page 75 contains a partial listing of available link-edit
options.

The following example shows how to:

Running under TSO/E

70 z/OS: z/OS Language Environment Programming Guide

• Link-edit two object modules named PROGRAM1 and CEEUOPT. CEEUOPT can be used to establish
programmer runtime option defaults. See Chapter 9, “Using runtime options,” on page 99 for more
information.

• Load the resulting executable program in member PROGRAM1 in the library USER.LOADLIB.
• Specify the Language Environment library CEE.SCEELKED as the automatic call library for a non-XPLINK

application.
• Generate a mapping of the executable program that is run by using the MAP option.
• Direct the linkage editor listing to the terminal by using the PRINT(*) option.

LINK ('USER.OBJLIB(PROGRAM1)','USER.OBJLIB(CEEUOPT)')
 LOAD('USER.LOADLIB(PROGRAM1)')
 LIB ('CEE.SCEELKED') MAP PRINT(*)

For more information about using the TSO/E LINK command and its options, see z/OS TSO/E Command
Reference.

Using CMOD CLIST to invoke the TSO/E LINK command
You can use CMOD to build C modules or C ILC applications where C is the main routine. CMOD invokes
the TSO/E LINK command by passing all CMOD parameters to that command. Any parameters not passed
from CMOD have the normal LINK command default values. The CMOD CLIST resides in CEE.SCEECLST.
The CMOD CLIST cannot be used to link XPLINK applications.

CMOD OBJ (

'

,

object '

)

LOPT (

'

,

options '

)

LIB (

'

,

libname '

)

LOAD (

'

,

object '

)

OBJ
Specifies input object data set names.

LOPT
Specifies a string of linkage editor options.

LIB
Specifies libraries that you want to use to resolve external references. These libraries are appended to
the default C library functions.

Running under TSO/E

Chapter 6. Creating and executing programs under TSO/E 71

LOAD
An output data set name. If you do not specify an output data set name, a name is generated for you.
The name generated by the CLIST consists of your user prefix followed by LOAD(TEMPNAME).

Table 13 on page 72 shows CMOD calls and their corresponding results:

Table 13. CMOD calls

Call Result

cmod obj(myobj) link userid.myobj lib(cee.sceelked)

cmod obj(myobj)
lib (mylib)
lopt(rmode(24)
amode(24))

link userid.myobj lib(userid.mylib cee.sceelked) rmode(24)
amode(24)

cmod obj(myobj)
lib (mylib)
load(myload)
lopt(amode(24))

link userid.myobj lib(userid.mylib cee.sceelked)
load(myload) amode(24)

Possible error messages are:

• CMOD: NO INPUT OBJECT DECK SPECIFIED (rc=16)
• CMOD: ERROR WITH INPUT OBJECT DECK (rc=16)
• Any error messages generated by LINK

Using the CALL command to run your application
The TSO/E CALL command loads and executes a specified executable program. To run an application
successfully, the SCEERUN and SCEERUN2 dynamic libraries must be either in the link-list concatenation,
or in a STEPLIB in the TSO/E logon procedure. As an alternative, the TSO/E Dynamic STEPLIB
Facility (Program Offering 5798-DZW) can be used to dynamically allocate SCEERUN and SCEERUN2
to the execution environment. For more information about the TSO/E logon procedure, see z/OS
Program Directory in the z/OS Internet library (www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosInternetLibrary).

When you use the CALL command, you must also specify the ALLOCATE command to dynamically allocate
the data sets required by the application you intend to run. For more information about the ALLOCATE
command, see ALLOCATE command in z/OS TSO/E Command Reference.

The general form of the CALL command is:

CALL

data_set_name

data_set_name(membername)

(membername)

program_parms ASIS

data-set-name
Specifies the data set that holds the executable program. If you specify the simple name of the data
set, the system assumes the descriptive qualifier LOAD. If you do not specify a member name, the
system assumes the name TEMPNAME.

You can also specify the member name of the data set that holds the executable program you plan to
run, as indicated in the syntax diagram.

Running under TSO/E

72 z/OS: z/OS Language Environment Programming Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

program_parms
A list of runtime options and program parameters passed to the main routine. Use a slash (/) to
separate the runtime options and program parameters.

ASIS
Specifies that the program parameters are to be left in their original case. For C or C++, however,
you must specify at least one lowercase character in the program parameter string for the case to be
preserved, otherwise C or C or C++ will change the string to lowercase.

For example, if you want to load and run member PROGRAM1 located in the data set USER.LOADLIB, and
pass runtime options that generate storage and runtime options reports, specify the following:

CALL 'USER.LOADLIB(PROGRAM1)' 'RPTSTG(ON),RPTOPTS(ON)/'

For a summary of formatting considerations for specifying runtime options, see “Specifying runtime
options and program arguments” on page 102.

The EXECOPS option for C and C or C++ is used to specify that runtime options passed as parameters
at execution time are to be processed by Language Environment. The option NOEXECOPS specifies that
runtime options are not to be processed from execution parameters and are to be treated as program
parameters. For z/OS XL C/C++, a user can specify either EXECOPS or NOEXECOPS in a #pragma runopts
directive or as a compiler option. EXECOPS is the default for both z/OS XL C/C++ and z/OS XL C++.
If EXECOPS is specified, any runtime options specified in the CALL command are treated as program
parameters.

Note: When using CALL to execute a program in the background under TSO/E with PGM=IKJEFT01, the
ABTERMENC(ABEND) runtime option will not be processed correctly. To provide ABEND support under
TSO/E, use PGM=IKJEFT1A or PGM=IKJEFT1B. For more information regarding these entry points, see
z/OS TSO/E Customization.

TSO/E parameter list format
The TSO/E parameter list format differs depending on the language of the routine. Refer to Appendix
D, “Operating system and subsystem parameter list formats,” on page 505 for language-specific
considerations.

Loading and running using the LOADGO command
Use the LOADGO command to create an executable program in main storage and then run it. When the
application has run, TSO automatically deletes the executable program created by LOADGO. The general
form of the LOADGO command is:

LOADGO (data-set-list)

'program-parameter-string'

LIB (data-set-list) options

LOADGO (data-set-list)
Specifies the names of one or more object modules or executable programs that you want to load and
run. If you have only one name, you can omit the parentheses. If you have several names, you must
separate them by commas or blanks.

The names can be data set names, names of members of data sets, or both.

program-parameter-string
Specifies runtime options and program parameters to be passed to the executable program at run
time. Use a slash (/) to separate the runtime options and parameters that are passed to the main

Running under TSO/E

Chapter 6. Creating and executing programs under TSO/E 73

routine in the executable program. The possible combinations are described in “Specifying runtime
options and program arguments” on page 102.

LIB (data-set-list)
Specifies the names of data sets containing user-supplied modules that you want the automatic
library call facility to link-edit.

You must also list the Language Environment resident library (SCEELKED for non-XPLINK applications
or SCEEBIND for XPLINK applications). SCEELKED is installed into a data set with a high-level
qualifier; for example, the name might be CEE.SCEELKED. If you are unsure of the name of the data
set where SCEELKED has been installed at your location, contact your system administrator.

options
Specifies a list of loader options. You must separate the options with a valid delimiter such as a
comma or blank space. For a description of loader options, see Table 14 on page 75 and z/OS TSO/E
Command Reference.

Allocating data sets under TSO/E
When you use the LOADGO command under TSO/E, you must also specify the ALLOCATE command to
dynamically allocate the data sets required by the application you intend to run.For more information
about the ALLOCATE command, see ALLOCATE command in z/OS TSO/E Command Reference.

Example of using LOADGO
The following example shows how to:

• Create an executable program using the object modules PROGRAM1 and CEEUOPT
• Specify the runtime options to produce the runtime options report (RPTOPTS) and the storage report

(RPTSTG)
• Specify the Language Environment library CEE.SCEELKED as the automatic call library for a non-XPLINK

application
• Generate a mapping of the executable program
• Direct the loader listing to the terminal

LOADGO ('USER.OBJLIB(PROGRAM1)','USER.OBJLIB(CEEUOPT)')
 'RPTOPTS(ON),RPTSTG(ON)/'
 LIB ('CEE.SCEELKED') MAP PRINT(*)

To run an application successfully under TSO/E, the SCEERUN dynamic library must be either in the
link-list concatenation, or in a STEPLIB in the TSO/E logon procedure. As an alternative, the MVS/TSO
Dynamic STEPLIB Facility (Program Offering 5798-DZW) can be used to dynamically allocate SCEERUN
to the TSO/E execution environment. For more information about the TSO/E logon procedure, see z/OS
Program Directory in the z/OS Internet library (www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosInternetLibrary).

The EXECOPS option for C and C++ is used to specify that runtime options passed as parameters at
execution time are to be processed by Language Environment. The option NOEXECOPS specifies that
runtime options are not to be processed from execution parameters and are to be treated as program
parameters. For C++, a user can specify either option in a #pragma runopts statement. For both C++
and z/OS XL C++ users, the options can be specified as compiler options. EXECOPS is the default for
both z/OS XL C/C++ and z/OS XL C++. When EXECOPS is in effect, you can specify runtime options in the
LOADGO command.

Link-edit and loader options
Table 14 on page 75 contains a partial listing of available link-edit and loader options.

Running under TSO/E

74 z/OS: z/OS Language Environment Programming Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

Table 14. Selected loader options

Option Action

CALL | NOCALL CALL specifies that the data set specified in the LIB operand is to be
searched to locate executable programs referred to by the module
that is being processed.

NOCALL specifies that the data set specified in the LIB operand is
not to be searched to locate executable programs referred to by the
module that is being processed. If NOCALL is specified, then RES is
invalid.

CALL is the default.

SIZE(integer) Specifies the size, in bytes, of the dynamic storage that the loader
can use.

PRINT (data_set_name) PRINT specifies the name of the data set that is used to contain the
listing. You can direct output to the terminal by specifying PRINT(*).

MAP | NOMAP MAP generates a map of the executable programs and places them in
the PRINT data set.

NOMAP suppresses the map listing. It is the default.

LET | NOLET LET specifies that the loader attempts to execute your application
even if an error of severity 2 or greater is found.

NOLET suppresses execution if an error of severity 2 or greater is
found. It is the default.

RES | NORES RES specifies that the link pack area is to be searched for the
executable program (referred to by the module that is being
processed) before the specified libraries are searched. If you also
specify the NOCALL operand, the RES option is not valid.

NORES specifies that the link pack area is not to be searched for
the executable program referred to by the module that is being
processed. It is the default.

Using the iconv utility and ICONV CLIST for C/C++
The iconv utility uses the iconv_open(), iconv(), and iconv_close() functions to convert the
input file records from the coded character set definition for the input code page to the coded character
set definition for the output code page. There is one record in the output file for each record in the input
file. No padding or truncation of records is performed.

The iconv utility can also perform bidirectional layout transformation (for example, shaping and
reordering) on the data to be converted according to the two environment variables, _BIDION and
_BIDIATTR. For more information about bidirectional layout transformation, see Bidirectional language
support in z/OS XL C/C++ Programming Guide. See Using environment variables in z/OS XL C/C++
Programming Guide for a description of _BIDION and _BIDIATTR.

For information about the iconv utility, see The inconv utility in z/OS XL C/C++ Programming Guide.

When conversions are performed between single-byte code pages, the output records are the same
length as the input records. When conversions are performed between double-byte code pages, the
output records could be longer or shorter than the input records because the shift-out and shift-in
characters could be added or removed.

The ICONV CLIST invokes the iconv utility to copy the input data set to the output data set and convert
the characters from the input code page to the output code page.

Running under TSO/E

Chapter 6. Creating and executing programs under TSO/E 75

Using the genxlt utility and GENXLT CLIST for C/C++
The genxlt utility reads character conversion information from an input file and writes the compiled
version to an output file. The input file contains directives that are acted upon by the genxlt utility to
produce the compiled version of the conversion table. For more information about the genxlt utility, see
The genxlt utility in z/OS XL C/C++ Programming Guide.

The GENXLT CLIST invokes the genxlt utility to read the character conversion information and produce
the conversion table. It then invokes the system linkage editor to build the executable program.

Running your application under TSO/E
You can run your TSO/E application in the following ways:

• Use LOADGO to create a module in main storage and then run it. For a description of the LOADGO
command, see “Loading and running using the LOADGO command” on page 73.

• Use the CALL command to run an executable program that you have created using LINK. For a
description of the LINK command, see “Link-editing your application using the LINK command” on page
70. For a description of the CALL command, see “Using the CALL command to run your application” on
page 72.

• Run your application as a command processor.

Running under TSO/E

76 z/OS: z/OS Language Environment Programming Guide

Chapter 7. Creating and executing programs using
z/OS UNIX System Services

The interface to the linkage editor for z/OS UNIX System Services (z/OS UNIX) C applications is the z/OS
UNIX c89 utility or the c++ utility, and for C++ applications it is the c++ utility. You can use them to
compile and link-edit a z/OS UNIX C/C++ program in one step, or link-edit application object modules
after the compilation. You must, however, invoke one of the z/OS UNIX shells before you can run the c89
utility. For more information about these utilities, see c89 — Compiler invocation using host environment
variables in z/OS UNIX System Services Command Reference.

Fortran applications are not supported under z/OS UNIX. When POSIX threading services are used,
Fortran routines can only run in the initial process thread (IPT).

COBOL programs are supported under z/OS UNIX. See “Running COBOL programs under z/OS UNIX” on
page 81 for more information.

Enterprise PL/I for z/OS has support for z/OS UNIX that is essentially the same as that of C++. Therefore
everything in this topic that applies to C++ is also applicable to Enterprise PL/I for z/OS.

PL/I for MVS & VM routines are supported under z/OS UNIX. PL/I for MVS & VM routines can run in the IPT
without any unique restrictions other than those described in the appropriate migration guide in the IBM
Enterprise PL/I for z/OS library (www.ibm.com/support/docview.wss?uid=swg27036735). PL/I for MVS
& VM routines can run in the non-IPTs created by C/C++ routines with some restrictions. Limited PL/I –
C/C++ ILC is supported in non-IPTs. See “Basic link-editing and running PL/I routines under z/OS UNIX
with POSIX(ON)” on page 82 for more information.

PL/I MTF applications require z/OS UNIX services. PL/I MTF applications do not support ILC with C/C++
and must not invoke any z/OS UNIX services through an assembler program; otherwise the results are
unpredictable.

Basic link-editing and running C/C++ applications under
z/OS UNIX supports the following environments for running C/C++ applications:

• z/OS UNIX shells
• TSO/E
• Batch
• z/OS UNIX through MVS batch

Using the z/OS UNIX-supplied utilities c89/cc/c++, you can compile and link-edit a z/OS UNIX C/C++
application in one step, or link-edit application object modules separately. To produce an executable file,
invoke c89 and pass it object modules (file.o z/OS UNIX files or file.OBJ MVS data sets) without using the
-c option.

For more information about the c89 utility, seec89 — Compiler invocation using host environment
variables in z/OS UNIX System Services Command Reference .

Invoking a shell from TSO/E
To begin a z/OS UNIX shell session, you first log on to TSO/E and then invoke the TSO/E OMVS command.
This starts a login shell, from which you can enter shell commands.

You can also login with rlogin or telnet.

For more information about shells, see An introduction to the z/OS UNIX shells in z/OS UNIX System
Services User's Guide.

Running under z/OS UNIX

© Copyright IBM Corp. 1991, 2022 77

http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735

Using the z/OS UNIX c89 utility to link-edit and create executable
files

To link-edit a z/OS UNIX C/C++ application's object modules to produce an executable file, specify the
c89 utility and pass it object modules (file.o z/OS UNIX files or //file.OBJ MVS data sets). The c89
utility recognizes that these are object modules produced by previous C/C++ compilations and does not
invoke the compiler for them.

To compile source files without link-editing them, use the c89 -c option to create object modules only.
You can use the -o option with the command to specify the name and location of the executable file to be
created.

For a complete description of all the c89 options, see c89 — Compiler invocation using host environment
variables in z/OS UNIX System Services Command Reference.

• To link-edit an XPLINK-compiled application object module to create the mymodx.out executable file in
the current directory, specify:

c89 -o mymodx.out -Wl,xplink usersource.o

• To link-edit an application object module to create the default executable file a.out in the working
directory, specify:

c89 usersource.o

• To link-edit an application object module to create the mymod.out executable file in the app/bin
directory, relative to your working directory, specify:

c89 -o app/bin/mymod.out usersource.o

• To link-edit several application object modules to create the mymod.out executable file in the app/bin
directory, relative to your working directory, specify:

c89 -o app/bin/mymod.out usersrc.o ottrsrc.o "//PGM.OBJ(PW...APP)"

• To link-edit an application object module to create the MYLOADMD executable member of the MVS
APPROG.LIB data set for your user ID, specify:

c89 -o "//APPROG.LIB(MYLOADMD)" usersource.o

• To compile and link-edit an application source file with several previously compiled object modules to
create the executable file zinfo in the approg/lib subdirectory, relative to your working directory,
specify:

c89 -o approg/lib/zinfo usersrc.c existobj.o
"//PGM.OBJ(PWAPP)"

Running z/OS UNIX C/C++ application programs
This topic discusses the different ways you can run your z/OS UNIX C/C++ applications under z/OS.

z/OS UNIX application program environments
z/OS UNIX supports the following environments from which you can run your z/OS UNIX C/C++
applications:

• z/OS UNIX shell
• TSO/E

You cannot directly call a z/OS UNIX application that resides in a z/OS UNIX file system from the TSO/E
READY prompt. However, you can do so with a TSO/E BPXBATCH command, and with a REXX EXEC.

Running under z/OS UNIX

78 z/OS: z/OS Language Environment Programming Guide

• MVS batch

You cannot directly use the JCL EXEC statement to run a z/OS UNIX application program that resides
in a z/OS UNIX file system because you cannot put a z/OS UNIX file name on the JCL EXEC statement.
However, by using the BPXBATCH program, you can run a z/OS UNIX application that resides in an z/OS
UNIX file. You supply the name of the program as an argument to the BPXBATCH program, which runs
under MVS batch and invokes a z/OS UNIX shell environment. (BPXBATCH also lets you call a program
directly without having to also run a shell.) You can also run a z/OS UNIX application that resides in a
z/OS UNIX file system by calling a REXX EXEC to invoke it under MVS batch.

Placing an MVS application executable program in the file system
If you have a z/OS UNIX C/C++ application executable file as a member in an MVS data set and want to
place it in the z/OS UNIX file system, you can use the OPUTX or OGETX z/OS UNIX TSO/E commands
to copy the member into a z/OS UNIX file. For a description of these commands, see z/OS UNIX System
Services Command Reference. For examples of using these commands to copy data sets to z/OS UNIX
files, see z/OS UNIX System Services User's Guide.

Restriction on using 24-Bit AMODE programs
You cannot run an AMODE(24) C/C++ application that resides in a z/OS UNIX file. Any programs you
intend to run from the file system must be AMODE(31), problem program state, PSW key 8 programs.
If you plan to run an AMODE(24) C/C++ program from within a z/OS UNIX application, make sure the
executable program resides in a MVS PDS or PDSE member. Any new z/OS UNIX C/C++ applications you
develop should be AMODE(31). XPLINK-compiled applications must be AMODE(31), and they and will
force the ALL31 runtime option to ON.

Running an MVS executable program from a z/OS UNIX shell
If your z/OS UNIX C/C++ application resides in MVS data sets and you need to run the application
executable program from within a shell, you can pass a call to the module to TSO/E. In many cases you
can also use the tso utility. If you entered the shell from TSO/E using the OMVS command, you can use
the TSO function key to pass the command to TSO/E. For example, if your executable program is myprog
in data set my.loadlib, type the following (from the shell) to pass the command to TSO/E:

tso "call 'my.loadlib(myprog)'"

When the program completes, the shell session is restored. You can also run an MVS program from a shell
by associating it with a z/OS UNIX file by using the sticky bit or external link. For more information about
the chmod and ln commands, see chmod - Change the mode of a file or directory and ln - Create a link to
a file in z/OS UNIX System Services Command Reference.

Running POSIX-enabled programs
There are different considerations for running POSIX-enabled programs depending on whether you are
using a z/OS UNIX shell or are running outside the shell.

Running POSIX-enabled programs using a z/OS UNIX shell

Issuing the executable from a shell
Before an z/OS UNIX program can be run in a shell, it must be given the appropriate mode authority
for a user or group of users. You can update the mode authority for an executable by using the chmod
command. See z/OS UNIX System Services Command Reference for the format and description of chmod.
Note that when c89 creates an executable, the file is given execute permission for all users.

After you have updated the mode authority, enter the program name from the shell command line. For
example,

Running under z/OS UNIX

Chapter 7. Creating and executing programs using z/OS UNIX System Services 79

• If you want to run the program data_crunch from your working directory,
• You have the directory where the program resides defined in your search path, and
• You are authorized to run the program,

enter:

data_crunch

When running such programs, you can specify invocation runtime options only by setting the environment
variable _CEE_RUNOPTS before invoking the program. For example, under a z/OS UNIX shell you can use
the export command. For example:

export _CEE_RUNOPTS="rpto(on)…"

To further update the runtime options, you can issue another export.

Issuing a setup shell script from a shell
To run a z/OS UNIX shell script that sets up a z/OS UNIX executable file and then runs the program,
you give the appropriate mode authority for a user or group of users to run it. You can update the mode
authority (access permission) for a shell script file by using the chmod command. See chmod - Change
the mode of a file or directory in z/OS UNIX System Services Command Reference for the format and
description of chmod. After mode authority has been given, enter the script file name from the shell
command line.

Running an MVS batch z/OS UNIX C/C++ application file
To run a z/OS UNIX C/C++ executable application file from a z/OS UNIX file under MVS batch, invoke
the IBM-supplied BPXBATCH program either from TSO/E, or by using JCL or a REXX EXEC (not batch).
BPXBATCH performs an initial user login to run a specified program from the shell environment.

Before you invoke BPXBATCH, you must have the appropriate privilege to read from and write to z/OS
UNIX files. You should also allocate STDOUT and STDERR files for writing any program output, such
as error messages. Allocate the standard files using the PATH options on either the TSO/E ALLOCATE
command or the JCL DD statement.

For a detailed discussion of the BPXBATCH program syntax and its use, and an example of running shell
utilities under MVS batch using the BPXBATCH program, see The BPXBATCH utility in z/OS UNIX System
Services Command Reference.

Running POSIX-enabled programs outside the z/OS UNIX shells

Invoking BPXBATCH from TSO/E
You can invoke BPXBATCH from TSO/E in the following ways:

• From the TSO/E READY prompt
• From a CALL command
• As a REXX EXEC

If you want to run the /myap/base_comp application program from your user ID, direct its output to the
file /myap/std/my.out. Write any error messages to the file /myap/std/my.err and copy the output
and error data to MVS data sets. You could write a REXX EXEC similar to the following example:

/* base_comp REXX exec */
"Allocate File(STDOUT) Path('/u/myu/myap/std/my.out')
 Pathopts(OWRONLY,OCREAT,OTRUNC)
 Pathmode(SIRWXU) Pathdisp(DELETE,DELETE)"
"Allocate File(STDERR) Path('/u/myu/myap/std/my.err')
 Pathopts(OWRONLY,OCREAT,OTRUNC)
 Pathmode(SIRWXU) Pathdisp(DELETE,DELETE)"

"BPXBATCH PGM /u/myu/myap/base_comp"

Running under z/OS UNIX

80 z/OS: z/OS Language Environment Programming Guide

"Allocate File(output1) Dataset('MYAPPS.STD(BASEOUT)')"
"Ocopy Indd(STDOUT) Outdd(output1) Text Pathopts(OVERRIDE)"

"Allocate File(output2) Dataset('MYAPPS.STD(BASEERR)')"
"Ocopy Indd(STDERR) Outdd(output2) Text Pathopts(OVERRIDE)"

Enter the name of the REXX EXEC from the TSO/E READY prompt to invoke BPXBATCH. When the REXX
EXEC completes, the STDOUT and STDERR allocated files are deleted.

Invoking BPXBATCH using JCL
To invoke BPXBATCH using JCL, submit a job that executes an application program and allocates the
standard files using DD statements. For example, if you want to run the /myap/base_comp application
program from your user ID, direct its output to the file /myap/std/my.out. Direct any error messages to
be written to the file /myap/std/my.err; code the JCL statements as follows:

//jobname JOB …
//stepname EXEC PGM=BPXBATCH,PARM='PGM /u/myu/myap/base_comp'
//STDOUT DD PATH='/u/myu/myap/std/my.out',
// PATHOPTS=OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU
//STDERR DD PATH='/u/myu/myap/std/my.err',
// PATHOPTS=OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU

Invoking the spawn syscall in a REXX EXEC from TSO/E
A REXX EXEC can directly call a program which resides in the z/OS UNIX file system. This can be done
by using the spawn() syscall. The following is an example of a REXX program which can be called from
TSO/E.

/* REXX */
RC = SYSCALLS('ON')
If RC<0 | RC>4 Then Exit RC
Address SYSCALL
fstdout = 'fstdout'
fstderr = 'fstderr'
'open' fstdout O_RDWR+O_TRUNC+O_CREAT 700
stdout = RETVAL
'open' fstderr O_RDWR+O_TRUNC+O_CREAT 700
stderr = RETVAL
map.0=-1
map.1=stdout
map.2=stderr
parm.0=1
parm.1='/bin/c89'
'spawn /bin/c89 3 map. parm. __environment.'
spid = RETVAL
serrno = ERRNO
If spid==-1 Then Do
 str ='unable to spawn' parm.1', errno='serrno
 'write' stderr 'str'
 Exit serrno
End
'waitpid (spid) waitpid. 0'
xrc = waitpid.W_EXITSTATUS
If xrc^=0 Then Do
 str =parm.1 'failed, exit status='xrc
 'write' stderr 'str'
End
Exit xrc

Running a z/OS UNIX C/C++ application program that is not HFS-resident
Submit a z/OS UNIX C/C++ application executable program (an executable file that is an MVS PDS or
PDSE member) to run under the MVS batch environment using the JCL EXEC statement the same way you
would submit a traditional C/C++ application. The POSIX(ON) runtime option should be specified.

Running COBOL programs under z/OS UNIX
COBOL programs are supported under z/OS UNIX.

Running under z/OS UNIX

Chapter 7. Creating and executing programs using z/OS UNIX System Services 81

In order to use COBOL under z/OS UNIX, the COBOL programs must be compiled with the Enterprise
COBOL for z/OS compiler, COBOL for OS/390 & VM compiler or the COBOL for MVS & VM compiler, and the
programs must be compiled with the RENT compiler option.

You can compile and link edit your COBOL programs in the z/OS UNIX shell with the cob2 command. The
cob2 command is available with COBOL for OS/390 & VM V2R2 or Enterprise COBOL for z/OS.

Alternatively, you can compile your programs in TSO or batch and have the object module that is written
to a z/OS UNIX file by using the PATH parameter instead of the DSNAME parameter for the SYSLIN
DD. Once you have your object modules in a z/OS UNIX file, you can use the c89 utility to create an
executable file.

When you want to use COBOL programs under z/OS UNIX, be aware of the following situations:

• When COBOL is the main routine of a z/OS UNIX, process, parameters are not passed in the C argv and
argc format. Instead the parameter list consists of three parameters that are passed by reference:

1. Argument-count: a binary fullword integer that contains the number of elements in each of the arrays
that are passed as the second and third parameters.

2. Argument-length-list: an array of pointers. The Nth entry in the array is the address of a fullword
binary integer that contains the length of the Nth entry in the Argument-list (the third argument).

3. Argument-list: an array of pointers. The Nth entry in the array is the address of the Nth character
string that is passed as an argument on the spawn(), exec(), or command invocation.

• DISPLAY UPON SYSOUT data is written to stdout unless a DD is allocated that matches the value in the
OUTDD compiler option.

• In order to run COBOL programs in more than one thread, all of the COBOL programs must be compiled
with the Enterprise COBOL compiler using the THREAD compiler option.

• The COBOL MERGE statement and the format 1 SORT statement are not supported. The format 2 SORT
statement is supported.

For more information about compiling, link-editing, and running COBOL programs in a z/OS UNIX shell
environment, see the appropriate version of the programming guide in the COBOL library at Enterprise
COBOL for z/OS library (www.ibm.com/support/docview.wss?uid=swg27036733).

Basic link-editing and running PL/I routines under z/OS UNIX with
POSIX(ON)

Note: The following section does not apply to Enterprise PL/I for z/OS; they only apply to the earlier PL/I
products.

When the runtime option POSIX(ON) is specified, PL/I routines in the IPT follow the same rules and
behave the same as when POSIX(ON) is not in effect.

PL/I routines in non-IPTs, however, must observe the following rules, or the result is unpredictable. No
runtime diagnosis is provided to enforce these rules.

• The non-IPT must be created by a C/C++ routine or assembler program. PL/I routines must be reentrant
and in AMODE(31). A PL/I routine can be the first routine in the thread. To ensure that the PL/I-specific
runtime is available at the time the PL/I routine is running in a non-IPT, one of the following situations
must be true in the main executable program:

– A PL/I routine directly calls a C/C++ routine.
– A C/C++ routine directly calls a PL/I routine.
– A PL/I for MVS & VM routine is present in the executable program.
– Language Environment PL/I signature CSECT CEESG010 is explicitly included in the executable

program.

If none of these situations exist in the main executable program and a PL/I routine is going to run in a
particular thread, you must do one of the following in that thread:

Running under z/OS UNIX

82 z/OS: z/OS Language Environment Programming Guide

http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733

– Fetch or dynamically call an executable program that contains a PL/I routine.
– Fetch or dynamically call an executable program that contains Language Environment PL/I signature

CSECT CEESG010.
• PL/I routines in non-IPTs are supported in the same environments as the C/C++ routines, except

the z/OS UNIX shells. The executable form of PL/I routines, however, can run under the shells in
conjunction with C/C++ routines in the application using the utilities provided by z/OS UNIX.

• OS PL/I routines can be in non-IPTs. See the appropriate migration guide in the IBM Enterprise PL/I
for z/OS library (www.ibm.com/support/docview.wss?uid=swg27036735) for the OS PL/I executable
programs supported under Language Environment.

• The following functions are not supported:

– PL/I language constructs associated with MTF, the Language Environment PL/I MTF-specific runtime
option PLITASKCOUNT, the Language Environment PL/I MTF-specific trace facility via the runtime
option TRACE(ON,,,LE=2), and the PL/I MTF-specific data set SIBMTASK. The language constructs
are:

- CALL statement with TASK, EVENT, or PRIORITY option
- EVENT variable
- COMPLETION and STATUS built-in function and pseudovariable
- WAIT statement
- PRIORITY built-in function and pseudovariable
- DELAY statement

– I/O using PL/I language statements is not supported except for the limited support provided using
the SYSPRINT file and DISPLAY statement.

– PL/I FETCH and RELEASE statements are not supported.
– Controlled variables are not supported.
– Data sharing among threads is limited. Variables must not be referred to across thread boundaries

even though the scope of the PL/I names declaration is unchanged.
– ON-unit inheritance is defined at the thread level. No ON-unit inheritance is provided from the

creating threads.
• The following functions are supported with restrictions:

– SYSPRINT

If the SYSPRINT file is defined as STREAM OUTPUT EXTERNAL and it is opened in the IPT before any
other threads are created, the SYSPRINT file can be shared among the threads. The file must remain
open while other threads are using it. The file must be closed explicitly by the IPT or implicitly by
Language Environment when the application terminates.

– DISPLAY

The DISPLAY statement without the REPLY option and EVENT option is supported.
– CALL

The PL/I routine in the non-IPT must not call a subroutine fetched in the initial thread, even if the
routine has been fetched before the noninitial thread is created.

– EXIT

EXIT is not recommended. When it is used, only the current thread is exited. If the EXIT statement
is used in the initial thread, the entire application terminates. There is no defined order as to which
thread terminates first.

– STOP

STOP is not recommended. When it is used, the entire application terminates. There is no defined
order as to which thread terminates first.

Running under z/OS UNIX

Chapter 7. Creating and executing programs using z/OS UNIX System Services 83

http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735

– If a thread is designed to be used many times before it is terminated, reset the user return code by
using PLIRETC(0) in the first PL/I routine in the thread.

• The z/OS UNIX-defined signals are handled in the same way for PL/I routines in non-IPT and IPT
environments. If the z/OS UNIX signals are delivered to PL/I routines, the signals are ignored until the
PL/I routine returns.

Basic link-editing and running PL/I MTF applications under z/OS
UNIX

SIBMTASK is provided to create the main executable program for PL/I MTF applications. SIBMTASK
must be concatenated before SCEELKED when the main executable program is created, whether you
are creating a new PL/I MTF application or relink-editing an existing OS PL/I routine with Language
Environment. SIBMTASK replaces PLITASK under OS PL/I. If the main executable program of your
application is link-edited with SIBMTASK or OS PL/I PLITASK, but does not use multitasking functions,
you might notice some performance loss during initialization and termination. The same releases of OS
PL/I executable programs are supported by multitasking as well as nonmultitasking applications. The OS
PL/I shared library support is the same for both multitasking and nonmultitasking applications.

PL/I multitasking follows the Language Environment program management model discussed in Chapter
13, “Program management model,” on page 137. PL/I MTF supports a single Language Environment
process within an address space, and is supported in the initial enclave only. If a PL/I multitasking
application contains nested enclaves, the initial enclave must contain a single task. Violation of any of
these rules is not diagnosed and is likely to cause unpredictable results.

The POSIX(ON) runtime option is not supported for a PL/I MTF application and therefore no programs,
including assembler programs, in the application can invoke any POSIX functions. If POSIX(ON) is in
effect when a multitasking main executable program is encountered, the application will abend.

For a more detailed discussion of PL/I MTF support, see the IBM Enterprise PL/I for z/OS
library (www.ibm.com/support/docview.wss?uid=swg27036735). For more information about migration
considerations for OS PL/I MTF applications, see the appropriate migration guide in the IBM Enterprise
PL/I for z/OS library (www.ibm.com/support/docview.wss?uid=swg27036735).

Running under z/OS UNIX

84 z/OS: z/OS Language Environment Programming Guide

http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735

Chapter 8. Using IBM-supplied cataloged procedures

A cataloged procedure is a set of job control statements that are stored in a system library (for example
SYS1.PROCLIB). The storage location for cataloged procedures is installation-defined and might differ at
your location from what is shown here.

Within a cataloged procedure, there are typically one or more EXEC statements, each of which can be
followed by one or more DD statements. You can retrieve a cataloged procedure from the library by using
its member name in an EXEC statement of a job control statement in the input stream.

Cataloged procedures can contain statements for the processing of an entire job, or statements to
process one or more steps of a job, with the remaining steps defined in job control statements in the input
stream. A job can use several cataloged procedures to process one or more of the job steps, or it can use
the same cataloged procedure in more than one job step.

You can use cataloged procedures to save time and reduce JCL errors. If the statements in the procedure
do not match your requirements exactly, you can easily modify them or add new statements for the
duration of a job.

The cataloged procedures shown in this section are intended for use as references and do not necessarily
reflect the procedures as they are provided at your installation. If options are not explicitly supplied
with the procedure, default options established at the installation apply. You can override these default
options by using an EXEC statement that includes the desired options (see “Overriding and adding to
EXEC statements” on page 95).

Invoking cataloged procedures
To invoke a cataloged procedure, specify its name in the PROC parameter of an EXEC statement. You
do not need to code the keyword PROC. For example, to use the cataloged procedure CEEWLG, include
the following statement in an appropriate position among your other job control statements in the input
stream:

//stepname EXEC PROC=CEEWLG

or

//stepname EXEC CEEWLG

Either of these EXEC statements can be used to call the IBM-supplied cataloged procedure CEEWLG to
process the job step specified in stepname.

A job that calls for a cataloged procedure to run can also contain DD statements that are applicable to the
cataloged procedure, such as:

• Other cataloged procedures to be run
• Other (single or multiple) executions of the same cataloged procedure
• Executable programs to be run

Step names in cataloged procedures
The stepname in a cataloged procedure is the same as the abbreviated processor name. For example, the
step that executes a compiled and link-edited program is named GO. In the procedure named CEEWLG
(see “CEEWLG — Link and run a Language Environment conforming non-XPLINK program” on page 90),
the first step is named LKED, and the second is named GO. Some of the PROCs provided are for creating
constructed reentrant C/C++ executables. See “Making your C/C++ program reentrant” on page 119 for a
description of constructed reentrant C/C++ programs.

Some of these PROCs use a prelink step, for when the prelinker must still be used. Some have a P in
their names, such as EDCPL, to denote the prelink step PLKED. Other PROCs, for which the prelinker was

IBM-supplied cataloged procedures

© Copyright IBM Corp. 1991, 2022 85

mandatory when the linkage editor was used (such as CBCCL) have just an L in their names, to denote
both the prelink step PLKED and the link-edit step LKED.

PROCs which must use the binder (that is they cannot use the linkage editor), have a B in their names to
denote the binder step BIND, such as CBCB. These typically have counterpart PROCs with an L in their
names, such as CBCL, which can be used when the linkage editor must be used. These may also use the
prelinker, and therefore may or may not have a P in their names.

PROCs which have an L in their names to denote the link-edit step LKED, which do not have a counterpart
PROC with a B in their names, do not have a prelink step. These generic link-edit PROCs can be used
with the binder, and also will work correctly with the linkage editor. In order for these generic link-edit
PROCs to work with constructed reentrant C/C++ programs, the appropriate overrides must be used. See
“Modifying cataloged procedures” on page 95 for some examples.

Unit names in cataloged procedures
The esoteric unit name used in IBM-supplied cataloged procedures is one of the following:

UNIT=SYSDA
UNIT=VIO

Esoteric unit names are defined during system initialization and installation; the installation should
maintain a list of esoteric unit names. Both these names can be defined as VIO (virtual I/O) data sets. For
more information about VIO data sets, see Allocation of virtual I/O in z/OS MVS JCL User's Guide.

All of the data sets that can be created use one of these esoteric units names. Most of these are set
up as temporary data sets, and some are typically overridden to become permanent data sets, by using
procedure parameters, or by overriding procedure statements. See “Modifying cataloged procedures” on
page 95 for more information about overriding statements in cataloged procedures.

Data set names in cataloged procedures
When you use DSNAME=&&name in a DD statement, it is a temporary data set that is deleted when the
job terminates. If you want the data set to be kept, override the DD statement with a permanent data set
name and specify the appropriate DISP parameters.

See "Required DD Statements" under “Writing JCL for the link-edit process” on page 58 for a detailed
description of each of the data sets included in the cataloged procedures discussed in this topic. See
“Overriding and adding to EXEC statements” on page 95 for instructions about overriding DD statements
in cataloged procedures.

IBM-supplied cataloged procedures
The IBM-supplied cataloged procedures that you can use are listed in Table 15 on page 86.

Table 15. IBM-supplied cataloged procedures

Procedure Name For more information, see:

Load and run a Language Environment-
conforming non-XPLINK program

CEEWG “CEEWG — Load and run a Language
Environment conforming non XPLINK
program” on page 89

Link-edit a Language Environment-
conforming non-XPLINK program

CEEWL “CEEWL — Link a Language Environment
conforming non XPLINK program” on
page 90

Link-edit and run a Language Environment-
conforming non-XPLINK program

CEEWLG “CEEWLG — Link and run a Language
Environment conforming non-XPLINK
program” on page 90

IBM-supplied cataloged procedures

86 z/OS: z/OS Language Environment Programming Guide

Table 15. IBM-supplied cataloged procedures (continued)

Procedure Name For more information, see:

Load and run a Language Environment-
conforming XPLINK program

CEEXR “CEEXR — Load and run a
Language Environment conforming
XPLINK program” on page 91

Link-edit a Language Environment-
conforming XPLINK program

CEEXL “CEEXL — Link-edit a Language
Environment conforming XPLINK
program” on page 91

Link-edit and run a Language Environment-
conforming XPLINK program

CEEXLR “CEEXLR — Link and run a
Language Environment conforming
XPLINK program” on page 92

Compile a C program EDCC z/OS XL C/C++ User's Guide

Compile and link-edit a C program EDCCL z/OS XL C/C++ User's Guide

Compile and bind a C program EDCCB z/OS XL C/C++ User's Guide

Compile, bind, and run a C program EDCCBG z/OS XL C/C++ User's Guide

Compile, link-edit, and run a C program EDCCLG z/OS XL C/C++ User's Guide

Compile, prelink, link-edit, and run a C
program

EDCCPLG z/OS XL C/C++ User's Guide

Prelink and link-edit a C program EDCPL z/OS XL C/C++ User's Guide

Compile a C++ program CBCC z/OS XL C/C++ User's Guide

Compile and bind a C++ program CBCCB z/OS XL C/C++ User's Guide

Compile, bind, and run a C++ program CBCCBG z/OS XL C/C++ User's Guide

Bind a C++ program CBCB z/OS XL C/C++ User's Guide

Bind and run a C++ program CBCBG z/OS XL C/C++ User's Guide

Compile, prelink, and link-edit a C++
program

CBCCL z/OS XL C/C++ User's Guide

Compile, prelink, link-edit, and run a C++
program

CBCCLG z/OS XL C/C++ User's Guide

Prelink and link-edit a C++ program CBCL z/OS XL C/C++ User's Guide

Prelink, link-edit, and run a C++ program CBCLG z/OS XL C/C++ User's Guide

Run a C++ program CBCG z/OS XL C/C++ User's Guide

Invoke the iconv (character-conversion)
utility

EDCICONV z/OS XL C/C++ User's Guide

Invoke the genxlt (generate a translate
table) utility

EDCGNXLT z/OS XL C/C++ User's Guide

Invoke the DSECT conversion utility EDCDSECT z/OS XL C/C++ User's Guide

Invoke the locale object utility EDCLDEF z/OS XL C/C++ User's Guide

Invoke the maintain an object library utility EDCLIB z/OS XL C/C++ User's Guide

Invoke the compile and maintain an object
library utility

EDCCLIB z/OS XL C/C++ User's Guide

Invoke the demangle mangled names utility CXXFILT z/OS XL C/C++ User's Guide

IBM-supplied cataloged procedures

Chapter 8. Using IBM-supplied cataloged procedures 87

Table 15. IBM-supplied cataloged procedures (continued)

Procedure Name For more information, see:

Compile a COBOL program IGYWC The appropriate version of the
COBOL programming guide in the
COBOL library at Enterprise COBOL
for z/OS library (www.ibm.com/support/
docview.wss?uid=swg27036733).

Compile and link-edit a COBOL program IGYWCL The appropriate version of the
COBOL programming guide in the
COBOL library at Enterprise COBOL
for z/OS library (www.ibm.com/support/
docview.wss?uid=swg27036733).

Compile, link-edit, and run a COBOL
program

IGYWCLG The appropriate version of the
COBOL programming guide in the
COBOL library at Enterprise COBOL
for z/OS library (www.ibm.com/support/
docview.wss?uid=swg27036733).

Compile, prelink, and link-edit a COBOL
program

IGYWCPL The appropriate version of the
COBOL programming guide in the
COBOL library at Enterprise COBOL
for z/OS library (www.ibm.com/support/
docview.wss?uid=swg27036733).

Compile, prelink, link-edit, and run a COBOL
program

IGYWCPLG The appropriate version of the
COBOL programming guide in the
COBOL library at Enterprise COBOL
for z/OS library (www.ibm.com/support/
docview.wss?uid=swg27036733).

Compile, load, and run a COBOL program IGYWCG The appropriate version of the
COBOL programming guide in the
COBOL library at Enterprise COBOL
for z/OS library (www.ibm.com/support/
docview.wss?uid=swg27036733).

Prelink and link-edit a COBOL program IGYWPL The appropriate version of the
COBOL programming guide in the
COBOL library at Enterprise COBOL
for z/OS library (www.ibm.com/support/
docview.wss?uid=swg27036733).

Link-edit a Fortran program AFHWL “AFHWL — Link a program written in
Fortran” on page 93

Link-edit and run a Fortran program AFHWLG Enterprise
PL/I for z/OS

“AFHWLG — Link and run a program
written in Fortran” on page 93

Change any external names in conflict
between C and Fortran to the Fortran-
recognized name

AFHWN “AFHWN — Resolving name conflicts
between C and Fortran” on page 94

Separate the nonshareable and shareable
parts of a Fortran object module, and link-
edit

AFHWRL “Making your Fortran program reentrant”
on page 120

IBM-supplied cataloged procedures

88 z/OS: z/OS Language Environment Programming Guide

http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733

Table 15. IBM-supplied cataloged procedures (continued)

Procedure Name For more information, see:

Separate the nonshareable and shareable
parts of a Fortran object module, link-edit,
and execute

AFHWRLG “Making your Fortran program reentrant”
on page 120

Compile an Enterprise PL/I for z/OS
program

IBMZC Enterprise PL/I for z/OS

Compile and bind an Enterprise PL/I for
z/OS program

IBMZCB Enterprise PL/I for z/OS

Compile, bind and run an Enterprise PL/I for
z/OS program

IBMZCBG Enterprise PL/I for z/OS

Compile, load and run an Enterprise PL/I for
z/OS program

IBMZCG Enterprise PL/I for z/OS

Compile, prelink and load/run an Enterprise
PL/I for z/OS program using the loader

IBMZCPG Enterprise PL/I for z/OS

Compile, prelink and link-edit an Enterprise
PL/I for z/OS program

IBMZCPL Enterprise PL/I for z/OS

Compile, prelink, link-edit and run an
Enterprise PL/I for z/OS program

IBMZCPLG Enterprise PL/I for z/OS

Compile a PL/I program IEL1C PL/I for MVS & VM Programming Guide

Compile, load, and run a PL/I program IEL1CG PL/I for MVS & VM Programming Guide

Compile and link-edit a PL/I program IEL1CL PL/I for MVS & VM Programming Guide

Compile, link-edit, and run a PL/I program IEL1CLG PL/I for MVS & VM Programming Guide

The following sections provide more details about, and example invocations of, the language-independent
cataloged procedures CEEWG, CEEWL, CEEWLG, CEEXR, CEEXL and CEEXLR.

CEEWG — Load and run a Language Environment conforming non XPLINK
program

The CEEWG cataloged procedure that is shown in Figure 36 on page 90 includes the GO step, which
loads an object module produced by the compiler and executes the load module.

The following DD statement, indicating the location of the object module, must be supplied in the input
stream to the GO step:

//GO.SYSIN DD * (or appropriate parameters)

The data set SCEELKED must be included in your link-edit SYSLIB concatenation. This is the name of the
Language Environment resident library. (The high-level qualifier of this resident library might have been
changed at your installation.)

The data set SCEERUN must be included in the STEPLIB DD statement for the GO step. (The name of this
load library might have been changed at your installation.)

If the application refers to any data sets in the execution step (such as user-defined files or SYSIN), DD
statements that define these data sets must be provided.

IBM-supplied cataloged procedures

Chapter 8. Using IBM-supplied cataloged procedures 89

//CEEWG PROC LIBPRFX='CEE'
//GO EXEC PGM=LOADER,REGION=2048K
//SYSLIB DD DSNAME=&LIBPRFX..SCEELKED,DISP=SHR
//SYSLOUT DD SYSOUT=*
//SYSLIN DD DDNAME=SYSIN
//STEPLIB DD DSNAME=&LIBPRFX..SCEERUN,DISP=SHR
//SYSPRINT DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*

Figure 36. Cataloged procedure CEEWG, which loads and runs a program written in any Language
Environment-conforming HLL

Note: CEEWG does not work for program objects with deferred load classes, such as executables that are
produced by COBOL V5 and V6.

CEEWL — Link a Language Environment conforming non XPLINK program
The CEEWL cataloged procedure shown in Figure 37 on page 90 includes the LKED step that invokes the
binder (symbolic name HEWL) to link edit an object module.

The following DD statement, indicating the location of the object module, must be supplied in the input
stream:

//LKED.SYSIN DD * (or appropriate parameters)

The data set SCEELKED must be included in your link-edit SYSLIB concatenation. This is the name of the
Language Environment link-edit library. (The high-level qualifier of this link-edit library might have been
changed at your installation.)

//CEEWL PROC LIBPRFX='CEE',
// PGMLIB='&&GOSET',GOPGM=GO
//LKED EXEC PGM=HEWL,REGION=1024K
//SYSLIB DD DSNAME=&LIBPRFX..SCEELKED,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DDNAME=SYSIN
//SYSLMOD DD DSNAME=&PGMLIB(&GOPGM),
// SPACE=(TRK,(10,10,1)),
// UNIT=SYSDA,DISP=(MOD,PASS)
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))

Figure 37. Cataloged procedure CEEWL, which link-edits a program written in any Language Environment-
conforming HLL

CEEWLG — Link and run a Language Environment conforming non-XPLINK
program

The CEEWLG cataloged procedure in Figure 38 on page 91 includes the LKED step, which invokes
the binder (symbolic name HEWL) to link-edit an object module, and the GO step, which executes the
executable program produced in the first step.

The following DD statement, indicating the location of the object module, must be supplied in the input
stream:

//LKED.SYSIN DD * (or appropriate parameters)

The data set SCEELKED must be included in your link-edit SYSLIB concatenation. This is the name of the
Language Environment link-edit library. (The high-level qualifier of this link-edit library might have been
changed at your installation.)

IBM-supplied cataloged procedures

90 z/OS: z/OS Language Environment Programming Guide

The data set SCEERUN must be included in the STEPLIB DD statement for the GO step. (The name of this
load library might have been changed at your installation.)

If the application refers to any data sets in the execution step (such as user-defined files or SYSIN), you
must also provide DD statements that define these data sets.

//CEEWLG PROC LIBPRFX='CEE',GOPGM=GO
//LKED EXEC PGM=HEWL,REGION=1024K
//SYSLIB DD DSNAME=&LIBPRFX..SCEELKED,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DDNAME=SYSIN
//SYSLMOD DD DSNAME=&&GOSET(&GOPGM),SPACE=(TRK,(10,10,1)),
// UNIT=SYSDA,DISP=(MOD,PASS)
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//GO EXEC PGM=*.LKED.SYSLMOD,COND=(4,LT,LKED),REGION=2048K
//STEPLIB DD DSNAME=&LIBPRFX..SCEERUN,DISP=SHR
//SYSPRINT DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*

Figure 38. Cataloged procedure CEEWLG, which link-edits and runs a program written in any Language
Environment-conforming HLL

CEEXR — Load and run a Language Environment conforming XPLINK
program

The CEEXR cataloged procedure shown in Figure 39 on page 91 includes the GO step, which loads and
executes an XPLINK program module specified on input parameters to the procedure.

The data sets SCEERUN and SCEERUN2 must be included in the STEPLIB DD statement for the GO step.
(The high-level qualifier of these load libraries might have been changed at your installation.)

If the application refers to any data sets in the execution step (such as user-defined files), DD statements
that define these data sets must be provided.

//CEEXR PROC PGMLIB=, < INPUT STEPLIB ... REQUIRED
// GOPGM=, < INPUT PROGRAM ... REQUIRED
// LIBPRFX='CEE', < PREFIX FOR LIBRARY DSN
// GREGSIZ='2048K', < EXECUTION REGION SIZE
// GPARMS='XPLINK(ON),TERMTHDACT(UADUMP)/' < RUN-TIME OPTS
//GO EXEC PGM=&GOPGM,REGION=&GREGSIZ,
// PARM='&GPARMS'
//STEPLIB DD DSNAME=&LIBPRFX..SCEERUN,DISP=SHR
// DD DSNAME=&LIBPRFX..SCEERUN2,DISP=SHR
// DD DSNAME=&PGMLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*

Figure 39. Cataloged procedure CEEXR, which loads and runs a program-compiled XPLINK

CEEXL — Link-edit a Language Environment conforming XPLINK program
The CEEXL cataloged procedure shown in Figure 40 on page 92 includes the LKED step that invokes
the Binder (symbolic name IEWL) to link-edit an object module specified on input parameters to the
procedure.

Any sidedecks that are needed to resolve references in this object module to DLLs must be specified on a
SYSIMP DD statement.

The data set SCEEBIND must be included in your link-edit SYSLIB concatenation. This is the name of the
Language Environment link-edit library for XPLINK applications. (The high-level qualifier of this link-edit
library might have been changed at your installation.)

IBM-supplied cataloged procedures

Chapter 8. Using IBM-supplied cataloged procedures 91

//CEEXL PROC INFILE=, < INPUT ... REQUIRED
// LIBPRFX='CEE', < PREFIX FOR LIBRARY DSN
// LREGSIZ='20M', < BINDER REGION SIZE
// LPARMS='MAP,LIST=NOIMP', < ADDITIONAL BINDER PARMS
// OUTFILE='&&GSET(GO),DISP=(NEW,PASS),UNIT=SYSALLDA,SPACE=(TRK,(7,7,
// 1)),DSNTYPE=LIBRARY'
//LKED EXEC PGM=IEWL,REGION=&LREGSIZ,
// PARM='AMODE=31,RENT,DYNAM=DLL,CASE=MIXED,&LPARMS'
//SYSLIB DD DSNAME=&LIBPRFX..SCEEBIND,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSNAME=&INFILE,DISP=SHR
// DD DSNAME=&LIBPRFX..SCEELIB(CELHS003),DISP=SHR
// DD DSNAME=&LIBPRFX..SCEELIB(CELHS001),DISP=SHR
// DD DDNAME=SYSIN
//SYSLMOD DD DSNAME=&OUTFILE
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(TRK,(10,10))
//SYSDEFSD DD DUMMY
//SYSIN DD DUMMY

Figure 40. Cataloged procedure CEEXL, which link-edits a program-compiled XPLINK

CEEXLR — Link and run a Language Environment conforming XPLINK
program

The CEEXLR cataloged procedure shown in Figure 41 on page 93 includes the LKED step, which invokes
the Binder (symbolic name IEWL) to link-edit an object module, and the GO step, which executes the
program module produced in the first step.

Any sidedecks that are needed to resolve references in this object module to DLLs must be specified on a
SYSIMP DD statement.

The data set SCEEBIND must be included in your link-edit SYSLIB concatenation. This is the name of the
Language Environment link-edit library for XPLINK applications. (The high-level qualifier of this link-edit
library might have been changed at your installation.)

The data sets SCEERUN and SCEERUN2 must be included in the STEPLIB DD statement for the GO step.
(The high-level qualifier of these load libraries might have been changed at your installation.)

If the application refers to any data sets in the execution step (such as user-defined files or SYSIN), DD
statements that define these data sets must be provided.

IBM-supplied cataloged procedures

92 z/OS: z/OS Language Environment Programming Guide

//CEEXLR PROC INFILE=, < INPUT ... REQUIRED
// LIBPRFX='CEE', < PREFIX FOR LIBRARY DSN
// LREGSIZ='20M', < BINDER REGION SIZE
// LPARMS='MAP,LIST=NOIMP', < ADDITIONAL BINDER PARMS
// GREGSIZ='2048K', < EXECUTION REGION SIZE
// GPARMS='XPLINK(ON),TERMTHDACT(UADUMP)/', < RUN-TIME OPTS
// OUTFILE='&&GSET(GO),DISP=(NEW,PASS),UNIT=SYSALLDA,SPACE=(TRK,(7,7,
// 1)),DSNTYPE=LIBRARY'
//LKED EXEC PGM=IEWL,REGION=&LREGSIZ,
// PARM='AMODE=31,RENT,DYNAM=DLL,CASE=MIXED,&LPARMS'
//SYSLIB DD DSNAME=&LIBPRFX..SCEEBIND,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSNAME=&INFILE,DISP=SHR
// DD DSNAME=&LIBPRFX..SCEELIB(CELHS003),DISP=SHR
// DD DSNAME=&LIBPRFX..SCEELIB(CELHS001),DISP=SHR
// DD DDNAME=SYSIN
//SYSLMOD DD DSNAME=&OUTFILE
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(TRK,(10,10))
//SYSDEFSD DD DUMMY
//GO EXEC PGM=*.LKED.SYSLMOD,COND=(4,LT,LKED),REGION=&GREGSIZ,
// PARM='&GPARMS'
//STEPLIB DD DSNAME=&LIBPRFX..SCEERUN,DISP=SHR
// DD DSNAME=&LIBPRFX..SCEERUN2,DISP=SHR
//SYSPRINT DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSIN DD DUMMY

Figure 41. Cataloged procedure CEEXLR, which link-edits and runs a program-compiled XPLINK

AFHWL — Link a program written in Fortran
The AFHWL cataloged procedure shown in Figure 42 on page 93 includes the LKED step, which invokes
the binder (symbolic name HEWL) to link-edit an object module. The procedure can be used to link-edit
applications containing Fortran or assembler routines having names that conflict with existing C library
routines, as discussed in “Resolving library module name conflicts between Fortran and C” on page 13.

The following DD statement, indicating the location of the object module, must be supplied in the input
stream:

//LKED.SYSIN DD * (or appropriate parameters)

The data sets SAFHFORT and SCEELKED must both be included in your link-edit SYSLIB concatenation (in
that order). SAFHFORT is the name of the Fortran-specific link-edit library and is used to resolve certain
Fortran intrinsic function names. SCEELKED is the name of the Language Environment link-edit library.
(The high-level qualifier of this link-edit library might have been changed at your installation.)

//AFHWL PROC LIBPRFX='CEE',
 PGMLIB='&&GOSET',GOPGM=GO
//LKED EXEC PGM=HEWL,REGION=1024K
//SYSLIB DD DSNAME=&LIBPRFX..SAFHFORT,DISP=SHR
// DD DSNAME=&LIBPRFX..SCEELKED,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DDNAME=SYSIN
//SYSLMOD DD DSNAME=&PGMLIB(&GOPGM),
// SPACE=(TRK,(10,10,1)),
// UNIT=SYSDA,DISP=(MOD,PASS)
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))

Figure 42. Using AFHWL to link a program written in Fortran

AFHWLG — Link and run a program written in Fortran
The AFHWLG cataloged procedure shown in Figure 43 on page 94 includes the LKED step, which
invokes the binder (symbolic name HEWL) to link-edit an object module, and the GO step, which executes

IBM-supplied cataloged procedures

Chapter 8. Using IBM-supplied cataloged procedures 93

the executable program produced in the first step. The procedure can be used to link-edit and run
applications containing Fortran or assembler routines having names that conflict with existing C library
routines, as discussed in “Resolving library module name conflicts between Fortran and C” on page 13.

The following DD statement, indicating the location of the object module, must be supplied in the input
stream:

//LKED.SYSIN DD * (or appropriate parameters)

The data sets SAFHFORT and SCEELKED must both be included in your link-edit SYSLIB concatenation (in
that order). SAFHFORT is the name of the Fortran-specific link-edit library and is used to resolve certain
Fortran intrinsic function names. SCEELKED is the name of the Language Environment link-edit library.
(The high-level qualifier of this link-edit library might have been changed at your installation.)

The data set SCEERUN must also be included in the STEPLIB DD statement for the GO step. (The name of
the load library might have been changed at your installation.)

If the application refers to any data sets in the execution step (such as user-defined files or SYSIN), you
must also provide DD statements that define these data sets.

//AFHWLG PROC LIBPRFX='CEE'
//LKED EXEC PGM=HEWL,REGION=1024K
//SYSLIB DD DSNAME=&LIBPRFX..SAFHFORT,DISP=SHR
// DD DSNAME=&LIBPRFX..SCEELKED,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DDNAME=SYSIN
//SYSLMOD DD DSNAME=&&GOSET(GO),
// SPACE=(TRK,(10,10,1)),
// UNIT=SYSDA,DISP=(MOD,PASS)
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//GO EXEC PGM=*.LKED.SYSLMOD,COND=(4,LT,LKED),REGION=2048K
//STEPLIB DD DSNAME=&LIBPRFX..SCEERUN,DISP=SHR
//SYSPRINT DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*

Figure 43. Procedure AFHWLG, used to link and run a program written in Fortran

AFHWN — Resolving name conflicts between C and Fortran
The AFHWN cataloged procedure shown in Figure 44 on page 95 includes the LKED step, which invokes
the binder (symbolic name HEWL) to link-edit an object module.

The following DD statement, indicating the location of the object module, must be supplied in the input
stream:

//LKED.SYSIN DD * (or appropriate parameters)

The contents of the SYSIN data set must include the CHANGE statements in member AFHWNCH in
SCEESAMP and the object module itself. See “Resolving library module name conflicts between Fortran
and C” on page 13 for further details.

The data sets SAFHFORT and SCEELKED must both be included in your link-edit SYSLIB concatenation (in
that order). SAFHFORT is the name of the Fortran-specific link-edit library and is used to resolve certain
Fortran intrinsic function names. SCEELKED is the name of the Language Environment link-edit library.
The high-level qualifier of this link-edit library might have been changed at your installation. Figure 44 on
page 95 shows the LKED in AFHWN.

IBM-supplied cataloged procedures

94 z/OS: z/OS Language Environment Programming Guide

//AFHWN PROC LIBPRFX='CEE',
 PGMLIB='&&GOSET',GOPGM=GO
//LKED EXEC PGM=HEWL,REGION=1024K,PARM='NCAL,LET'
//SYSLIB DD DSNAME=&LIBPRFX..SAFHFORT,DISP=SHR
// DD DSNAME=&LIBPRFX..SCEELKED,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SCEESAMP DD DSNAME=&LIBPRFX..SCEESAMP,DISP=SHR
//SYSLIN DD DDNAME=SYSIN
//SYSLMOD DD DSNAME=&PGMLIB(&GOPGM),
// SPACE=(TRK,(10,10,1)),
// UNIT=SYSDA,DISP=(MOD,PASS)
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))

Figure 44. Cataloged procedure AFHWN, used in resolving name conflicts

Modifying cataloged procedures
You can modify the statements of a cataloged procedure for the duration of the job step in which it
is invoked, either by overriding one or more parameters in the EXEC or DD statements or by adding
DD statements to the procedure. Any parameter in a cataloged procedure, except the PGM=progname
parameter in the EXEC statement, can be overridden. Parameters or statements not specified in the
procedure can also be added. When a cataloged procedure is overridden or added to, the changes apply
only during one execution. The changes do not affect the master copy of the cataloged procedure stored
in the procedure library.

The following sections discuss overriding and adding to EXEC and DD statements, respectively. For
complete details, see z/OS MVS JCL Reference.

Overriding and adding to EXEC statements
A parameter with a qualified name (qualified by the procedure step in which it is specified) applies only to
the EXEC statement in which it is specified. If a parameter of an EXEC statement that invokes a cataloged
procedure has an unqualified name, the parameter applies to all the EXEC statements in the cataloged
procedure. For example, REGION=2048 specifies a region size of 2048 for all of the EXEC statements in a
given procedure, whereas REGION.GO=2048 applies to only the GO step of the procedure.

If you want to modify a multiple step procedure, you can do so by specifying parameters with qualified
names on a step-by-step basis. If you want to modify the entire procedure, specify the name of the
parameter in an EXEC statement without qualifying it. The modifications override existing parameters in
the cataloged procedure.

Overriding and adding DD statements
You can override or add a DD statement by specifying a DD statement whose name is composed of the
ddname of the DD statement being overridden, preceded by the procedure stepname that qualifies that
ddname:

//procstep.ddname DD (appropriate parms)

You must observe the following when overriding or adding a DD statement within a step in a procedure:

• Overriding DD statements must be in the same order in the input stream as they are in the cataloged
procedure.

• DD statements to be added must follow overriding DD statements.

Additionally, you should be aware of the following when overriding a DD statement:

• To nullify a keyword parameter (except the DCB and AMP parameters), write the keyword and an equal
sign followed by a comma in the overriding DD statement. For example, to nullify the use of the UNIT
parameter, specify UNIT=, in the overriding DD statement.

IBM-supplied cataloged procedures

Chapter 8. Using IBM-supplied cataloged procedures 95

• You can nullify a parameter by specifying a mutually exclusive parameter. For example, you can nullify
the SPACE parameter by specifying the mutually exclusive SPLIT parameter in the overriding DD
statement.

• There is no order of precedence for the parameters. Their placement (order of execution) does not
matter.

• To override DD statements in a concatenation of data sets, you must provide one DD statement for each
data set in the concatenation. Only the first DD statement in the concatenation should be named. If the
DD statement you want to change or add follows one or more DD statements that will be unchanged,
code one DD statement with blank operand for each unchanged DD statement ahead of the first DD
statement that you want to change or add.

For example, to add your load module data set, MY.LIB, to the runtime STEPLIB in a Language
Environment cataloged procedure containing one data set whose DD statement you do not want to
change, code:

//GO.STEPLIB DD
// DD DSN=MY.LIB,DISP=SHR

This causes your load module data set to be searched after the data set named in the STEPLIB DD
statement in the cataloged procedure.

To have another data set searched before any data sets already in the cataloged procedure, you
must specify all the data sets in your overriding DD statements. For example, to have CEE.SIBMMATH
searched before CEE.SCEELKED (assuming it is a non-XPLINK application), code:

//LKED.SYSLIB DD DSN=CEE.SIBMMATH,DISP=SHR
// DD DSN=CEE.SCEELKED,DISP=SHR

This causes the PL/I versions of the math routines to be link-edited into your load module rather than
the identically named SCEELKED math routines.

• If the DDNAME=ddname parameter is specified in a cataloged procedure, it cannot be overridden;
rather, it can refer to a DD statement supplied at the time of execution.

The example in Figure 45 on page 96 shows how to override parameters in a cataloged procedure by:

• Changing the library prefix for the SCEELKED link library to SYS1
• Increasing the region for linking and running the application
• Passing the RPTSTG and RPTOPTS options to the load module when it is executed in the GO step of the

procedure
• Specifying PROGRAM1 in USER.OBJLIB as the input object module to the binder

//CEEWLG JOB
//*
//LINKGO EXEC CEEWLG,
// LIBPRFX='SYS1',
// REGION=2048K,
// PARM.GO='RPTSTG(ON) RPTOPTS(ON)/'
//*
//LKED.SYSIN DD DSN=USER.OBJLIB(PROGRAM1),DISP=SHR
//*

Figure 45. Overriding parameters in the CEEWLG cataloged procedure

Overriding generic link-edit procedures for constructed reentrant programs
To use generic link-edit procedures (as described in “Step names in cataloged procedures” on page 85),
both the EXEC statement parameters and DD statements may need to be overridden.

The following are some examples of how to invoke the CEEWL PROC.

IBM-supplied cataloged procedures

96 z/OS: z/OS Language Environment Programming Guide

1. Creating a C executable which may be constructed reentrant:

• Parameter COMPAT(CURRENT) assures the highest level of program object will be produced.
• SCEELKEX allows direct resolution of C/C++ language function names.
• DSNTYPE=LIBRARY assures that the output data set will be a PDSE (rather than a PDS). STORCLAS

may also have to be specified for a new SMS managed data set.
• Object module USER.OBJ(PROGRAM1) is input.

//CEEWL JOB
//*
//SETLIB SET LIBPRFX=CEE
//SETUSER SET USER=USER1
//*
//LINK EXEC CEEWL,
// LIBPRFX=&LIBPRFX.,
// PARM.LKED='COMPAT(CURRENT)'
//LKED.SYSLIB DD DSN=&LIBPRFX..SCEELKEX,DISP=SHR
// DD DSN=&LIBPRFX..SCEELKED,DISP=SHR
//LKED.SYSLMOD DD DSNTYPE=LIBRARY
//*
//LKED.SYSIN DD DSN=&USER.OBJ(PROGRAM1),DISP=SHR
//*

2. Create a C DLL, which can also be used as an autocall library. In addition to the previous example:

• DYNAM(DLL) causes the import and export information to be created and stored in the executable.
• ALIASES(ALL) causes hidden aliases to be created for all external functions and variables, for

subsequent use as an autocall library.
• Program object USER.LOADLIB(CDLL) is output.
• Definition sidedeck USER.EXP(CDLL) is output (it contains IMPORT statements for all exported

symbols).

//CEEWL JOB
//*
//SETLIB SET LIBPRFX=CEE
//SETUSER SET USER=USER1
 //*
 //LINK EXEC CEEWL,
 // PARM.LKED='COMPAT(CURR),DYNAM(DLL),ALIASES(ALL)'
 //LKED.SYSLIB DD DSN=&LIBPRFX..SCEELKEX,DISP=SHR
 // DD DSN=&LIBPRFX..SCEELKED,DISP=SHR
 //LKED.SYSLMOD DD DSN=&USER.LOADLIB(CDLL),DISP=SHR,
 // DSNTYPE=LIBRARY
 //LKED.SYSDEFSD DD DSN=&USER.EXP(CDLL),DISP=SHR
 //*
 //LKED.SYSIN DD DSN=&USER.OBJ(PROGRAM1),DISP=SHR
 //*

IBM-supplied cataloged procedures

Chapter 8. Using IBM-supplied cataloged procedures 97

IBM-supplied cataloged procedures

98 z/OS: z/OS Language Environment Programming Guide

Chapter 9. Using runtime options

This topic describes Language Environment runtime option specification methods and runtime
compatibility considerations.

Language Environment provides a set of IBM-supplied default runtime options that control certain
aspects of program processing. A system programmer can modify the IBM-supplied defaults on a system
level or region level basis to suit most applications at their site. An application programmer can further
refine these options for individual programs. When an application runs, runtime options are merged in a
specific order of precedence to determine the actual values in effect. For more information, see “Order of
precedence” on page 101.

For syntax and detailed information about individual runtime options, including how Language
Environment runtime options map to specific HLL options, see z/OS Language Environment Programming
Reference.

Methods available for specifying runtime options
Language Environment runtime options can be specified in the following ways:

As system-level defaults
Runtime options can be established as system-level defaults through a member in the system
parmlib. The format of the parmlib member name is CEEPRMxx. The member is identified during
IPL by a CEE=xx statement, either in the IEASYSyy data set or in the IPL PARMS. After IPL, the active
parmlib member can be changed with a SET CEE=xx command. Individual options can be changed
with a SETCEE command.

For more information about specifying system-level default options, see z/OS MVS Initialization
and Tuning Reference and Creating system-level option defaults with CEEPRMxx in z/OS Language
Environment Customization.

As region-level defaults
The CEEXOPT macro can be used to create a CEEROPT load module to establish defaults for a
particular region. CEEROPT is optional, but if it is used, code just the runtime options to be changed.
Runtime options that are omitted from CEEROPT will remain the same as the system-level defaults (if
present) or IBM-supplied defaults. The CEEROPT module resides in a user-specified load library.

For more information about specifying region-level defaults, see Creating region-level runtime option
defaults with CEEXOPT in z/OS Language Environment Customization.

In the CLER CICS transaction
The CICS transaction CLER allows you to display all the current Language Environment runtime
options for a region, and to also to modify a subset of these options.

The following runtime options can be modified with the CLER transaction:

• ALL31(ON|OFF)
• CBLPSHPOP(ON|OFF)
• CHECK(ON|OFF)
• HEAPZONES(0-1024,QUIET|MSG|TRACE|ABEND)
• INFOMSGFILTER(ON|OFF)
• RPTOPTS(ON|OFF)
• RPTSTG(ON|OFF)
• TERMTHDACT(QUIET|MSG|TRACE|DUMP|UAONLY|UATRACE| UADUMP|UAIMM)
• TRAP(ON|OFF)

Using runtime options

© Copyright IBM Corp. 1991, 2022 99

Setting RPTOPTS(ON) or RPTSTG(ON) in a production environment can significantly degrade
performance. Also, if ALL31(OFF) is set in a production environment, the stack location will be set
to BELOW the 16 MB line, which could cause the CICS region to abend due to lack of storage.

The LAST WHERE SET column of the Language Environment runtime options report contains CICS
CLER Trans for those options that were set by CLER.

Note: CICS TS 3.1 and later supports XPLINK programs in a CICS environment. The CLER transaction
does not affect the runtime options for these programs.

As application defaults
The CEEUOPT assembler language source program sets application defaults using the CEEXOPT
macro. The CEEUOPT source program can be edited and assembled to create an object module,
CEEUOPT. The CEEUOPT object module must be linked with an application to establish application
defaults.

In the assembler user exit
See “CEEBXITA assembler user exit interface” on page 376 for information about how to specify a list
of runtime options in the assembler user exit.

For IMS, the UPDATE LE command can be used with the IMS-supplied CEEBXITA exit, DFSBXITA, to
allow dynamic overrides for runtime options. For more information about the UPDATE LE command
and the IMS-supplied CEEBXITA exit, DFSBXITA, see the IBM Documentation at IMS in IBM
Documentation (www.ibm.com/docs/en/ims).

In the storage tuning user exit
The storage tuning user exit can be used to set the Language Environment storage options STACK,
LIBSTACK, HEAP, ANYHEAP, and BELOWHEAP. For more information about the storage tuning user
exit, see Storage tuning user exit in z/OS Language Environment Customization.

Note: Vendor Heap Manager activity is not handled by the Language Environment storage tuning user
exit.

In TSO/E commands, on application invocation
You can specify runtime options as options on the CALL command. See “Running your application
under TSO/E” on page 76 for more information.

In the _CEE_RUNOPTS environment variable
If you run C applications that are invoked by one of the exec family of functions, you can use the
environment variable _CEE_RUNOPTS to specify invocation Language Environment runtime options.
For more information about _CEE_RUNOPTS, see _CEE_RUNOPTS in z/OS XL C/C++ Programming
Guide in z/OS XL C/C++ Programming Guide.

As JCL

You can specify runtime options in the PARM parameter of the JCL EXEC statement or as a DD card
named CEEOPTS. See “Specifying runtime options in the EXEC statement” on page 56 and “Specifying
runtime options with the CEEOPTS DD card” on page 56 for details.

In your source code:
C and C++

C provides the #pragma runopts directive, with which you can specify runtime options in your
source code.

You must specify #pragma runopts in the source file that contains your main function, before
the first C statement. Only comments and other pragma can precede #pragma runopts.

Specify #pragma runopts as follows:

#pragma runopts (

,

option)

Using runtime options

100 z/OS: z/OS Language Environment Programming Guide

https://www.ibm.com/docs/en/ims
https://www.ibm.com/docs/en/ims

where option is a Language Environment runtime option.

For more information about using C/C++ pragma, see #pragma runopts in z/OS XL C/C++
Language Reference.

PL/I
Runtime options can be specified in a PL/I source application with the following declaration:

DCL PLIXOPT CHAR(length) VAR INIT('string')
 STATIC EXTERNAL;

where string is a list of options separated by commas or blanks, and length is a constant equal to
or greater than the length of string. Runtime options in PLIXOPT are parsed by the compiler. For
Enterprise PL/I for z/OS and PL/I for MVS & VM, the compilers produce the CEEUOPT CSECT for
the PLIXOPT string.

If more than one external procedure in a job declares PLIXOPT as STATIC EXTERNAL, only the first
link-edited string is available at run time.

If the PLIXOPT string is specified in an OS PL/I main procedure, the options in the string are
processed as if specified in the CEEUOPT CSECT. However, mixing a user-provided CEEUOPT with
PLIXOPT is not recommended.

Options specified in the PARM parameter override those specified in the PLIXOPT string.

Order of precedence
It is possible for all the methods listed in “Methods available for specifying runtime options” on page
99 to be used for a given application. The order of precedence (from highest to lowest) between option
specification methods is:

1. Storage-related options which are set in the storage tuning user exit.
2. Options specified by the assembler user exit (CEEBXITA).
3. Options specified on invocation of the application:

• Batch: PARM=prog args/rto (COBOL) or PARM=rto/prog args (non-COBOL).
• TSO: progname prog args/rto (COBOL) or progname rto/prog args (non-COBOL).
• z/OS UNIX: Set _CEE_RUNOPTS environment variable. For more information, see Passing

environment variables to BPXBATCH in z/OS UNIX System Services User's Guide.
• CEEPIPI: Specified on INIT_SUB, INIT_SUB_DP, or CALL_MAIN. See Chapter 30, “Using

preinitialization services,” on page 427 for more information.
• CICS: Runtime options cannot be specified at transaction invocation.

4. Options specified at invocation time through a DD card (DD:CEEOPTS). The CEEOPTS DD is ignored
under CICS, SPC, and for programs invoked using one of the exec() family of functions.

5. Options specified in a CEEUOPT CSECT. There are a few methods available to provide a CEEUOPT
CSECT:

• Assemble a CEEUOPT. For more information, see “Creating application-specific runtime option
defaults with CEEXOPT” on page 103.

• Specify the PL/I PLIXOPT declaration within a source program. The compiler generates the
CEEUOPT CSECT from the given options.

• Specify the C/C++ #pragma runopts() directive within a source program. The compiler generates
the CEEUOPT CSECT from the given options.

If you select PLIXOPT or #pragma runopts(), specify it in one and only one compile unit in the
application; for example, in the main routine. If multiple CEEUOPTs are present, binder input ordering
determines which CEEUOPT is used in an executable program. Only the first CEEUOPT CSECT linked
in an executable program is applied. The binder treats any subsequent CEEUOPTs seen in the input
as duplicates and they will be ignored.

Using runtime options

Chapter 9. Using runtime options 101

6. Region-level default options defined within CEEROPT.
7. System-level default options changed after IPL with a SETCEE command.
8. System-level default options changed after IPL with a SET CEE command.
9. System-level default options set in a CEEPRMxx parmlib member and identified during IPL by a

CEE=xx statement. This statement can be specified either in the IEASYSyy data set or in the IPL
parameters.

10. IBM-supplied defaults.

When the non-overrideable (NONOVR) attribute is specified for a runtime option, all methods of
specifying that runtime option with higher precedence are ignored.

Order of precedence examples
Example 1 (non-CICS):

IBM-supplied default STORAGE=((NONE,NONE,NONE,0K),OVR)
CEEPRMxx used at IPL STORAGE=((00,NONE,NONE,0K),OVR)
CEEUOPT STORAGE=(,,00,0K)

Used at runtime STORAGE(00,NONE,00,0K)

Example 2 (CICS):

IBM-supplied default STORAGE=((NONE,NONE,NONE,0K),OVR)
CEEROPT STORAGE=((C1,NONE,NONE,0K),OVR)
CEEUOPT STORAGE=(C2)

Used at runtime STORAGE(C2,NONE,NONE,0K)

Specifying suboptions in runtime options
Use commas to separate suboptions of runtime options. If you do not specify a suboption, you must still
specify the comma to indicate its omission, for example STACK(,,ANYWHERE,FREE). However, trailing
commas are not required; STACK(4K,4K,ANYWHERE) is valid. If you do not specify any suboptions,
either of the following is valid: STACK or STACK().

Specifying runtime options and program arguments
To distinguish runtime options from program arguments that are passed to Language Environment,
the options and program arguments are separated by a slash (/). For more information about program
arguments, see “Argument lists and parameter lists” on page 111.

Runtime options usually precede program arguments whenever they are specified in JCL or on application
invocation. The possible combinations are described in Table 16 on page 102. You can override this
format to ensure compatibility with COBOL applications. See “COBOL compatibility considerations” on
page 107 for more information.

Table 16. Formats for specifying runtime options and program arguments

When the following situations are present: Format

Only runtime options are present Runtime options/

Only program arguments are present

1. If a slash is present in the arguments, a preceding slash
is mandatory.

2. If a slash is not present in the arguments, a preceding
slash is optional.

One of the following:

1. /program arguments
2. program arguments

or

/program arguments

Using runtime options

102 z/OS: z/OS Language Environment Programming Guide

Table 16. Formats for specifying runtime options and program arguments (continued)

When the following situations are present: Format

Both runtime options and program arguments are present Runtime options/program arguments

Use the callable service CEE3PRM and CEE3PR2 to retrieve program arguments.

Restriction: Program arguments cannot be passed either by a CEEPRMxx parmlib member or by a
CEEOPTS DD statement.

In the following example, an object module called MYPROG is created and run using the cataloged
procedure CEEWLG. The code in the example overrides the Language Environment defaults for the
RPTOPTS and MSGFILE runtime options.

//CEEWLG JOB
//*
//LINKGO EXEC CEEWLG,
// PARM.GO='RPTOPTS(ON),MSGFILE(OPTRPRT)/'
//*
//LKED.SYSIN DD DSN='userid.MYLIB.OBJLIB(MYPROG)',...DISP=SHR
//GO.OPTRPRT DD SYSOUT=A
//*

Creating application-specific runtime option defaults with
CEEXOPT

You can specify a set of application-specific runtime option defaults with the CEEUOPT assembler
language source program. When the CEEUOPT source program is assembled, the CEEXOPT macro creates
an object module, called CEEUOPT, that can be linked with a program to establish application default
options.

The CEE.SCEESAMP data set contains the IBM-supplied sample for the CEEUOPT source program, as
shown in Figure 46 on page 104. In the CEEUOPT sample, all runtime options are coded with the
IBM-supplied default suboption values. See z/OS Language Environment Programming Reference to select
the values appropriate for your application.

The options and suboptions specified in CEEUOPT override the defaults, unless the system-level or
region-level defaults were set as nonoverridable (NONOVR). Options specified in CEEUOPT cannot be
designated as overridable or nonoverridable.

The CEE.SCEESAMP data set also contains CEEWUOPT, which is the sample job used to assemble the
CEEUOPT source program to create the CEEUOPT object module in a user-specified library. CEEWUOPT
does not use SMP/E to create the CEEUOPT object module, so it can be run several times to create several
different CEEUOPT modules, each in its own user-specified library.

Using runtime options

Chapter 9. Using runtime options 103

CEEUOPT CSECT
CEEUOPT AMODE ANY
CEEUOPT RMODE ANY
 CEEXOPT ABPERC=(NONE), X
 ABTERMENC=(ABEND), X
 AIXBLD=(OFF), X
 ALL31=(ON), X
 ANYHEAP=(16K,8K,ANYWHERE,FREE), X
 BELOWHEAP=(8K,4K,FREE), X
 CBLOPTS=(ON), X
 CBLPSHPOP=(ON), X
 CBLQDA=(OFF), X
 CEEDUMP=(60,SYSOUT=*,FREE=END,SPIN=UNALLOC), X
 CHECK=(ON), X
 COUNTRY=(US), X
 DEBUG=(OFF), X
 DEPTHCONDLMT=(10), X
 DYNDUMP=(*USERID,NODYNAMIC,TDUMP), X
 ENVAR=(''), X
 ERRCOUNT=(0), X
 ERRUNIT=(6), X
 FILEHIST=(ON), X
 FILETAG=(NOAUTOCVT,NOAUTOTAG), X
 HEAP=(32K,32K,ANYWHERE,KEEP,8K,4K), X
 HEAPCHK=(OFF,1,0,0,0,1024,0,1024,0), X
 HEAPPOOLS=(OFF,8,10,32,10,128,10,256,10,1024,10,2048, X
 10,0,10,0,10,0,10,0,10,0,10,0,10), X
 HEAPZONES=(0,ABEND,0,ABEND), X
 INFOMSGFILTER=(OFF,,,,), X
 INQPCOPN=(ON), X
 INTERRUPT=(OFF), X
 LIBSTACK=(4K,4K,FREE), X
 MSGFILE=(SYSOUT,FBA,121,0,NOENQ), X
 MSGQ=(15), X
 NATLANG=(ENU), X
 NOAUTOTASK=, X
 NOTEST=(ALL,*,PROMPT,INSPPREF), X
 NOUSRHDLR=(''), X
 OCSTATUS=(ON), X
 PAGEFRAMESIZE=(4K,4K,4K), X
 PC=(OFF), X
 PLITASKCOUNT=(20), X
 POSIX=(OFF), X
 PROFILE=(OFF,''), X
 PRTUNIT=(6), X
 PUNUNIT=(7), X
 RDRUNIT=(5), X
 RECPAD=(OFF), X
 RPTOPTS=(OFF), X
 RPTSTG=(OFF), X
 RTEREUS=(OFF), X
 SIMVRD=(OFF), X
 STACK=(128K,128K,ANYWHERE,KEEP,512K,128K), X
 STORAGE=(NONE,NONE,NONE,0K), X
 TERMTHDACT=(TRACE,,96), X
 THREADHEAP=(4K,4K,ANYWHERE,KEEP), X
 THREADSTACK=(OFF,4K,4K,ANYWHERE,KEEP,128K,128K), X
 TRACE=(OFF,4K,DUMP,LE=0), X
 TRAP=(ON,SPIE), X
 UPSI=(00000000), X
 VCTRSAVE=(OFF), X
 XPLINK=(OFF), X
 XUFLOW=(AUTO)

END

Figure 46. Sample Invocation of CEEXOPT within CEEUOPT source program

CEEXOPT invocation for CEEUOPT
To invoke CEEXOPT and create the CEEUOPT object module, follow these steps:

1. Copy member CEEUOPT from CEE.SCEESAMP into CEEWUOPT in place of the comment lines following
the SYSIN DD statement.

2. Change the parameters on the CEEXOPT macro statement in CEEUOPT to reflect the values you chose
for this application-specific runtime options module.

Using runtime options

104 z/OS: z/OS Language Environment Programming Guide

3. Code just the options you want to change. Options omitted from CEEUOPT remains the same as the
defaults.

4. Change DSNAME=YOURLIB in the SYSLMOD DD statement to the name of the partitioned data set into
which you want your CEEUOPT module to be link-edited.

Note: If you have a CEEUOPT module in your current data set, it is replaced by the new version.
5. Check the SYSLIB DD statement to ensure that the data set names are correct.

CEEWUOPT should run with a condition code of 0.

CEEXOPT coding guidelines for CEEUOPT
Be aware of the following coding guidelines for the CEEXOPT macro:

• A continuation character (X in the source) must be present in column 72 on each line of the CEEXOPT
invocation except the last line.

• Options and suboptions must be specified in uppercase. Only suboptions that are strings can be
specified in mixed case or lowercase. For example, both MSGFILE=(SYSOUT) and MSGFILE=(sysout)
are acceptable. ALL31=(off) is not acceptable.

• A comma must end each option except for the final option. If the comma is omitted, everything
following the option is treated as a comment.

• If one of the string suboptions contains a special character, such as embedded blank or unmatched
right or left parenthesis, the string must be enclosed in apostrophes (' '), not in quotation marks (" "). A
null string can be specified with either adjacent apostrophes or adjacent quotation marks.

To get a single apostrophe (') or a single ampersand (&) within a string, two instances of the character
must be specified. The pair is counted as only one character in determining if the maximum allowable
string length was exceeded, and in setting the effective length of the string.

• Avoid unmatched apostrophes in any string. The error cannot be captured within CEEXOPT itself;
instead, the assembler produces a message such as:

IEV063 *** ERROR *** NO ENDING APOSTROPHE

which bears no particular relationship to the suboption in which the apostrophe was omitted.
Furthermore, none of the options are properly parsed if this mistake is made.

• Macro instruction operands cannot be longer than 1024 characters. If the number of characters to the
right of the equal sign is greater than 1024 for any keyword parameter in the CEEXOPT invocation, a
return code of 12 is produced for the assembly, and the options are not parsed properly.

• You can completely omit the specification of any runtime option. Options not specified retain the current
default values. There are two other methods available for omitting an option, as follows:

– Specify the option with only a comma following the equal sign, for example:

HEAP=, X

– Specify the option with empty parentheses and a comma following the equal sign, for example:

HEAP=(), X

In either case, the continuation character (X in this example) must still be present in column 72.
• You can completely omit any suboption of those runtime options which are included. Default values are

then supplied for each of the missing suboptions in the options control block that is generated, and
these values are ignored at the time Language Environment merges the options. You can use commas
to indicate the omission of one or more suboptions for options having more than one suboption. For

Using runtime options

Chapter 9. Using runtime options 105

example, if you want to specify only the second suboption of the STORAGE option, the omission of the
1st, 3rd, and 4th suboptions can be indicated in any of the following ways:

STORAGE=(,NONE), X
STORAGE=(,NONE,), X
STORAGE=(,NONE,,), X

Because suboptions are positional parameters, do not omit the comma if the corresponding suboption
is omitted and another suboption follows.

• Options that permit only one suboption do not need to enclose that suboption in parentheses. For
example, the COUNTRY option can be specified in either of the following ways:

COUNTRY=(US), X
COUNTRY=US, X

Performance considerations
For optimal performance when using CEEUOPT, code only those options that you want to change. This
action enhances performance by minimizing the number of options lines that Language Environment must
scan. Options and suboptions that are to remain the same as the defaults do not need to be repeated.
For example, if the only change you want to make is to define STACK with an initial value of 64K and an
increment of 64K, include only that runtime option, as shown in the following example:

CEEUOPT CSECT
CEEUOPT AMODE ANY
CEEUOPT RMODE ANY
 CEEXOPT STACK=(64K,64K)
 END

Using the CEEOPTS DD statement
Language Environment allows you to provide additional invocation-level runtime options using the
CEEOPTS DD statement. The CEEOPTS DD can refer to an in-stream data set, regular sequential data
set, or a member of a regular or extended partitioned data set. If specified, the data set must be available
during initialization of the enclave so the options can be merged. To specify the CEEOPTS DD statement,
use the following syntax, as appropriate.

Situation Syntax to use

For in-stream JCL
//CEEOPTS DD *
ALL31(OFF),STACK(,,BELOW)

For a sequential data set //CEEOPTS DD DSN=MY.CEEOPTS.DATASET,DISP=SHR

For a partitioned data set //CEEOPTS DD DSN=MY.CEEOPTS.DATASET(MYOPTS),
// DISP=SHR

To ignore the DD statement //CEEOPTS DD DUMMY

Before using the CEEOPTS DD statement, review the following restrictions:

1. The CEEOPTS DD supports only DASD data sets that can be read with QSAM. An informational
message is issued when an unsupported data set type is used.

2. Only the first 3K (excluding comment lines) of the CEEOPTS file are read. All other information is
ignored.

3. The file must be in fixed-block or fixed format. Variable block format is not supported.

Using runtime options

106 z/OS: z/OS Language Environment Programming Guide

4. The CEEOPTS DD is ignored under CICS, SPC, and for an exec()ed program.
5. Language Environment cannot use a CEEOPTS DDNAME dynamically allocated with the XTIOT,

UCB nocapture, or DSAB-above-the-line options specified in the SVC99 parameters (S99TIOEX,
S99ACUCB, S99DSABA flags).

As Figure 47 on page 107 shows, the syntax of the runtime options within the CEEOPTS DD statement is
similar to the syntax used on the JCL PARM= parameter or under TSO.

• Each record in the CEEOPTS DD is concatenated to form one options string. No implicit space is added
between lines.

• Options must be separated by commas or blanks and can span multiple lines.
• A trailing slash (/) is not valid to denote the end of the options string.
• Input lines that begin with an asterisk (*) in column 1 are treated as comments and ignored.
• The last 8 columns of each record are treated as sequential information and ignored.

****** **** TOP OF FILE ***
000001 * This line is a comment
000002 ALL31(OFF),STACK(,,BELOW)
000003 TRAP(ON,
000004 NOSPIE
000005 * This line is a comment within an option
000006),TERMTHDACT(
000007 UAIMM,
000008 CICSDDS,96)
****** *** END OF DATA ***

Figure 47. Example syntax for the CEEOPTS DD statement

The Language Environment runtime options report identifies the options merged from the CEEOPTS DD
source by using DD:CEEOPTS as an indicator.

Runtime compatibility considerations
This topic discusses runtime compatibility considerations for C and C++, COBOL, Fortran, PL/I, and IMS.

C and C++ compatibility considerations
C and C++ provide the #pragma runopts directive for you to specify runtime options in your source
code. When #pragma runopts(execops) is in effect (the default), you can pass runtime options from
the command line. Runtime options must be followed by a slash (/).

If #pragma runopts(noexecops) is specified in the source, you cannot enter runtime options on the
command line. Language Environment interprets the entire string on the command line including runtime
options, if present, as program arguments to the main routine.

See EXECOPS | NOEXECOPS in z/OS Language Environment Programming Reference for a description of
the EXECOPS runtime option.

COBOL compatibility considerations
With OS/VS COBOL and VS COBOL II, you must use the following format when specifying the runtime
options list:

program arguments / runtime options

This format is the opposite of the Language Environment-defined format. To ensure compatibility with
COBOL, Language Environment provides the runtime option CBLOPTS. With it, you can choose if runtime
options or program arguments are expected first in the parameter list. CBLOPTS can only be specified at
the system level, region level, or in a CEEUOPT CSECT. You can specify a slash (/) as part of the program
arguments with CBLOPTS(ON) or CBLOPTS(OFF).

Using runtime options

Chapter 9. Using runtime options 107

CBLOPTS(ON) allows the existing COBOL format of the invocation character string to continue working
(program arguments followed by runtime options). When CBLOPTS(ON) is specified, the last slash in
a string delineates the program arguments from the runtime options. Anything before the last slash is
interpreted as a program argument.

If there are only invalid runtime options, then the entire string is interpreted as a program argument. For
example, if you pass the string 11/16/1967, 1967 is interpreted as an invalid runtime option. Since there
are no other runtime options, the entire string is interpreted as a program argument.

Conversely, when CBLOPTS(OFF) is specified, the first slash delineates the runtime options from the
program arguments. Anything after the first slash is interpreted as a program argument. CBLOPTS is
honored only when a COBOL program is the main routine in the application. For example, if the main
routine is C, Language Environment does not honor CBLOPTS.

For non-CICS, ensure that COBOL transactions are not link-edited with IGZETUN, which is not supported
and which causes an informational message to be logged.

For CICS, ensure that COBOL transactions are not link-edited with IGZEOPT and IGZETUN, which are not
supported and which cause an informational message to be logged.

Logging this message for each application inhibits performance.

Fortran compatibility considerations
Under VS FORTRAN Version 2, a slash (/) is not required after runtime options if only runtime options are
passed. With Language Environment, however, a slash following runtime options is mandatory. Therefore,
you must check your invocation string to ensure the presence of a slash after the runtime options.

There are some differences between Fortran and Language Environment runtime options. While most
of these differences are automatically mapped, some options need to be coded in a different format
under Language Environment. In addition, there are other Fortran runtime options that are not available
under Language Environment. See z/OS Language Environment Programming Reference for the mapping of
Fortran to Language Environment runtime options.

If the runtime options string includes an unrecognized option or suboption, Language Environment prints
an informational message to help you identify the source of the error.

You can use the Fortran ARGSTR subroutine to retrieve any user-supplied program arguments from the
command line. ARGSTR can be used from your Fortran program to identify the program arguments that
were given when the enclave was invoked. For information about using ARGSTR in a Fortran program, see
VS FORTRAN Version 2 Language and Library Reference.

PL/I compatibility considerations
Under OS PL/I, a slash (/) is not required after runtime options if the runtime options are the only ones
passed. With Language Environment, however, a slash is mandatory. Therefore, you must check your
invocation string to ensure the presence of a slash after the runtime options.

If a PL/I main program is compiled with the NOEXECOPS option, runtime options cannot be specified in
the MVS PARM statement. If runtime options are specified, they are passed as program arguments. The
effect of the NOEXECOPS option is described in Appendix D, “Operating system and subsystem parameter
list formats,” on page 505.

IMS compatibility considerations
You cannot pass runtime options as CEETDLI arguments, nor can you alter the settings of runtime options
when invoking IMS facilities. For more information about using the CEETDLI interface, see “Using the
interface between Language Environment and IMS” on page 365.

Using runtime options

108 z/OS: z/OS Language Environment Programming Guide

Part 2. Preparing an application to run with Language
Environment

Running an application is generally the same under Language Environment as in earlier versions of a
language's run time. However, to take advantage of some of the features that a common execution
environment offers, you must consider a number of different things when preparing an application to run
in Language Environment.

When running applications in Language Environment, you must consider the target operating system.
Under batch, TSO/E, CICS, and IMS, the way that parameters are passed differs. To ensure consistency,
Language Environment standardizes the parameters as much as possible. It is therefore important for you
to know what Language Environment does to the format to ensure this consistency. Information about
parameter list formats is in Chapter 10, “Using Language Environment parameter list formats,” on page
111 and Appendix D, “Operating system and subsystem parameter list formats,” on page 505.

In addition to describing parameter list formats, this section describes how to manage return codes and
offers suggestions on how to make your Language Environment-conforming applications reentrant.

© Copyright IBM Corp. 1991, 2022 109

110 z/OS: z/OS Language Environment Programming Guide

Chapter 10. Using Language Environment parameter
list formats

This topic describes how to pass parameters to external routines under Language Environment. The
methods described do not apply to internal routines or to compiled code that invokes its own library
routines. Each Language Environment-conforming HLL might have its own method for transferring control
and passing arguments between internal routines.

When writing a Language Environment-conforming application, it is important to consider how parameters
are passed to the application on invocation. The type of parameter list created by the operating system
and passed to Language Environment when an application is run varies according to the operating system
or subsystem used. Language Environment repackages the various formats so that what is actually
passed to the main routine when it is invoked on most supported operating systems is a halfword prefixed
character string. In C and C++, you can pass arguments to the main routine through argv and argc. If
you set up your C, C++, COBOL, or PL/I main routine according to the rules of the language, you generally
do not need to do anything special to receive parameters from the operating system.

Fortran does not support passing parameters to a main routine.

On operating subsystems such as CICS and IMS, however, the parameter format that is passed might be
different from what your main routine expects. In these cases, you must explicitly code your main routine
to accept the format of the parameters as they are passed by CICS and IMS.

“Preparing your main routine to receive parameters” on page 114 contains examples of how to code your
main routine to receive parameters under any supported operating system or subsystem.

Additionally, some HLLs, such as C, C++, and PL/I, provide options that enable you to specify the format
of the parameter list you expect to be passed to your main routine. For example, C programmers can
specify the PLIST runtime option, which determines the parameter list format. If your HLL provides such
an option, refer to one of the following for information about which settings you should select to run an
application:
TSO/E

Table 19 on page 114
IMS

Table 20 on page 116
CICS

Table 21 on page 116
MVS

Table 22 on page 117

When running most main routines, you do not need to explicitly access the parameter list. Language
Environment provides the CEE3PRM and CEE3PR2 callable service to query and return to your calling
routine the parameter string passed to your main routine when it was invoked. The returned parameter
string contains only program arguments. If no program arguments were specified, a blank string is
returned. For more information about CEE3PRM and CEE3PR2, see CEE3PRM — Query parameter string
and CEE3PR2—Query parameter string long in z/OS Language Environment Programming Reference.

In addition, some HLLs, such as C and C++, provide ways of identifying passed parameters to your main
routine using constructs within the HLL itself. For more information, see “C and C++ parameter passing
considerations” on page 505.

Argument lists and parameter lists
The terminology used to describe passing parameters to and from routines currently differs among
Language Environment-conforming HLLs. Figure 48 on page 112 summarizes the terminology used with
Language Environment. In Figure 48 on page 112, a calling routine passes an argument list to a called

Language Environment parameter list formats

© Copyright IBM Corp. 1991, 2022 111

routine. That same list is referred to as a parameter list when it is received by the called routine. Under
Language Environment, the formats of the argument and parameter lists are identical. The only difference
between the two terms is whether they are being used from the point of view of the calling or the called
routine.

Routine being
called (callee)

caller returns

a value (optionally)

caller receives a

parameter list

caller receives

a value (optionally)

call

Routine that calls
(caller)

caller passes an

argument list

Figure 48. Call terminology refresher

Passing arguments between routines
Language Environment-conforming HLLs use the semantic terms by value and by reference to indicate
how changes in the argument values for a called routine affect the calling routine:
By value

Any changes made to the argument value by the called routine will not alter the original argument that
is passed by the calling routine.

By reference
Changes that are made by the called routine to the argument value can alter the original argument
value that is passed by the calling routine.

Under Language Environment you can pass arguments directly and indirectly as follows:
Direct

The value of the argument is passed directly in the parameter list. You cannot pass an argument by
reference (direct).

Indirect
A pointer to the argument value is passed in the parameter list.

Table 17 on page 112 summarizes the semantic terms by value and by reference and the direct and
indirect methods for passing arguments. The table shows what is passed to routines.

Table 17. Semantic terms and methods for passing arguments in Language Environment

Term By value By reference

Direct The value of the object is passed Not allowed under Language Environment

Indirect A pointer points to the value of an object A pointer points to the object

Figure 49 on page 113 illustrates these argument passing styles. In Figure 49 on page 113, register 1 (R1)
points to the value of an object, or to an argument list containing either a pointer to the value of an object
or a pointer to the object.

Language Environment parameter list formats

112 z/OS: z/OS Language Environment Programming Guide

Object

R1

By Reference (Indirect)

. . .

Pointer

. . .

Value of
an object

Object

R1

By Value (Indirect)

. . .

Pointer

. . .

Object
R1

By Value (Direct)

Value of
an object

Figure 49. Argument passing styles in Language Environment

HLL semantics usually determine when data is passed by value or by reference. Language Environment
supports argument passing styles as shown in Table 18 on page 113.

Table 18. Default passing style per HLL

Language Default argument

C (including XPLINK). See
note 4.

By Value (Direct)

C++ (including XPLINK).
See note 4.

By Value (Direct). See note 1.

COBOL By Reference (Indirect) (COBOL BY REFERENCE). See note 2.

Fortran By Reference (Indirect)

PL/I By Reference (Indirect). See note 3.

Notes:

1. C++ also supports by reference (indirect), if a prototype specifies it with an ampersand (&).
2. Other parameter passing styles that are supported are:

• By value (Indirect) (COBOL BY CONTENT) by (COBOL BY CONTENT) by Enterprise COBOL for z/OS,
COBOL for OS/390 & VM, COBOL for MVS & VM, COBOL/370, and VS COBOL II

• By value (Direct) (COBOL BY VALUE) by Enterprise COBOL for z/OS, COBOL for OS/390 & VM, and
COBOL for MVS & VM

3. However, when SYSTEM(CICS) or SYSTEM(IMS) is specified, Enterprise PL/I for z/OS and PL/I for MVS
& VM main procedures assume by value (direct) for parameters (OS PL/I main procedures continue
to assume by reference (indirect)). (See “PL/I argument passing considerations” on page 117 for a
discussion of OPTIONS(BYVALUE).)

PL/I and Fortran also support by value (indirect) (also known as by content), which you can obtain by
passing an argument in parentheses, for example, A in CALL X((A), B).

4. XPLINK-compiled functions pass arguments by value by default. However, it will pass as many
arguments in registers as possible in order to reduce the call linkage overhead.

Language Environment parameter list formats

Chapter 10. Using Language Environment parameter list formats 113

Preparing your main routine to receive parameters
When coding a main routine to receive a parameter list from the operating system, consider the following
items:

• The HLL in which your main routine is written

HLL semantics determine how you code your main routine in order to receive a parameter list.
• The method of main routine invocation

You should consider the environment (MVS, TSO, IMS, CICS) in which your main routine is invoked, as
well as the commands used to invoke it.

• The compiler or runtime options that you must specify

The settings of the C PLIST runtime option, the C++ PLIST compiler option, or the PL/I SYSTEM compiler
option that you must specify are based on:

– The operating system or subsystem where you invoke your main routine
– The commands you use to invoke your main routine

The following tables summarize options to consider when preparing a main routine to receive parameters
in each system or subsystem; the tables also provide sample coding for each HLL:
TSO/E

Table 19 on page 114
IMS

Table 20 on page 116
CICS

Table 21 on page 116
MVS

Table 22 on page 117

Table 19. Coding a main routine to receive an inbound parameter list in TSO/E

Language Recommended options setting Sample main routine code

C or C++ (See note
1.)

In C, specify PLIST(HOST) runtime option; if not specified,
PLIST(HOST) is on by default. Under C++, this is the default
behavior; do not specify a PLIST compiler option setting.

main(int argc, char * argv[])
{
⋮
 }

C or C++ (See note
2.)

In C, PLIST(HOST) is the default; PLIST(TSO) is supported for
compatibility and acts the same as PLIST(HOST). argc and
argv are set from the command buffer. In C++, this is the
behavior by default.

To see the TSO CPPL, specify PLIST(OS) and access the CPPL
through __osplist. In C++, you must specify the PLIST(OS)
compiler option.

For PLIST(HOST) behavior, see above.

The following code is a sample that accesses the
TSO CPPL:

#include <stdlib.h>
typedef struct CPPL_STRUCT {
 void * CPPLCBUF;
 void * CPPLUPT;
 void * CPPLPSCB;
 void * CPPLECT;
} CPPL;
main()
{
 CPPL *cppl_ptr;

 cppl_ptr = __osplist;
⋮
}

Language Environment parameter list formats

114 z/OS: z/OS Language Environment Programming Guide

Table 19. Coding a main routine to receive an inbound parameter list in TSO/E (continued)

Language Recommended options setting Sample main routine code

COBOL (See note
1.)

No specific options required.
IDENTIFICATION DIVISION.
⋮
DATA DIVISION.
⋮
LINKAGE SECTION.
 01 PARMDATA.
 02 STRINGLEN PIC 9(4) USAGE IS
BINARY.
 02 STR.
 03 PARM-BYTE PIC X OCCURS 0 TO
100
 DEPENDING ON
STRINGLEN.
⋮
PROCEDURE DIVISION USING PARMDATA.
⋮

COBOL (See note
2.)

No specific options required. Same as above.

PL/I (See note 1.) Specify SYSTEM(MVS) compiler option.
*PROCESS SYSTEM(xxx);
 MYMAIN: PROC (A) OPTIONS (MAIN);

 DCL A CHAR(100) VARYING;
⋮

PL/I (See note 2.) Specify SYSTEM(TSO) compiler option.
*PROCESS SYSTEM(TSO);
 MYMAIN: PROC (CPPLPTR) OPTIONS
(MAIN);

 /*Pointer to CPPL*/
 DCL CPPLPTR POINTER;

 DCL 1 CPPL based
(CPPLPTR),
 /*Command buffer*/
 2 CPPLCBUF POINTER,
 /*User profile table*/
 2 CPPLUPT POINTER,
 /*Protected step ctl
blk*/
 2 CPPLPSCB POINTER,
 /*Environment ctl blk*/
 2 CPPLECT POINTER;
⋮

Method of invocation:

1. Use the LOADGO command or the CALL command.
2. Use the TSO Command Processor.

Language Environment parameter list formats

Chapter 10. Using Language Environment parameter list formats 115

Table 20. Coding a main routine to receive an inbound parameter list in IMS

Language Recommended options setting Sample main routine code

C Specify PLIST(OS) and ENV(IMS) runtime
option. #pragma runopts(env(ims),plist(os))

#include <ims.h>
typedef struct {PCB_STRUCT(10)}
PCB_10_TYPE;
main()
{
 PCB_STRUCT_8_TYPE *alt_pcb;
 PCB_10_TYPE *db_pcb;
 IO_PCB_TYPE *io_pcb;
⋮
}

C++ Specify PLIST(OS) and TARGET(IMS)
compiler option. #include <ims.h>

typedef struct {PCB_STRUCT(10)}
PCB_10_TYPE;
main()
{
 PCB_STRUCT_8_TYPE *alt_pcb;
 PCB_10_TYPE *db_pcb;
 IO_PCB_TYPE *io_pcb;
⋮
}

COBOL No specific options required. IDENTIFICATION DIVISION.
PROGRAM-ID. DLITCBL.
DATA DIVISION.
⋮
 LINKAGE SECTION.
 01 PCB1.
 02 … .
 01 PCB2.
 02 … .
⋮
PROCEDURE DIVISION USING PCB1, PCB2.
⋮

PL/I Specify SYSTEM(IMS) compiler option. *PROCESS SYSTEM(IMS);
 MYMAIN: PROC (X,Y,Z) OPTIONS(MAIN);

 DCL (X,Y,Z) POINTER;
 DCL 1 PCB based (X),
⋮

Table 21. Coding a main routine to receive an inbound parameter list in CICS

Language Recommended options setting Sample main routine code

C or C++ Do not specify any PLIST option. argc = 1
and argv[0] = transaction id. main(int argc,char *argv[])

{
⋮
}

Language Environment parameter list formats

116 z/OS: z/OS Language Environment Programming Guide

Table 21. Coding a main routine to receive an inbound parameter list in CICS (continued)

Language Recommended options setting Sample main routine code

COBOL No specific options required.
IDENTIFICATION DIVISION.
⋮
DATA DIVISION.
⋮
 LINKAGE SECTION.
 01 DFHEIBLK.
⋮
 01 DFHCOMMAREA.
⋮
PROCEDURE DIVISION USING DFHEIBLK
 DFHCOMMAREA.
⋮

PL/I Specify SYSTEM(CICS) compiler option.
*PROCESS SYSTEM(CICS);
 MYMAIN: PROC (DFHEIPTR,
DFHCOMMAREAPTR_PTR)
 OPTIONS(MAIN);

 /*pointer to EIB*/
 /*supplied by CICS translator*/
 DCL DFHEIPTR POINTER;
 /*pointer to commarea*/
 DCL DFHCOMMAREAPTR_PTR POINTER;
⋮

Table 22. Coding a main routine to receive an inbound parameter list in MVS. Method of invocation: Assembler
passing an arbitrary parameter list that Language Environment is not to interpret.

Language Recommended options setting Sample main routine code

C or C++ In C, specify PLIST(OS) runtime option.

In C++, specify PLIST(OS) compiler option.
main()
{ access register 1 through __osplist;
⋮
 }

COBOL No specific options required. IDENTIFICATION DIVISION.
⋮
DATA DIVISION.
⋮
 LINKAGE SECTION.
 01 PARM1…
 01 PARM2…
⋮
PROCEDURE DIVISION USING PARM1, PARM2.
⋮

PL/I Specify SYSTEM(MVS) and NOEXECOPS
procedure option. *PROCESS SYSTEM(MVS);

 MYMAIN: PROC (PARM1,PARM2,…)
 OPTIONS (MAIN NOEXECOPS);

 DCL PARM1…

 DCL PARM2…
⋮

PL/I argument passing considerations
The PL/I OPTIONS option of both the PROCEDURE statement and ENTRY declaration permits you to
specify the mutually exclusive options BYVALUE and BYADDR.

Language Environment parameter list formats

Chapter 10. Using Language Environment parameter list formats 117

OPTIONS(BYVALUE)
Specifies that the PL/I procedure expects arguments to be passed to it by value (direct).
OPTIONS(BYVALUE) can be specified for external PROCEDURE statements and ENTRY declarations. It
applies to all arguments and argument descriptors.

OPTIONS(BYADDR)
Specifies that the PL/I procedure expects arguments to be passed to it by reference (indirect) or by
value (indirect). OPTIONS(BYADDR) can be specified for external PROCEDURE statements and for
ENTRY declarations. It applies to all arguments and argument descriptors.

OPTIONS(BYVALUE) cannot be specified for the following constructs:

• ENTRY statements:

ENTRY(N) OPTIONS(BYVALUE); /* invalid */

• Declaration of a parameter:

PROC(ARG1);
DCL ARG1 FIXED BIN(31) BYVALUE; /* invalid */

• Parameter descriptor in an ENTRY declaration:

DCL T ENTRY(FIXED BIN(31) BYVALUE) EXTERNAL; /* invalid */

All parameters, parameter descriptors, or return values must be specified with either the POINTER or
FIXED BIN(31) data type. Return values are passed back in register 15.

OPTIONS(BYADDR) is the default unless the external procedure specifies OPTIONS(MAIN) and is
compiled with the SYSTEM(CICS) or SYSTEM(IMS) compiler option. In this case, OPTIONS(BYVALUE) is
the default. In general, you should specify OPTIONS(BYVALUE) only for a main procedure with a SYSTEM
option of IMS or CICS. If you specify OPTIONS(BYVALUE) for a main procedure with other system options,
the parameter list is passed to the main procedure as is.

OPTIONS(BYVALUE) for a main procedure implies OPTIONS(NOEXECOPS).

PL/I does not support calls to routines that modify the body of an indirect argument list built by PL/I
compiled code.

Language Environment parameter list formats

118 z/OS: z/OS Language Environment Programming Guide

Chapter 11. Making your application reentrant

Reentrancy allows more than one user to share a single copy of a load module. If your application is not
reentrant, each application that calls your application must load a separate copy of your application.

The following routines must be reentrant:

• Routines to be loaded into the LPA or ELPA
• Routines to be used with CICS
• Routines to be preloaded with IMS

Your routine should be reentrant if it is a large routine that is likely to have multiple concurrent users. Less
storage is used if multiple users share the routine concurrently. Reentrancy also offers some performance
enhancement because there is less paging to auxiliary storage.

If you want your routine to be reentrant, ensure that it does not alter any static storage that is part of
the executable program; if the static storage is altered, the routine is not reentrant and its results are
unpredictable.

Making your C/C++ program reentrant
Under C/C++, reentrant programs can be categorized by their reentrancy type as follows:
Natural reentrancy

The attribute of programs that contain no modifiable external data.

Natural reentrancy is not applicable to C++.

Constructed reentrancy
The attribute of applications that contain modifiable external data and require additional processing
to become reentrant. By default, all C++ programs are made reentrant via constructed reentrancy.

Natural reentrancy
A C program is naturally reentrant if it contains no modifiable external data. In C, the following are
considered modifiable external data:

• Variables using the extern storage class
• Variables using the static storage class
• Writable strings

If your C program is naturally reentrant, you do not need to use the RENT compiler option. After compiling
and binding, install it in one of the locations listed in “Installing a reentrant load module” on page 121.

Constructed reentrancy
A constructed reentrant program is created by using either of the following methods:

• Use the binder to combine all of the object modules produced by the z/OS XL C/C++ compiler when the
target data set is a PDSE or HFS.

• Use the prelinker to combine all of the object modules produced by the z/OS XL C/C++ compiler and
pass the output to the binder when the target data set is a PDS. For more information about the
prelinker see Appendix A, “Prelinking an application,” on page 483.

The compile-time initialization information from one or more object modules is combined into a single
initialization unit.

Programs with constructed reentrancy are split into two parts:

• A variable or nonreentrant part that contains external data

Reentrant applications

© Copyright IBM Corp. 1991, 2022 119

• A constant or reentrant part that contains executable code and constant data

Each user running the program receives a private copy of the first part (mapped by either the binder or
the prelinker), which is initialized at run time. The second part can be shared across multiple spaces or
sessions only if it is installed in the link pack area (LPA) or extended link pack area (ELPA).

Generating a reentrant program executable for C or C++
To generate a reentrant C object module, follow these steps:

1. For C, if your program contains external data, compile your source files using the RENT compiler
option. For C++, compile your source files; by default the compiler builds reentrant programs using
constructed reentrancy. See z/OS XL C/C++ User's Guide for more information.

2. To produce an executable program:

• If the target data set is a PDSE or HFS, use the binder to combine all of the input into an executable
program

• If the target data set is a PDS, use the prelinker to combine all of the input before passing it as input
to the binder. You cannot run an object module through the prelinker more than once. Also, you must
link-edit using the same platform you used for the prelink step.

3. To get the greatest benefit from reentrancy, install your executable program in one of the locations
listed in “Installing a reentrant load module” on page 121.

Making your COBOL program reentrant
If you intend to have multiple users execute a COBOL program concurrently, make it reentrant by
using the RENT compiler option. For information about specifying the RENT compiler option, see the
appropriate version of the COBOL programming guide in the COBOL library at Enterprise COBOL for z/OS
library (www.ibm.com/support/docview.wss?uid=swg27036733).

Making your Fortran program reentrant
If you intend to have multiple users execute a Fortran program concurrently, make it reentrant by using
the RENT compiler option. The object module produced by the compiler must then be separated into its
nonshareable and shareable parts using the reentrancy separation tool.

The Fortran reentrancy separation tool is delivered under Language Environment, and with the exception
of its name and the names of the cataloged procedures used to invoke it, its use and operation are the
same as with the reentrancy separation tool provided by VS FORTRAN Version 2.

Table 23. Fortran reentrancy separation tool and Language Environment cataloged procedures

Fortran Member name Language Environment member
name

Content

AFBVSFST AFHXFSTA Fortran reentrancy separation tool

None AFHWRL Cataloged procedure to separate the
nonshareable and shareable parts of an
object module, and link-edit

VFT2RLG AFHWRLG Cataloged procedure to separate the
nonshareable and shareable parts of an
object module, link-edit, and execute

The Fortran reentrancy separation tool is a member of the CEE.SCEERUN data set. The Fortran reentrancy
separation tool cataloged procedures are members of the CEE.SCEEPROC data set.

It is important to note that Fortran products from VS FORTRAN Version 1 Release 4 on produce reentrant
object code; however, mixing Fortran object code with another HLL's object code can cause the other

Reentrant applications

120 z/OS: z/OS Language Environment Programming Guide

http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733

HLL's load module to become nonreentrant. This is due to the mechanism that Fortran uses to produce
reentrant code.

For more information about creating reentrant Fortran programs, see VS FORTRAN Version 2 Programming
Guide for CMS and MVS.

Making your PL/I program reentrant
If you intend to have multiple users execute a PL/I program at the same time, make it reentrant by
specifying the REENTRANT procedure option when you compile. For information about specifying the
REENTRANT procedure option, see PL/I for MVS & VM Language Reference.

Installing a reentrant load module
You will get the most benefit from reentrancy if you link the program with the RENT attribute and any
other attributes you would normally use, and have your system programmer install the load module in the
link pack area (LPA) or the extended link pack area (ELPA) of the system.

Installing a module in the LPA, ELPA or saved segment requires an initial program load (IPL) of your
operating system. You can use the SET PROG=xx console command to add or remove modules from
dynamic LPA.

Reentrant applications

Chapter 11. Making your application reentrant 121

Reentrant applications

122 z/OS: z/OS Language Environment Programming Guide

Part 3. Language Environment concepts, services,
and models

This section provides more information about Language Environment and the services it provides.

© Copyright IBM Corp. 1991, 2022 123

124 z/OS: z/OS Language Environment Programming Guide

Chapter 12. Initialization and termination under
Language Environment

This topic describes initialization and termination under Language Environment. It describes how you can
customize your applications during initialization and termination by using Language Environment runtime
options, callable services, and user exits. It includes instructions on how to use return and abend codes to
respond to initialization and termination actions, as well as to conditions that remain unhandled.

The basics of initialization and termination
Initialization and termination establish the state of various parts of the Language Environment
program management model that supports multilanguage applications. The program management model
describes three major entities of a program structure:
Process

A collection of resources (code and data).
Enclave

A collection of program units consisting of at least one main routine.
Thread

The basic unit of execution.

The z/OS UNIX System Services (z/OS UNIX) program management model differs somewhat from the
Language Environment program management model. Refer to “Mapping the POSIX program management
model to the Language Environment program management model” on page 141 for more information. For
more detailed definitions of program management and other Language Environment terms, see Chapter
13, “Program management model,” on page 137.

When you run a routine, Language Environment initializes the runtime environment by creating a process,
an enclave, and an initial thread. You can modify initialization by running a user exit, written either in
assembler or in an HLL.

During termination, threads (either single or multiple, depending on whether your application is
POSIX-conforming), enclaves, and processes are terminated. Through the runtime options of Language
Environment and callable services for termination, you can control how a thread, enclave, or process
terminates. For example, you can control whether an abend or a return code is generated from an
application that terminates with an unhandled condition of severity 2 or greater. See “Termination
behavior for unhandled conditions” on page 133.

Related runtime options:
ABTERMENC

Specifies whether an enclave terminates with an abend or with a return code and a reason code when
there is an unhandled condition of severity 2 or greater

TERMTHDACT
Specifies the level of information that you want to receive after an unhandled condition of severity 2 or
greater causes a thread to terminate

Related callable services:
CEE3ABD

Terminates an enclave with or without clean-up and the value of clean-up specifies which dumps to
take during termination.

CEE3AB2
Terminates an enclave with or without clean-up, whose value specifies which dumps to take during
termination, and a user specified reason code.

Initialization and termination

© Copyright IBM Corp. 1991, 2022 125

CEE3GRC
Returns the user enclave return code to your routine. Along with CEE3SRC, it allows you to use return
code-based programming techniques.

CEE3PRM
Returns to your routine the parameter string specified when your application was invoked. Use
CEE3PR2 for parameter strings greater than 80 characters.

CEE3PR2
Returns to the calling routine the argument string and its associated length, specified at program
invocation.

CEE3SRC
Sets the user enclave return code, which is used to calculate the final enclave return code at
termination

Related user exits:
CEEBXITA

An assembler user exit for enclave initialization, and enclave and process termination
CEEBINT

An HLL user exit (written in C, C++ (with C linkage), Enterprise PL/I for z/OS or PL/I for MVS & VM, or
Language Environment-conforming assembler) called at enclave initialization

See Chapter 28, “Using runtime user exits,” on page 371 for more information about user exits.

Preinitialization interface:
CEEPIPI

CEEPIPI performs various initialization functions

See Chapter 30, “Using preinitialization services,” on page 427 for more information about the
preinitialization interface.

See z/OS Language Environment Programming Reference for syntax information about runtime options and
callable services.

Language Environment initialization
During initialization, a process, an enclave, and then an initial thread are created. You can affect
initialization at the enclave level, by using either the assembler or HLL user exits.

Process initialization sets up the framework to manage enclaves and initializes resources that can
be shared among enclaves. Enclave initialization creates the framework to manage enclave-related
resources and the threads that run within the enclave. Thread initialization acquires a stack and enables
the condition manager for the thread.

What happens during initialization
When you run an application under Language Environment, the following sequence of events occurs:

1. Language Environment runs the assembler user exit CEEBXITA.

CEEBXITA runs before initialization of the enclave.

You cannot code the CEEBXITA assembler user exit as an XPLINK application. However, since
CEEBXITA is called directly by Language Environment and not by the application, a non-XPLINK
CEEBXITA can be statically bound in the same program object with an XPLINK application.

You can modify the environment in which your application runs by:

• Specifying certain runtime options.
• Allocating data sets and files.
• Listing abend codes to be passed to the operating system.
• Checking the values of program arguments.

Initialization and termination

126 z/OS: z/OS Language Environment Programming Guide

IBM provides a default version of CEEBXITA and several samples you can use to customize your
application to perform tasks such as enforcing a set of runtime options for a particular environment.
Because CEEBXITA runs before any HLLs have been established, it is written in assembler language so
that it can establish parameters such as stack size and trap settings for the HLLs.

CEEBXITA can function as application-specific or installation-wide. If you customize CEEBXITA to do
application-specific processing (for example, dynamically allocating files needed by your application),
you must link the exit with the application load module. (Conversely, installation-wide user exits must
be linked with the Language Environment initialization library routines.)

An application-specific user exit has priority over an installation-wide exit, so you can customize a user
exit for a particular application without affecting the installation default version.

For more information about the function and location of the CEEBXITA user exit, see Chapter 28,
“Using runtime user exits,” on page 371.

2. Language Environment examines the load module and initializes all languages identified in the
application.

Under Language Environment, an interlanguage communication (ILC) application works as shown in
Figure 50 on page 127. Language Environment will also examine the load module and initialize an
XPLINK environment (forcing the XPLINK(ON) runtime option) if the initial program was compiled with
the XPLINK option. Because all the language conventions are already established and do not need
to be initialized and terminated between calls to other routines, the processing is significantly faster
when using Language Environment-conforming HLLs.

HLL2 Routine

work, work, work
Return to HLL1

Language Environment--The common runtime environment

HLL1 Routine

Call HLL2

Exit

.

.

.

.

Figure 50. Language Environment ILC (only one runtime environment to initialize)

Performance consideration: Language Environment initializes all languages included in an
application, regardless of whether all of them are used. To optimize performance, include only those
languages your application actually uses.

3. Language Environment runs the HLL user exit CEEBINT.

CEEBINT lets you perform tasks such as recording accounting statistics or calling other user exits.
You cannot code CEEBINT as an XPLINK application. However, since CEEBINT is called directly by
Language Environment and not the application, a non-XPLINK CEEBINT can be statically bound in the
same program object with an XPLINK application. You can write a customized version of CEEBINT
in any Language Environment-conforming language except COBOL. COBOL applications can, however,
use CEEBINT written in another language.

IBM provides an object module default version of CEEBINT that consists of an immediate return to the
application. This default version is automatically link-edited with your application unless you provide a
customized version of CEEBINT.

For more information about the function and location of the CEEBINT user exit, see Chapter 28, “Using
runtime user exits,” on page 371.

Language Environment termination
Language Environment termination provides services that restore the operating environment to its original
state after your application either runs to completion or terminates abnormally. You can affect termination
through the use of runtime options, callable services, and user exits. For example, if an unhandled
condition of severity code 2 or greater occurs, you can decide if Language Environment should issue a

Initialization and termination

Chapter 12. Initialization and termination under Language Environment 127

return code or an abend code to the application. See “Termination behavior for unhandled conditions” on
page 133 for more information.

What causes termination
Under Language Environment, an application terminates when any of the following conditions occur:

• The last thread in the enclave terminates (which in turn terminates the enclave).
• The main routine in the enclave returns to its caller; that is, an implicit STOP is performed.
• An HLL construct issues a request for the termination of an enclave, for example:

– C's abort() function
– C's raise(SIGTERM) function
– C's _exit() function
– COBOL's STOP RUN statement
– COBOL's GOBACK statement in a main program
– Fortran's STOP statement
– Fortran's CALL SYSRCX, CALL EXIT, CALL DUMP, or CALL CDUMP statement
– PL/I's STOP or EXIT function

• A default POSIX signal is received, where the default is termination.
• An abend is requested by the application (that is, the application calls CEE3ABD or CEE3AB2).
• An unhandled condition of severity 2 or greater occurs. (See “Termination behavior for unhandled

conditions” on page 133 for information.)

What happens during termination
The following sequence of events occurs during termination:

1. C atexit() functions are invoked, if present. They are not invoked if _exit calls for termination
or if abnormal termination occurs. The behavior of pthread functions are undefined if the pthread
functions are called from an atexit routine.

2. PL/I FINISH ON-units are invoked if established.
3. For normal termination, the enclave return code is set (see “Managing return codes in Language

Environment” on page 130). For abnormal termination caused by an unhandled condition of severity 2
or greater, either a return code and reason code or an abend is returned, based on settings specified in
CEEBXITA (see “Termination behavior for unhandled conditions” on page 133).

4. CEEBXITA is invoked for enclave termination after all application code has completed, but before any
enclave resources are relinquished.

You can modify CEEBXITA to request an abend and a dump. You cannot code the CEEBXITA assembler
user exit as an XPLINK application. Because the environment is still active, the dump accurately
reflects the state of the environment before an enclave is terminated.

5. The environment is terminated:

• All enclaves are terminated
• All enclave resources are returned to the operating system
• Any files that Language Environment manages are closed
• IBM z/OS Debugger is terminated, if active

6. CEEBXITA is invoked for process termination after the environment is terminated. You can modify
CEEBXITA to close files, request an abend, or request a dump. A dump requested at this point,
however, does not have the degree of detail that one requested during enclave termination has.

Initialization and termination

128 z/OS: z/OS Language Environment Programming Guide

CEEBXITA is not invoked for process termination if there is an unhandled condition of severity 2 or
greater, or if CEEBXITA requests an abend during enclave termination. For more information about the
CEEBXITA assembler user exit, see Chapter 28, “Using runtime user exits,” on page 371.

Depending on the setting of the TERMTHDACT runtime option, you might receive a message, a trace of the
active routines, or a dump when a condition of severity 2 or greater occurs. For more information about
TERMTHDACT, see TERMTHDACT in z/OS Language Environment Programming Reference.

Thread termination
A thread terminating in a non-POSIX environment is analogous to an enclave terminating, because
Language Environment supports only single threads. See “Enclave termination” on page 129 for
information about enclave termination.

POSIX thread termination
A thread terminates due to pthread_exit(), pthread_kill(), or pthread_cancel(), or returns
from the start routine of the thread in a POSIX environment. When a thread issues a exit() or _exit()
or encounters an unhandled condition, that thread terminates and all other active threads are also forced
to terminate. The z/OS UNIX (POSIX) environment supports multiple threads; each thread is terminated,
as follows:

• The stack storage associated with the thread is freed
• Language Environment user-written condition handlers are run, if present
• The thread status is set
• Cleanup handlers and destructor routines are driven
• The stack is collapsed
• HLL members are called for thread termination

For more detailed information about POSIX functions, refer to the following resources:

• “Language Environment and POSIX signal handling interactions” on page 197
• “Mapping the POSIX program management model to the Language Environment program management

model” on page 141
• z/OS UNIX System Services User's Guide

Enclave termination
When an enclave terminates, Language Environment releases resources allocated on behalf of the
enclave and performs various other activities including the following:

• Calls HLL-specific termination routines for HLLs that were active during the executing of the program
• Runs Language Environment user-written condition handlers, if present
• Deletes modules loaded by Language Environment
• Frees all storage obtained by Language Environment services
• Calls the CEEBXITA assembler user exit for enclave termination
• Frees Language Environment control blocks for the enclave
• Depending on the setting in the HLL or assembler user exit, Language Environment sets a return code

and reason code or an abend.
• Restores the program mask and registers to preinitialization values
• Returns control to the enclave creator

Initialization and termination

Chapter 12. Initialization and termination under Language Environment 129

Process termination
Process termination occurs when the last enclave in the process terminates. Process termination deletes
the structure that kept track of the enclaves within the process, releases the process control block (PCB)
and associated resources, and returns control to the creator of the process.

Because Language Environment generally supports a single enclave running within a single process,
termination of the enclave means that your application has terminated. For exceptions to the single
enclave within a single process and an enclave return and reason code being returned to the invoker, see
Chapter 31, “Using nested enclaves,” on page 469. .

Language Environment explicitly relinquishes all resources it gets. Routines that get resources directly
from the host system (such as opening a DCB) must explicitly relinquish the resource. If these resources
are not explicitly released, the environment can be corrupted because Language Environment has no
method for releasing these resources.

POSIX process termination
In a z/OS UNIX environment, POSIX process termination maps to Language Environment enclave
termination. For specific information about POSIX default signal action at POSIX process termination
when running in a z/OS UNIX environment, see “Language Environment and POSIX signal handling
interactions” on page 197.

In a z/OS UNIX environment, the following occurs if the process being terminated is a child process:

• The parent process is notified with a wait or a waitpid or saving of the exit status code.
• A new parent process ID is assigned to all child processes of the terminated process.
• If the process is a controlling process, the controlling terminal associated with the session is

disassociated from the session allowing it to be acquired by a new controlling process.

Managing return codes in Language Environment
This topic discusses how Language Environment calculates and uses return codes and reason codes
during enclave termination. (The return codes between subroutine calls that are implemented with
programming language constructs are addressed in the appropriate language-specific programming
guides.)

Before Language Environment, some HLLs (in particular, C) handled conditions that occur in the runtime
environment by using a return code-based model. Such a model typically allows return codes to
be passed between called subroutines and from the main routine back to the operating system to
communicate the status of requested operations. Language Environment, on the other hand, uses a
condition-based model to communicate conditions, as described in Chapter 18, “Using condition tokens,”
on page 231.

Although Language Environment supports applications that rely on passing return codes from called
subroutines and checking these return codes, you are encouraged to use Language Environment condition
handling mechanisms, such as user-written condition handlers, instead.

How the Language Environment enclave return code is calculated
When an enclave terminates, Language Environment provides a Language Environment enclave return
code and an enclave reason code (sometimes called a return code modifier). The Language Environment
enclave return code is calculated by summing the user return code generated by the HLL (see “Setting
and altering user return codes” on page 131) and the enclave reason code (see “How the enclave reason
code is calculated” on page 133) as follows:

Language Environment enclave return code = user return code + enclave reason code

Initialization and termination

130 z/OS: z/OS Language Environment Programming Guide

The Language Environment enclave return code is placed in register 15, and the enclave reason code is
placed in register 0.

C considerations
The Language Environment enclave return codes are incompatible with the return codes returned under
the pre-Language Environment-conforming version of C.

Fortran considerations
Unlike the behavior of VS FORTRAN Version 2, where any abnormal termination is indicated with message
AFB240 followed by an abend with user completion code 240, Language Environment treats an abend as
a condition. The condition that represents an abend is the severity 3 condition with the message number
3250, which contains the system or user completion code and the reason code.

If this condition is not handled and the ABTERMENC(RETCODE) runtime option is in effect, then the
enclave terminates with a return code of 3000 under MVS. When the ABTERMENC(ABEND) runtime option
is in effect and Language Environment terminates the enclave because of an unhandled condition, an
abend occurs.

PL/I considerations
The severity of some PL/I conditions have been redefined from what they were in pre-Language
Environment versions of PL/I.

Setting and altering user return codes
User return codes can be set and altered by the CEE3SRC callable service and by language constructs. As
described in the following topics, the user return code value is based on the reason an enclave terminates
and the language of the routine that initiates termination.

For C and C++
If a normal return from main() terminates the application, the user return code value is 0. When a C or
C++ routine terminates an enclave with a language construct such as exit(n) or return(n), the value
of n is used. In either case, any user return codes set through CEE3SRC are ignored; likewise, in an ILC
application, any user return codes set with PL/I language constructs are also ignored.

If the enclave terminates due to an unhandled condition of severity 2 or greater, the user return code
value used is the last one set by either CEE3SRC or, in an ILC application, PL/I language constructs. If
neither CEE3SRC nor PL/I language constructs set the user return code, the user return code value is
0. See “Termination behavior for unhandled conditions” on page 133 for information about unhandled
conditions. See z/OS XL C/C++ Programming Guide for more information about C or C++ language
constructs.

For COBOL
When a COBOL program initiates enclave termination, such as with a STOP RUN statement or a GOBACK
statement in a main program, the user return code value is taken from the RETURN-CODE special register;
any user return codes set through CEE3SRC are ignored. Likewise, in an ILC application, any user return
codes set with PL/I language constructs are also ignored. Thus, you can set and alter the user return code
and pass it across program boundaries in register 15. See the appropriate version of the programming
guide in the COBOL library at Enterprise COBOL for z/OS library (www.ibm.com/support/docview.wss?
uid=swg27036733) for more information about the RETURN-CODE special register and COBOL language
constructs.

If the enclave terminates due to an unhandled condition with severity 2 or greater, the RETURN-CODE
special register is not used in the enclave return code calculation. Instead, the user return code value
used is the last one set by either CEE3SRC or, in an ILC application, PL/I language constructs. If neither
CEE3SRC nor PL/I language constructs have been used to set the user return code, the user return

Initialization and termination

Chapter 12. Initialization and termination under Language Environment 131

http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733

code value is 0. See “Termination behavior for unhandled conditions” on page 133 for information about
unhandled conditions.

For Fortran
You can set and alter the user return code using the SYSRCS or SYSRCX Fortran services. You can test the
value of this field using SYSRCT. Depending on how the enclave is terminated, the value of the user return
code could become the enclave return code.

If the enclave terminates as a result of a STOP statement or a CALL SYSRCX statement that explicitly
specifies a value to be used as a return code, then that value becomes the enclave user return code. For
example, either of the following Fortran statements terminate the enclave and sets the enclave return
code to 101:

• STOP 101
• CALL SYSRCX(101)

If the enclave terminates as a result of a language construct that depends on a previously established
enclave user return code, then the previously established enclave user return code becomes the enclave
return code. For example, the following sequence of Fortran statements sets the enclave return code to
201:

• CALL SYSRCS(201)
• CALL EXIT

The call to SYSRCS sets the enclave user return code to 201 and the call to EXIT causes the enclave user
return code to be used as the enclave return code.

The return code modifier depends on the operating system and the severity of the condition, as shown in
Table 24 on page 132.

Table 24. Return code modifiers used by Language Environment to determine enclave return codes

Condition severity Return code modifier

2 2000

3 3000

4 4000

If the enclave terminates due to an unhandled condition and the ABTERMENC(RETCODE) runtime option
is in effect, then the enclave return code is the sum of the enclave user return code and the return code
modifier. For example, when CALL SYSRCS(201) is executed and termination occurs as a result of an
unhandled condition of severity 3, the enclave return code is 3201.

For PL/I
You can set and alter the user return code with the PLIRETC function or the OPTIONS(RETCODE) attribute.
The PLIRETV function retrieves the current value of the user return code.

When a PL/I routine initiates enclave termination, such as with a STOP or EXIT statement in a subroutine
or with a RETURN or END statement in a main procedure, the user return code is the value set with the
PLIRETC function or the OPTIONS(RETCODE) attribute. However, CEE3SRC can alter the user return code
set with PLIRETC or the OPTIONS(RETCODE) attribute. If CEE3SRC was the last method used to set the
user return code, the last three bytes of the return-code set by CEE3SRC are used as the user return code.

If the enclave terminates due to an unhandled condition with severity 2 or greater, the user return code
value set last (with either PL/I constructs or CEE3SRC) is used in the calculation of the enclave return
code; if one has not been set, the user return code value is 0. See “Termination behavior for unhandled
conditions” on page 133 for information about unhandled conditions.

CEE3SRC and CEE3GRC are not supported in PL/I multitasking applications.

Initialization and termination

132 z/OS: z/OS Language Environment Programming Guide

See IBM Enterprise PL/I for z/OS library (www.ibm.com/support/docview.wss?uid=swg27036735) for
details about the PL/I language constructs.

How the enclave reason code is calculated
The enclave reason code provides additional information in support of the enclave return code. Language
Environment calculates the enclave reason code by multiplying a severity code (that indicates how an
enclave terminated) by 1000.

The severity code is initially set to 0, indicating normal enclave termination. If the Termination_Imminent
due to STOP (T_I_S) condition is signaled, it is set to 1. If the enclave terminates due to an unhandled
condition of severity 2 or greater, the enclave reason code is set according to the severity of the
unhandled condition that caused the enclave to terminate, as shown in Table 25 on page 133. For more
information about Language Environment conditions and severity codes, see Table 34 on page 172.

Table 25 on page 133 contains a summary of the enclave reason code produced when an enclave
terminates. The condition severity column indicates the reason code for the original condition.

Table 25. Summary of enclave reason codes

Condition severity Meaning Enclave reason
code (R0)

0 Normal application termination 0

Severity 1 condition Termination_Imminent due to STOP 1000

Unhandled severity 2 condition Error — abnormal termination 2000

Unhandled severity 3 condition Severe error — abnormal termination 3000

Unhandled severity 4 condition Critical error — abnormal termination 4000

Termination behavior for unhandled conditions
When there is an unhandled condition of severity 2 or greater, you can choose whether an enclave
terminates with an abend or with a return code and a reason code. Language Environment will assign an
abend code and return and reason code, as described in this topic, or you can assign values yourself, as
described in “Setting and altering user return codes” on page 131.

See Table 34 on page 172 for a discussion of conditions and how they are handled in Language
Environment, and “Language Environment and POSIX signal handling interactions” on page 197 for
specific information pertaining to POSIX signal action defaults and unhandled conditions in a z/OS UNIX
environment.

Some users, especially those using COBOL or running IMS applications, expect to receive an abend when
an error is detected rather than a return code and a reason code. To get this behavior, they can use
the ABTERMENC(ABEND) runtime option discussed in “Abend codes generated by ABTERMENC(ABEND)
runtime option” on page 134. Other users, however, expect to receive a return code and a reason code
when there is an error.

If you are running in a CICS environment, the IBM-supplied default is to terminate the enclave with an
abend for unhandled conditions of severity 2 or greater.

If you are running in a non-CICS environment and you expect the enclave to terminate with a
return code and a reason code for unhandled conditions of severity 2 or greater, you can use the
ABTERMENC(RETCODE) runtime option and the CEEBXITA assembler user exit. The default version of
CEEBXITA for non-CICS environments requests that the enclave terminate with a return code and a
reason code.

Table 26 on page 134 shows the various types of enclave termination that occur based on the
ABTERMENC runtime option settings and the CEEAUE_ABND flag settings of CEEBXITA. See “CEEBXITA
assembler user exit interface” on page 376 for an explanation of the CEEAUE_ABND flag.

Initialization and termination

Chapter 12. Initialization and termination under Language Environment 133

http://www.ibm.com/support/docview.wss?uid=swg27036735

Table 26. Termination behavior for unhandled conditions of severity 2 or greater

ABTERMENC
suboption

Value of CEEAUE_ABND flag enclave
termination

Enclave termination type

RETCODE 0 Return to caller with return code and
reason code

RETCODE 1 Abend using CEEAUE_RETC and
CEEAUE_RSNC

ABEND 0 Abend using the abend codes listed in
Table 28 on page 134

ABEND 1 Abend using CEEAUE_RETC and
CEEAUE_RSNC

Determining the abend code
You can choose the abend code you want Language Environment to use, based on whether the abend is
requested by the assembler user exit or whether the ABTERMENC(ABEND) runtime option is used.

Abend codes generated by CEEBXITA
When you request an abend through CEEBXITA, the values contained in certain fields of the exit are used
for the abend code and the reason code. Table 27 on page 134 shows the abend codes used by Language
Environment when CEEBXITA requests an abend and does not modify the CEEAUE_RETC code field.

Table 27. Abend codes used by Language Environment when the Assembler user exit requests an abend

Condition
severity

User return code Abend code in non-CICS Abend code in CICS

2 0 User abend 2000 Transaction abend 2000

3 0 User abend 3000 Transaction abend 3000

4 0 User abend 4000 Transaction abend 4000

Abend codes generated by ABTERMENC(ABEND) runtime option
Language Environment terminates the enclave with the same abend code that caused the unhandled
condition of severity 2 or greater if all of the following statements are true:

• You use the ABTERMENC(ABEND) runtime option.
• The unhandled condition was generated by an abend.
• The assembler user exit does not alter the CEEAUE_ABND flag setting.

Table 28 on page 134 shows the abend code and reason code used when the enclave terminates due to
the various unhandled conditions of severity 2 or greater and ABTERMENC(ABEND) is specified in both
CICS and non-CICS environments. In a CICS environment, when an abend is issued, only the abend code
is returned. CICS does not return an abend reason code.

Table 28. Abend code values used by Language Environment with ABTERMENC(ABEND)

Unhandled condition Abend code Abend reason code

ABEND The original abend code In non-CICS environment, the
original abend reason code

Program interrupt See “Program interrupt abend and
reason codes” on page 135 for
program interrupt abend codes

Initialization and termination

134 z/OS: z/OS Language Environment Programming Guide

Table 28. Abend code values used by Language Environment with ABTERMENC(ABEND) (continued)

Unhandled condition Abend code Abend reason code

Software-raised condition A user 4038 abend is used in a non-
CICS environment and a transaction
4038 abend is used in a CICS
environment

In a non-CICS environment, X'1'

Unsuccessful LOAD (non-
CICS)

The abend code that would have been
used by the operating system.

The abend reason code that
would have been used by the
operating system.

Program interrupt abend and reason codes
A program interrupt can cause an unhandled condition of severity 2 or greater. When running with the
ABTERMENC(ABEND) runtime option in a CICS environment, an abend code of ASRA is issued for program
interrupts. When running with the ABTERMENC(ABEND) runtime option in a non-CICS environment, the
abend codes and reason codes shown in Table 29 on page 135 are issued for program interrupts.

Table 29. Program interrupt abend and reason codes in a non-CICS environment

Program interrupts Abend code Abend reason code

Operation exception S0C1 00000001

Privileged operation exception S0C2 00000002

Execute exception S0C3 00000003

Protection exception S0C4 00000004

Segment translation exception (note 1) S0C4 00000004

Page translation exception (note 2) S0C4 00000004

Addressing exception S0C5 00000005

Specification exception S0C6 00000006

Data exception S0C7 00000007

Fixed-point overflow exception S0C8 00000008

Fixed-point divide exception S0C9 00000009

Decimal overflow exception S0CA 0000000A

Decimal divide exception S0CB 0000000B

Exponent overflow exception S0CC 0000000C

Exponent underflow exception S0CD 0000000D

Significance exception S0CE 0000000E

Floating-point divide exception S0CF 0000000F

Notes:

1. The operating system issues abend code S0C4 reason code 10 for segment translation program
interrupts.

2. The operating system issues abend code S0C4 reason code 11 for page translation program interrupts.

Initialization and termination

Chapter 12. Initialization and termination under Language Environment 135

Initialization and termination

136 z/OS: z/OS Language Environment Programming Guide

Chapter 13. Program management model

Now that you have been introduced to how applications run in Language Environment, you need
to understand the model of program management under which Language Environment operates.
Understanding the model helps you recognize equivalent entities across Language Environment-
conforming programming languages and predict how your single- and mixed-language applications run.
This topic provides an overview of the Language Environment model.

The Language Environment program management model supports the language semantics of applications
that run in the common runtime environment and defines the way routines or programs are put together
to form an application. Language Environment implements a subset of the POSIX program management
model. Features not supported in z/OS Language Environment are indicated.

The POSIX program management model differs somewhat from the Language Environment program
management model. Refer to “Mapping the POSIX program management model to the Language
Environment program management model” on page 141 for more information.

The Language Environment program management model has three basic entities — the process, enclave,
and thread, each of which Language Environment creates whenever you start execution of an HLL
application. A description is provided of the entities and their relationship to program management.

Model terminology for Language Environment program
management

Some terms used to describe the program management model are common programming terms; others
have meanings that are specific to a given language. It is important that you understand the meaning of
the terminology Language Environment uses and how it compares with existing languages.

Language Environment terms and their HLL equivalents
Process

The highest level of the Language Environment program management model; a collection of
resources, both program code and data, consisting of at least one enclave.

Enclave
The enclave defines the scope of HLL semantics. In Language Environment, a collection of routines,
one of which is designated as the main routine. The enclave contains at least one thread.

Equivalent HLL terms: C or C++ – program, consisting of a main C or C++ function and its subroutines,
COBOL – run unit, Fortran – executable program, consisting of a main Fortran program and its
subprograms, PL/I – main procedure and all its subprocedures.

Thread
An execution entity that consists of synchronous invocations and terminations of routines. The thread
is the basic runtime path within the Language Environment program management model; dispatched
by the system with its own runtime stack, instruction counter, and registers.

Routine
In Language Environment, either a procedure, function, or subroutine.

Equivalent HLL terms: C or C++ – function, COBOL – program, Fortran – program, PL/I – procedure,
BEGIN/END block.

Program management model

© Copyright IBM Corp. 1991, 2022 137

Terminology for data
Automatic data

Data that does not persist across calls. In the absence of a specific initializer, automatic data get
"accidental" values that may depend on the behavior of the caller or the last function to be called by
the caller.

External data
Data with one or more named points by which the data can be referenced by other program units and
data areas. External data is known throughout an enclave.

Local data
Data known only to the routine in which it is declared; equivalent to local data in C, C++, or Fortran,
any non-EXTERNAL data items in COBOL, and data with the PL/I INTERNAL attribute (whether
implicitly, or by explicit declaration).

Figure 51 on page 138 shows the simplest form of the Language Environment program management
model and the resources that each component controls. Refer to the figure as you read about the program
management model.

Thread

A line of execution

Enclave

A collection of
routines, 1 main,
0 or more subroutines

Resources Owned

* Thread
* Heap
* External files
* Portion of routine
that can be shared,
such as static data

Resources Owned

* Stack
* Condition manager

Process

A collection of
Resources

Resources Owned

* Enclave
* Language Environment
message file

* Portion of routine that
can be shared, such as
code and constants

Indicates where user code resides

Indicates logical entities

Figure 51. Program management model illustration of resource ownership

Processes
A process is a collection of resources, both application code and data, consisting of one or more related
enclaves.The process is the outermost or highest level runtime component of the common runtime

Program management model

138 z/OS: z/OS Language Environment Programming Guide

environment. The resources maintained at the process level do not affect the language semantics of an
application running at the enclave level.

The Language Environment library is an example of the type of resource that is maintained at the process
level. The Language Environment library is loaded at process initialization, although it could be loaded
for any of the individual enclaves within the process at enclave initialization. The process is used in the
same way by all enclaves created within the process. It has no effect on the HLL semantics of applications
running within each of the enclaves.

Each process has an address space that is logically separate from those of other processes. Except for
communications with each other using certain Language Environment mechanisms, no resources are
shared between processes; processes do not share storage, for example. A process can create other
processes. However, all processes are independent of one another; they are not hierarchically related.

Although the Language Environment program model supports applications consisting of one or more
processes, z/OS Language Environment supports only a single process for each application that runs in
the common runtime environment.

Enclaves
A key feature of the program management model is the enclave, which consists of one or more load
modules, each containing one or more separately compiled, bound routines. A load module can include
HLL routines, assembler routines, and Language Environment routines.

The enclave defines the scope of language semantics
By definition, the scope of a language statement is that portion of code in which it has semantic effect.
The enclave defines the scope of the language semantics for its component routines, just as a COBOL
run unit defines the scope of semantics of a COBOL program. Scope encompasses names, external data
sharing, and control statements such as C's exit(), COBOL's STOP RUN, Fortran’s STOP, and PL/I's STOP
and EXIT statements.

The enclave defines the scope of the definition of the main routine and
subroutines
The enclave boundary defines whether a routine is a main routine or a subroutine. The first routine to
run in the enclave is known as the main routine in Language Environment. All others are designated
subroutines of the main routine.

The first routine invoked in the enclave must be capable of being designated main according to the rules
of the language of the routine. For example, a main routine in a Language Environment-conforming PL/I
application would be the PROC OPTIONS (MAIN) routine. All other routines invoked in the enclave must
be capable of being a subroutine according to the rules of the languages of the routines.

If a routine is capable of being invoked as either a main or subroutine, and recursive invocations are
allowed according to the rules of the language, the routine can be invoked multiple times within the
enclave. The first of these invocations could be as a main routine and the others as subroutines.

The enclave defines the scope and visibility of the following types of data
• Automatic data: Automatic data is allocated with the same value on entry and reentry into a routine if

it has been initialized to that value in the semantics of the language used, for example, data declared
using the PL/I INIT() option. Values of the data at exit from the routine are not retained for the next
entry into the routine. The scope of automatic data is a routine invocation within an enclave.

• External data: External data persists over the lifetime of an enclave and retains last-used values
whenever a routine is reentered. The scope of external data is that of the enclosing enclave; all routines
invoked within the enclave recognize the external data. Examples are C or C++ data objects of extern
storage class, COBOL data items defined with the EXTERNAL attribute, Fortran common blocks, and
PL/I data declared as EXTERNAL.

Program management model

Chapter 13. Program management model 139

• Local data: The scope of local data is that of the enclosing enclave; however, local data is recognized
only by the routine that defines it. Examples are any C or PL/I variable with block scope, any Fortran
data declared as AUTOMATIC, and any non-EXTERNAL data item in COBOL.

The enclave defines the scope of language statements
The enclave defines the scope of language statements — for example, those that stop execution of
the outermost routine within an enclave. C's exit(), COBOL's STOP RUN, Fortran's STOP and END
statements, and PL/I’s STOP and EXIT statements are examples of such statements. When one of these
statements is executed, the main routine within the enclave terminates. Thus, the enclave defines the
scope of the language statements.

Before returning, resources obtained by the routines in the enclave are released and any open files (other
than the Language Environment message file) are closed.

Additional enclave characteristics

Management of resources
The enclave manages most Language Environment resources, such as the thread and heap storage, other
than the message file (which is managed as a process-level resource). Heap storage, for example, is
shared among all threads within an enclave. Allocated heap storage remains allocated until explicitly
freed or until the enclave terminates. None of the enclave-managed resources is shared between
enclaves.

Multiple enclaves
z/OS Language Environment provides explicit support for a single enclave within a single process. Under
some circumstances, however, multiple enclaves can exist within a single process. A description of how to
create multiple, or nested, enclaves can be found in Chapter 31, “Using nested enclaves,” on page 469.

Threads
Within each enclave is a thread, the basic runtime path represented by the machine state; conditions
raised during execution are isolated to that runtime path.

Threads share all of the resources of an enclave and therefore do not need to selectively create or load
new copies of resources, code, or data. Although a thread does not own its storage, it can address all
storage within the enclave. All threads are independent of one another and are not related hierarchically.
A thread is dispatched with its own runtime stack, instruction counter, registers, and condition handling
mechanisms.

Because threads operate with unique runtime stacks, they can run concurrently within an enclave and
allocate and free their own storage. Concurrent, or parallel, processing, is useful when code is event-
driven, or for improving the performance of a large application.

The full Language Environment program management model
Figure 52 on page 141 illustrates the relationship between the various entities that make up the Language
Environment program management model.

As Figure 52 on page 141 shows, each process exists within its own address space. An enclave consists
of one main routine with any number of subroutines. External data is available only within the enclave in
which it resides. External data items that happen to be identically named in different enclaves reference
distinct storage locations; the scope of external data is the enclave. The threads can create enclaves,
which can create more threads, and so on.

Program management model

140 z/OS: z/OS Language Environment Programming Guide

ext
data

X

ext
data

Y

. . .

. . .main

thread

enclave

process

ext
data

Y

ext
data

Z

. . .main

thread

enclave

ext
data

X

ext
data

Y

. . .

sub sub

thread

sub submain

thread

enclave

process

Figure 52. Overview of the full Language Environment program management model

Mapping the POSIX program management model to the Language
Environment program management model

Language Environment in conjunction with z/OS UNIX supports POSIX standards (POSIX 1003.1 and
POSIX 1003.1c) and the XPG4 standard. The POSIX standard follows a program management model
which differs somewhat from the Language Environment program management model. This section
provides a helpful comparison of both models.

The descriptions intended to be a brief review for C users of the characteristics of POSIX program entities.
For full definitions of these terms, refer to the ISO/IEC9945 for POSIX 1003.1 and POSIX 1003.1c. The
XPG4 standard is described in detail in X/Open Specification Issue 4.

Key POSIX program entities and Language Environment counterparts
POSIX defines four program model constructs:
Process

An address space, at least one thread of control that executes within that address space, and the
thread's or threads' required system resources.

In general, POSIX processes are peers; they run asynchronously and are independent of one other,
unless your application logic requests otherwise.

Some aspects of selected processes are hierarchical, however. A C process can create another C
process (no ILC is allowed) by calling the fork() or spawn() functions. Certain function semantics
are defined in terms of the parent process (the invoker of the fork) and the child process (cloned after
the fork). For example, when a parent process issues a wait() or waitpid(), the parent process'
logic is influenced by the status of the child process or processes.

Program management model

Chapter 13. Program management model 141

A Language Environment process with a single enclave maps approximately to a POSIX process. In
Language Environment, starting a main routine creates a new process. In POSIX, issuing a fork() or
a spawn() creates a new process. A POSIX sigaction of stop, terminate, or continue applies
to the entire POSIX process.

A Language Environment process with multiple enclaves is a Language Environment extension to
POSIX. If a process contains more than one enclave, only the first enclave in the process can have
POSIX(ON) specified. All of the nested enclaves must be POSIX(OFF). A process that contains any
POSIX(OFF) enclaves cannot issue a fork() or a spawn(), either explicitly or implicitly (popen()
being mapped to fork() and exec()).

Note: The scope of a specific POSIX function might be the Language Environment process or
Language Environment enclave. See “Scope of POSIX semantics” on page 142 for details.

Process group
Collection of processes. Group membership allows member processes to signal one another, and
affects certain termination semantics.

No Language Environment entity maps directly to a POSIX process group.

Session
Collection of process groups. Conceptually, a session corresponds to a logon session at a terminal.

No Language Environment entity maps directly to a POSIX session, but a session is a rough equivalent
of a Language Environment application whose execution scope is bounded by the end user logon and
logoff.

Thread
A single flow of control within a process. Each thread has its own thread ID, state of any timers,
errno value, thread-specific bindings, and the required system resources to support a flow of control.
Threads are independent and not hierarchically related.

A Language Environment thread maps to a POSIX thread. POSIX pthread_create creates a new
thread under Language Environment.

An enclave that contains multiple threads cannot issue fork(), either explicitly or implicitly
(popen() being mapped to fork() and exec()).

Scope of POSIX semantics
Some general rules for the scope of POSIX processes follow, as illustrated in Figure 53 on page 143:

• POSIX semantics applied to a POSIX process from outside the POSIX process (interprocess semantics)
are applied to a Language Environment process. For example, a signal directed from a process to
another process using kill is applied to a Language Environment process.

• POSIX semantics scoped to within the current POSIX process (intraprocess semantics) apply to the
current Language Environment enclave. For example, heap storage is recognized throughout an enclave.

Program management model

142 z/OS: z/OS Language Environment Programming Guide

POSIX Process

Semantics Applied to Process
from outside the Process

Language Environment Process
with One Enclave

Semantics Applied to Process
from outside the Process

Language Environment Process
with Multiple Enclaves

Semantics Applied to Process
from outside the Process

For a Language Environment process
with a single enclave, scoping to
the process or to the (only)
enclave has the same semantic
effect.

Process Process
Enclave

Process
Enclave

Enclave

Semantics
Scoped
within
Process

Semantics
Scoped
within
Enclave

Semantics
Scoped
within
Enclave

.

.

.

Figure 53. Scope of semantics against POSIX processes and Language Environment processes and
enclaves

Program management model

Chapter 13. Program management model 143

Program management model

144 z/OS: z/OS Language Environment Programming Guide

Chapter 14. Stack and heap storage

Language Environment provides services that control the stack and heap storage used at run time.
Language Environment-conforming HLLs and assembler routines use these services for all storage
requests.

How Language Environment-conforming languages uses stack and
heap storage

Table 30. Usage of stack and heap storage by Language Environment-conforming languages

Language Stack Heap

C or C++ • Automatic variables
• Library routines

Variables allocated by:

• malloc() function
• calloc() function
• realloc() function
• aligned_alloc() function
• Static external (RENT)

COBOL • Intrinsic functions
• Library routines
• LOCAL-STORAGE variables

• WORKING-STORAGE variables

Fortran • Library routines • Dynamic common blocks
• Variables allocated by ALLOCATE statement

(VS Fortran Version 2 Release 6 only)

PL/I • Automatic variables
• Library routines

• BASED variables
• CONTROLLED variables
• AREA variables

Related runtime options

Table 31. Runtime options and functions

Runtime option Function

ANYHEAP Allocates library (HLL and Language Environment) heap storage above or
below 16 MB

BELOWHEAP Allocates library heap storage below 16 MB

HEAP Allocates storage for user-controlled dynamically allocated variables

HEAPCHK Specifies that heap storage be inspected for damage.

HEAPPOOLS Improves the performance of heap storage allocation

HEAPZONES Provides a heap check zone for each storage request

Stack and heap storage

© Copyright IBM Corp. 1991, 2022 145

Table 31. Runtime options and functions (continued)

Runtime option Function

LIBSTACK On non-CICS, used by library routine stack frames that must be below 16
MB

RPTSTG Generates a storage report

STACK Used by library routine stack frames that can reside anywhere in storage

STORAGE Controls the initial content and amount of storage reserved for the out-of-
storage condition

THREADHEAP Controls the allocation and management of thread-level heap storage

THREADSTACK Controls the upward- and downward-growing stack allocation for each
thread, except the initial thread, in a multithreaded environment

For syntax information, see z/OS Language Environment Programming Reference.

Related callable services
Related callable services:

Table 32. Callable services options and functions

Callable service Function

CEECRHP Defines additional heaps

CEECZST Changes the size of a previously allocated heap element

CEEDSHP Discards an entire heap created with CEECRHP

CEEFRST Frees storage allocated by CEEGTST or an intrinsic language function

CEEGTST Gets storage from a heap whose ID you specify

CEE3RPH Sets the heading displayed at the top of the storage options report

For syntax information, see z/OS Language Environment Programming Reference.

Stack storage overview
Note: The term stack refers to the user stack, which is an independent area of stack storage that can be
located above or below the 16 MB line, designed to be used by both library routines and compiled code.
All references to stack storage and stack frame are to real storage allocation, as opposed to invocation
stack, which refers to a conceptual stack.

Stack storage is the storage provided by Language Environment that is needed for routine linkage and any
automatic storage. It is allocated on entry to a routine or block, and freed on the subsequent return. It is
a contiguous area of storage obtained directly from the operating system. Stack storage is automatically
provided at thread initialization and is available in the user stack.

The user stack is used by both library routines and, except for Fortran, compiled code. Stack storage is
also available in the library stack, which is an independent area of stack storage, allocated below the 16
MB line, designed to be used only by library routines.

A storage stack is a data structure that supports procedure or block invocation (call and return). It is used
to provide both the storage required for the application initialization and any automatic storage used by
the called routine. Each thread has a separate and distinct stack.

The storage stack is divided into large segments of storage called stack segments, which are further
divided into smaller segments called stack frames, also known as dynamic storage areas (DSAs). A stack

Stack and heap storage

146 z/OS: z/OS Language Environment Programming Guide

frame, or DSA, is dynamically acquired storage composed of a register save area and an area available for
dynamic storage allocation for items such as program variables. Stack frames are added to the user stack
when a routine is entered, and removed upon exit in a last in, first out (LIFO) manner. Stack frame storage
is acquired during the execution of a program and is allocated every time a procedure, function, or block
is entered, as, for example, when a call is made to a Language Environment callable service, and is freed
when the procedure or block returns control.

The first segment used for stack storage is called the initial stack segment. When the initial stack segment
becomes full, a second segment, or stack increment is obtained from the operating system. As each
succeeding stack increment becomes full, another is obtained from the operating system as needed. The
size of the initial stack segment and the size of the increments are specified by the init_size and incr_size
parameters of the STACK runtime option. For more information about the STACK runtime option, see
STACK in z/OS Language Environment Programming Reference.

Figure 54 on page 147 shows the standard Language Environment stack storage model. The XPLINK
stack (see Figure 17 on page 26) is structured differently. See Chapter 3, “Using Extra Performance
Linkage (XPLINK),” on page 23 for information about XPLINK.

UPWARD-GROWING STACK

HIGH

LOW

init_size incr_size incr_size

DSA 4

DSA 3

DSA 2 DSA 6

DSA 7

INITIAL SEGMENT INCREMENT 1 . . . INCREMENT n

DSA 1

DSA 8

DSA n

DSA 5

Figure 54. Language Environment stack storage model

Tuning stack storage
For best performance, the initial stack segment should be large enough to satisfy all requests for stack
storage. The Language Environment storage report generated by the RPTSTG(ON) option shows you
how much stack storage is being used, the total number of segments allocated to the stack, and the
recommended values for the STACK runtime option. An initial stack segment that is too large can waste
storage and decrease overall system performance, especially under CICS where storage is limited.

You can tune stack storage by using the Language Environment STACK and THREADSTACK runtime
options. For more information, see Tuning stack storage in z/OS Language Environment Programming
Guide for 64-bit Virtual Addressing Mode.

RPTSTG(ON) and the STORAGE runtime option can have a negative affect on the performance of your
application, because as the application runs, statistics are kept on storage requests. Therefore, always
use the IBM-supplied default setting RPTSTG(OFF) when running production jobs. Use RPTSTG(ON)
and STORAGE only when debugging or tuning applications. For more information about RPTSTG and
STORAGE, see STORAGE in z/OS Language Environment Programming Reference.

COBOL storage considerations
Storage for data items declared in the COBOL LOCAL-STORAGE SECTION is allocated from the Language
Environment user stack. The storage location of data items declared in COBOL LOCAL-STORAGE SECTION

Stack and heap storage

Chapter 14. Stack and heap storage 147

is controlled by the Language Environment STACK option. The COBOL compiler options do not affect the
location of data items declared in the COBOL LOCAL-STORAGE SECTION.

PL/I storage considerations
PL/I automatic storage is provided by the Language Environment user stack. Automatic storage above
the 16 MB line is supported under control of the Language Environment STACK and THREADSTACK
runtime options. When the Language Environment user stack is above 16 MB, PL/I temporaries (dummy
arguments) and parameter lists (for reentrant/recursive blocks) also reside above 16 MB. As long as an
OS PL/I application does not contain edited stream I/O (for example, the EDIT option is not used in a
PUT statement) and is running with AMODE(31), you can relink it with Language Environment to allow for
STACK(,,ANY) to be used. For Enterprise PL/I for z/OS and PL/I for MVS & VM, as long as the application
is AMODE(31), STACK(,,ANY) is supported. The stack frame size for an individual block is constrained to
16 MB, which means the size of an automatic aggregate, temporary variable, or dummy argument cannot
exceed 16 MB.

Heap storage overview
Heap storage is used to allocate storage that has a lifetime not related to the execution of the current
routine; it remains allocated until you explicitly free it or until the enclave terminates. You can control
allocation and freeing of heap storage using Language Environment callable services, and tune heap
storage using the Language Environment runtime options HEAP, THREADHEAP and HEAPPOOLS.

Heap storage is shared among all program units and all threads in an enclave. Any thread can free heap
storage. You can free one element at a time with the CEEFRST callable service, or you can free all heap
elements at once using CEEDSHP. You cannot, however, discard the initial heap.

Storage can be allocated or freed with any of the HLL storage facilities, such as malloc(), calloc(),
realloc(), aligned_alloc(), or ALLOCATE, along with the Language Environment storage services.
For HLLs with no intrinsic function for storage management, such as COBOL, you can use the Language
Environment storage services.

When HEAPPOOLS(ON) or HEAPPOOLS(ALIGN) is in effect, the C storage management intrinsic functions
must be used together. That is, if you malloc(), you must use free() to release the storage, you cannot
use CEEFRST. See “Using heap pools to improve performance” on page 149 for more information about
heap pools.

Heap storage, sometimes referred to as a heap, is a collection of one or more heap segments comprised
of an initial heap segment, which is dynamically allocated at the first request for heap storage, and, as
needed, one or more heap increments, allocated as additional storage is required. The initial heap is
provided by Language Environment and does not require a call to the CEECRHP service. The initial heap is
identified by heap_id=0. It is also known as the user heap. See Figure 55 on page 149 for an illustration of
Language Environment heap storage.

Heap segments, which are contiguous areas of storage obtained directly from the operating system,
are subdivided into individual heap elements. Heap elements are obtained by a call to the CEEGTST
service, and are allocated within each segment of the initial heap by the Language Environment storage
management routines. When the initial heap segment becomes full, Language Environment gets another
segment, or increment, from the operating system.

The size of the initial heap segment is governed by the init_size parameter of the HEAP runtime
option. (For more information about the HEAP runtime option, see HEAP in z/OS Language Environment
Programming Reference.) The incr_size parameter governs the size of each heap increment.

A named heap is set up specifically by a call to the CEECRHP service, which returns an identifier when the
heap is created. Additional heaps can also be created and controlled by calls to CEECRHP.

Additional heaps provide isolation between logical groups of data in different additional heaps. Separate
additional heaps when you need to group storage objects together so they can be freed at once (with a
single call to CEEDSHP), rather than freed one element at a time (with calls to CEEFRST).

Stack and heap storage

148 z/OS: z/OS Language Environment Programming Guide

Library routines occasionally use a heap called the library heap for storage below 16 MB. The size
of this heap is controlled by the BELOWHEAP runtime option. The library heap and the BELOWHEAP
runtime option have no relation to heaps created by CEECRHP. If an application program creates a
heap using CEECRHP, library routines never use that heap (except, of course, the storage management
library routines CEEGTST, CEEFRST, CEECZST, and CEEDSHP). The library heap can be tuned with the
BELOWHEAP runtime option.

The Language Environment anywhere heap and below heap are reserved for runtime library usage only.
Application data and variables are not kept in these heaps. Do not adjust the size of these heaps unless
the storage report indicates excessive segments allocated for the anywhere or below heaps, or if too
much storage has been allocated.

You can use the Language Environment STORAGE option to diagnose the use of uninitialized and freed
storage.

Language Environment provides a memory leak analysis tool (MEMCHECK) to perform the following
functions:

• Check for heap storage leaks, double frees, overlays and print them in a report.
• Trace user heap storage allocation and deallocation requests and print them in a report.

For more information about MEMCHECK, see MEMCHECK VHM memory leak analysis tool in z/OS
Language Environment Debugging Guide.

You can use the HEAPCHK runtime option to run heap storage tests and to help identify storage leaks. The
HEAPZONES runtime option can be used to identify storage overlay damage.

See Chapter 9, “Using runtime options,” on page 99 and Language Environment runtime options in z/OS
Language Environment Programming Reference for more information about using Language Environment
runtime options.

Figure 55 on page 149 shows the Language Environment heap storage model.

ELEMENT 1

/ / / / / / / / / / / / /

\ \ \ \ \ \ \ \ \ \ \ \ \
/ / / / / / / / / / / / /
\ \ \ \ \ \ \ \ \ \ \ \ \
/ / / / / / / / / / / / /
\ \ \ \ \ \ \ \ \ \ \ \ \

/ / / / / / / / / / / / /
\ \ \ \ \ \ \ \ \ \ \ \ \

\ \ \ \ \ \ \ \ \ \ \ \ \

\ \ \ \ \ \ \ \ \ \ \ \ \
/ / / / / / / / / / / / /

ELEMENT 2

INITIAL SEGMENT INCREMENT

Unallocated
storage

Elements

/ /init_size/ / / /incr_size/ /

HEAP

Figure 55. Language Environment heap storage model

Using heap pools to improve performance
Heap pools is an optional storage allocation algorithm for C/C++ applications that is much faster than
the normal malloc()/free() algorithm in most circumstances. The algorithm is designed to avoid
contention for storage in a multithreaded application, and therefore it is important to investigate if your
application can benefit from its use.

The heap pools algorithm allows for between one and twelve sizes of storage cells that are allocated from
pools out of the heap. For each size, from one to 255 pools can be created where each pool is used by a
portion of the threads for allocating storage. The sizes of the cells, the number of pools for each size and

Stack and heap storage

Chapter 14. Stack and heap storage 149

cell pool extents are specified by the HEAPPOOLS runtime option, which is also used to enable the heap
pools algorithm.

Note: Use of the Vendor Heap Manager (VHM) overrides the use of the HEAPPOOLS runtime option.

Applications that should use heap pools
The following types of applications can benefit from the use of heap pools:

• Multi-threaded applications: although single-threaded applications can benefit from the heap pools
algorithm, multi-threaded applications can get the most benefit because the proper use of heap pools
virtually eliminates contention for heap storage.

• Applications which issue many storage requests with a malloc() of 65536 bytes or less, because the
heap pools algorithm is not used in a malloc() that is greater than 65536 bytes.

• Applications that are not storage constrained: the heap pools algorithm gives up storage for speed.
When untuned, the heap pools algorithm uses much more storage than the normal malloc()/free()
algorithm; when properly tuned it uses only slightly more. Therefore, storage constrained applications
should try heap pools, but only if the cell sizes and cell pool percentages are carefully tuned. (For tuning
information, see “Tuning heap storage” on page 151 .) It is possible that some applications running with
the heap pools algorithm will have to increase their region size.

Heap pools modes of operation
Heap pools can be operated in two modes:

ON This mode is selected by specifying the runtime option HEAPPOOLS(ON). This mode will avoid
contention during storage allocation and release. This mode uses less storage.

ALIGN This mode is selected by specifying HEAPPOOLS(ALIGN). In addition to avoiding contention during
storage allocation and release, the goal of this mode is to reduce cache contention when two adjacent
cells are being updated at the same time. Only multi-threaded applications will gain additional benefits
from using ALIGN mode instead of ON mode. This mode uses more storage.

Choosing the number of pools for a cell size
Contention occurs when two or more threads are allocating or freeing cells that are the same size at
the same time. Using multiple pools should eliminate some of this contention because only a portion of
the threads will be allocating from each pool. For most cell sizes, there is little contention and one pool
is sufficient. However, there may be one or two cell sizes where a lot of successful get heap requests
are occurring and the maximum cells used is high. These sizes can be candidates for multiple pools.
Determining the optimum number of pools to use for these cell sizes will involve comparing performance
measurements, like throughput, when different values are used for a representative application workload.

Heap IDs recognized by the Language Environment heap manager
Table 33 on page 150 lists Language Environment heaps and their respective purposes.

Table 33. Heap IDs recognized by Language Environment heap manager

Heap name Heap ID Intended purpose Created by Disposed by

Initial heap user heap 0 Application program data.
Common heap used by language
intrinsic functions and COBOL
WORKING-STORAGE data items.
CEEDSHP has no effect on the
initial heap. COBOL access is by
Language Environment callable
services.

Enclave initialization. Size
and location determined
from HEAP runtime option.

Enclave termination

Additional heaps and
user heap

(Returned by
CEECRHP)

Collections of application
program data that can be quickly
disposed with a single CEEDSHP
call.

Call to CEECRHP.
Arguments define heap
size, location, and other
characteristics.

Call to CEEDSHP

Enclave termination

Stack and heap storage

150 z/OS: z/OS Language Environment Programming Guide

AMODE considerations for heap storage
The initsz24 and incrsz24 parameters of the HEAP runtime option control the initial size and subsequent
increments of heap storage allocated below the 16 MB line. This storage is required for AMODE(24)
applications running with the ALL31(OFF) and HEAP(,,ANYWHERE) runtime options in effect.

For example, suppose the initial heap segment is allocated above 16 MB. If an AMODE(24) routine
requests storage from this initial heap, Language Environment must allocate a heap segment from below
the 16 MB line so that the AMODE(24) routine can address the storage.

When a Fortran program is in AMODE(24), heap storage is allocated below the 16 MB line. The allocation
of heap storage in a Fortran common block is sensitive to the AMODE setting of the requester program.
For example, if a requester in AMODE(31) calls a Fortran program in AMODE(24), heap storage is
allocated above the 16 MB line as defined by the AMODE(31) setting of the requester.

OS PL/I uses HEAP(,,ANYWHERE) as the default location for heap storage. The allocation of heap storage
is sensitive to the AMODE setting of the requester and the main program. If the requester is in AMODE(31)
or HEAP(,,ANYWHERE) is in effect and the main program is in AMODE(31), heap storage is allocated
above the 16 MB line.

There are some restrictions when using CEEGTST, the Get Heap Storage AWI, in an AMODE(24)
COBOL program. For more information about these restrictions, see CEEGTST—Get heap storage in z/OS
Language Environment Programming Reference.

Tuning heap storage
For best performance, the initial heap segment should be large enough to satisfy all requests for
heap storage. The Language Environment storage report generated by the RPTSTG(ON) runtime option
shows you how much heap storage is being used, the total number of segments allocated to the
heap, the statistics for the optional heap pools algorithm, and the recommended values for the
HEAP, ANYHEAP, BELOWHEAP and HEAPPOOLS runtime options. For PL/I multitasking applications, the
Language Environment THREADHEAP runtime option can be used to tune heap storage at the task level.

For more information about RPTSTG, see RPTSTG in z/OS Language Environment Programming Reference.

The heap pools algorithm (see “Using heap pools to improve performance” on page 149) can be used
to significantly increase the performance of heap storage allocation, especially in a multi-threaded
application that experiences contention for heap storage. However, if the algorithm is not properly tuned,
heap storage could be used inefficiently.

Tuning the heap pools algorithm for an application is a three-step process:

1. Run your application with the runtime options HEAPPOOLS(ON) or HEAPPOOLS(ALIGN) as appropriate
using the following cell sizes and percentages:

(8,10,32,10,128,10,256,10,1024,10,2048,10,3072,1,4096,1,
8192,1,16384,1,32768,1,65536,1)

and RPTSTG(ON) for some time with a representative application workload. It may be necessary for
the application to increase the region size.

2. Change the cell sizes in the HEAPPOOLS runtime option to the "Suggested Cell Sizes" from the first
run. Re-run the application with a representative workload, using the default percentages in the
HEAPPOOLS option. Examine the storage report.

3. The values listed as "Suggested Percentages for Current Cell Sizes" are the recommended values to
minimize storage usage. These values should be evaluated prior to finalizing cell pool sizes.

Any time there is a significant change in the workload, repeat these tuning steps to obtain optimal
HEAPPOOLS values.

RPTSTG(ON) and the STORAGE runtime option can have a negative affect on the performance of
your application. Therefore, always use the IBM-supplied default setting RPTSTG(OFF) when running
production jobs. Use RPTSTG(ON) and STORAGE(xx,xx,xx) only to debug applications.

Stack and heap storage

Chapter 14. Stack and heap storage 151

Usage notes:

1. These recommendations are dynamic and represent values for this particular run. The values might
change with each run performed.

2. Long-running applications might have an adverse effect on the statistical data collection. Fixed length
counters might overflow, causing incorrect HEAPPOOLS recommendations. If the recommendations
appear to be unrealistic, rerun with a reduced application run time.

Storage performance considerations
Use the RPTSTG(ON) option to generate a report about the amount of storage your application uses in
various Language Environment storage classes (such as STACK, THREADSTACK, LIBSTACK, THREADHEAP,
HEAP, HEAPPOOLS and BELOWHEAP). You can also use the report to determine your application's
minimum storage requirements and the number of segments allocated and freed, and the manner in
which heap pool cells are being used. You can use this information to tune your application to minimize
the number of segments allocated and freed, and to increase the efficiency of the heap pools algorithm.
Before putting your application into production, be sure to specify the RPTSTG(OFF) option so that
no storage report is generated. RPTSTG(ON) can have a negative affect on the performance of your
application, because as the application runs, statistics are kept on storage requests.

Dynamic storage services
Language Environment provides callable services that let you get and free heap storage at selected points
in your application. Stack storage is automatically allocated upon entry into a routine and freed upon exit,
but you must allocate heap storage, which persists until you free it or until your application terminates.

Each time your application runs, the setting of the HEAP runtime option specifies the size of an initial
heap from which heap storage is allocated. You can allocate storage out of this initial heap whenever your
application requires it. Call CEEGTST (Get Heap Storage) and specify an ID identifying the initial heap and
the portion of storage in the initial heap that you require. When your application no longer requires the
storage, you can call the CEEFRST (Free Heap Storage) service with the address of the element to free it.

CEECRHP (Create New Additional Heap) allows you to identify a heap, other than the initial heap, from
which to get and free storage. You can use CEEGTST to allocate elements from the newly created heap.
One advantage of this approach is that CEECRHP allows you to group storage elements together and to
use CEEDSHP (Discard Heap) to discard them all at once when you no longer need them.

For a description and syntax of each Language Environment dynamic storage callable service, see z/OS
Language Environment Programming Reference.

Callable services are not supported directly from a Fortran program. For information about invoking
callable services from assembler routines, see Chapter 29, “Assembler considerations,” on page 389.

Examples of callable storage services
This topic contains examples that use callable services. The first group of examples use CEEGTST
and CEEFRST to build a linked list. The second group of examples use CEE3RHP, CEECRHP, CEEGTST,
CEECZST, CEEFRST, and CEEDSHP to manage storage.

C example of building a linked list
Following is an example of how to build a linked list in a C program using callable services.

/*Module/File Name: EDCLLST */
 /**
 ** *
 **FUNCTION : CEEGTST - obtain storage from user heap *
 ** for a linked list. *
 ** : CEEFRST - free linked list storage *
 ** *
 ** This example illustrates the construction of a linked *
 ** list using the Language Environment storage management *

Stack and heap storage

152 z/OS: z/OS Language Environment Programming Guide

 ** services. *
 ** *
 ** *
 ** 1. Storage for each list element is allocated from the *
 ** user heap. *
 ** *
 ** 2. The list element is initialized and appended to the *
 ** list. *
 ** *
 ** 3. After three members are appended, the list traversed *
 ** and the count saved in each element is displayed. *
 ** *
 ** 4. The linklist storage is freed. *
 ** *
 **/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>
void main ()
{
 _INT4 HEAPID;
 _INT4 HPSIZE;
 _INT4 LCOUNT;
 _FEEDBACK FC;
 _POINTER ADDRSS;
 struct LIST_ITEM
 { _INT4 COUNT;
 struct LIST_ITEM *NEXT_ITEM;
 } ;
 struct LIST_ITEM *ANCHOR;
 struct LIST_ITEM *CURRENT;
 _INT4 NBYTES = sizeof(struct LIST_ITEM);

 printf ("\n**********************************\n");
 printf ("\nCESCSTO C Example is now in motion\n");
 printf ("\n**********************************\n");
 ANCHOR = NULL;

 for (LCOUNT = 1; LCOUNT < 4; LCOUNT++)
 {
 /***
 * Call CEEGTST to get storage from user heap *
 ***/
 CEEGTST (&HEAPID , &NBYTES , &ADDRSS , &FC);
 if ((_FBCHECK (FC , CEE000) == 0) && ADDRSS != 0)
 /* **
 * If storage is gotten successfully, the linked *
 * list elements are pointed to by the pointer *
 * variable CURRENT. Append element to the end of *
 * the list. The list origin is pointed to by the *
 * variable ANCHOR. *
 * **/
 {
 if (ANCHOR == NULL)
 {
 ANCHOR =(struct LIST_ITEM *) ADDRSS;
 }else{
 CURRENT -> NEXT_ITEM =(struct LIST_ITEM *)ADDRSS;
 }
 CURRENT =(struct LIST_ITEM *) ADDRSS;
 CURRENT -> NEXT_ITEM = NULL;
 CURRENT -> COUNT = LCOUNT;
 }else{
 printf ("Error in getting user storage\n");
 }
 }
 /***
 * On completion of the above loop, we have the *
 * following layout: *
 * *
 * ANCHOR --> LIST-ITEM1 --> LIST-ITEM2 --> LIST-ITEM3*
 * *
 * Loop thru list items 1 thru 3 and print out the *
 * identifying item number saved in the COUNT field. *
 * *
 * Test the LCOUNT variable to verify that three items *
 * were indeed in the linked list. *
 ***/
 CURRENT = ANCHOR;
 while (CURRENT)

Stack and heap storage

Chapter 14. Stack and heap storage 153

 {
 printf("This is list item %d\n", CURRENT->COUNT) ;
 ADDRSS = CURRENT;
 LCOUNT = CURRENT -> COUNT;
 CURRENT = CURRENT -> NEXT_ITEM;
 /***
 * Call CEEFRST to free this piece of storage *
 ***/
 CEEFRST (&ADDRSS , &FC);
 if (_FBCHECK (FC , CEE000) == 0)
 {
 }else{
 printf ("Error freeing storage from heap\n");
 }
 }
 if (LCOUNT == 3)
 {
 printf ("\n********************************\n");
 printf ("\nC/370 linked list example ended.\n");
 printf ("\n********************************\n");
 exit(0);
 }else{
 printf ("Error in constructing linked list\n");
 }
 exit(-1);
}

COBOL example of building a linked list
Following is an example of how to build a linked list in a COBOL program using callable services.

 CBL C,LIB,RENT,LIST,QUOTE
 *Module/File Name: IGZTLLST
 **
 ** *
 ** CESCSTO - Drive CEEGTST - obtain storage from user heap *
 ** for a linked list. *
 ** and CEEFRST - free linked list storage *
 ** *
 ** This example illustrates the construction of a linked *
 ** list using the LE storage management services. *
 ** *
 ** *
 ** 1. Storage for each list element is allocated from the *
 ** user heap, *
 ** *
 ** 2. The list element is initialized and appended to the *
 ** list. *
 ** *
 ** 3. After three members are appended, the list traversed *
 ** and the data saved in each element is displayed. *
 ** *
 ** 4. The linklist storage is freed. *
 ** *
 **
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CESCSTO.
 DATA DIVISION.

 ** Storage management parameters, including pointers **
 ** for the returned storage addresses. **

 WORKING-STORAGE SECTION.
 01 LCOUNT PIC 9 USAGE DISPLAY VALUE 0.
 01 HEAPID PIC S9(9) BINARY VALUE 0.
 01 NBYTES PIC S9(9) BINARY.
 01 FC.
 05 FILLER PIC X(8).
 COPY CEEIGZCT.
 05 FILLER PIC X(4).
 01 ADDRSS USAGE IS POINTER VALUE NULL.
 01 ANCHOR USAGE IS POINTER VALUE NULL.

 ** Define variables in linkage section in order to **
 ** reference storage returned as addresses in **
 ** pointer variables by Language Environment. **

 LINKAGE SECTION.
 01 LIST-ITEM.

Stack and heap storage

154 z/OS: z/OS Language Environment Programming Guide

 05 CHARDATA PIC X(80) USAGE DISPLAY.
 05 NEXT-ITEM USAGE IS POINTER.
 PROCEDURE DIVISION.
 0001-BEGIN-PROCESSING.
 DISPLAY "***************************************".
 DISPLAY "CESCSTO COBOL Example is now in motion.".
 DISPLAY "***************************************".

 ** Call CEEGTST to get storage from user heap **

 MOVE LENGTH OF LIST-ITEM TO NBYTES
 PERFORM 3 TIMES
 ADD 1 TO LCOUNT
 CALL "CEEGTST" USING HEAPID , NBYTES,
 ADDRSS , FC

 ** If storage storage is gotten successfully, an **
 ** address is returned by LE in the ADDRSS **
 ** parameter. The address of variable LIST-ITEM **
 ** in the linkage section can now be SET to address **
 ** the acquired storage. LIST-ITEM is appended to **
 ** the end of the list. The list origin is pointed **
 ** to by the variable ANCHOR. **

 IF CEE000 THEN
 IF ANCHOR = NULL THEN
 SET ANCHOR TO ADDRSS
 ELSE
 SET NEXT-ITEM TO ADDRSS
 END-IF
 SET ADDRESS OF LIST-ITEM TO ADDRSS
 SET NEXT-ITEM TO NULL
 MOVE " " TO CHARDATA
 STRING "This is list item number " LCOUNT
 DELIMITED BY SIZE INTO CHARDATA
 ELSE
 DISPLAY "Error in obtaining storage from heap"
 GOBACK
 END-IF
 END-PERFORM.

 ** On completion of the above loop, we have the **
 ** following layout: **
 ** **
 ** ANCHOR --> LIST-ITEM1 --> LIST-ITEM2 --> LIST-ITEM3 **
 ** **
 ** Loop thru list items 1 thru 3 and print out the **
 ** identifying text written in the CHARDATA fields. **
 ** **
 ** Test a counter variable to verify that three items **
 ** were indeed in the linked list. **

 MOVE 0 TO LCOUNT.
 PERFORM WITH TEST AFTER UNTIL (ANCHOR = NULL)
 SET ADDRESS OF LIST-ITEM TO ANCHOR
 DISPLAY CHARDATA
 SET ADDRSS TO ANCHOR
 SET ANCHOR TO NEXT-ITEM
 PERFORM 100-FREESTOR
 ADD 1 TO LCOUNT
 END-PERFORM.
 IF (LCOUNT = 3)
 THEN
 DISPLAY "**************************************"
 DISPLAY "CESCSTO COBOL Example is now ended. "
 DISPLAY "**************************************"
 ELSE
 DISPLAY "Error in List contruction ."
 END-IF.

 GOBACK.
 100-FREESTOR.

 * Call CEEFRST to free this storage from user heap **

 CALL "CEEFRST" USING ADDRSS , FC.
 IF CEE000 THEN
 NEXT SENTENCE
 ELSE
 DISPLAY "Error freeing storage from heap"
 END-IF.

Stack and heap storage

Chapter 14. Stack and heap storage 155

PL/I example of building a linked list
Following is an example of how to build a linked list in an Enterprise PL/I for z/OS or PL/I for MVS & VM
program using callable services.

*PROCESS MACRO;
*Process lc(101),opt(0),s,map,list,stmt,a(f),ag ;
 CESCSTO: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW;
 %INCLUDE CEEIBMCT;
 /**/
 /*Module/File Name: IBMLLST */
 /**/
 /** **/
 /** FUNCTION : CEEGTST - obtain storage from user **/
 /** heap for a linked list. **/
 /** : CEEFRST - free linked list storage **/
 /** **/
 /** This example illustrates the construction of **/
 /** a linked list using the Language Environment **/
 /** storage management services. **/
 /** **/
 /** 1. Storage for each list element is **/
 /** allocated from the user heap, **/
 /** **/
 /** 2. The list element is initialized and **/
 /** appended to the list. **/
 /** **/
 /** 3. After three members are appended, the **/
 /** list traversed and the data saved in **/
 /** each element is displayed. **/
 /** **/
 /** 4. The linklist storage is freed. **/
 /** **/
 /**/
 /**/
 DCL NULL BUILTIN;
 /**/
 /* Storage management parameters, including */
 /* pointers for the returned storage addresses. */
 /**/
 DCL HEAPID FIXED BIN(31,0) INIT (0); /* heap ID for user heap */
 DCL NBYTES FIXED BIN(31,0) /* size of required heap */
 INIT (STORAGE(LIST_ITEM));
 DCL 01 FC, /* Feedback token */
 03 MsgSev REAL FIXED BINARY(15,0),
 03 MsgNo REAL FIXED BINARY(15,0),
 03 Flags,
 05 Case BIT(2),
 05 Severity BIT(3),
 05 Control BIT(3),
 03 FacID CHAR(3), /* Facility ID */
 03 ISI /* Instance-Specific Information */
 REAL FIXED BINARY(31,0);
 DCL ADDRSS POINTER, /* Address of storage */
 PREV POINTER; /* Address of prior item */
 DCL ANCHOR POINTER; /* linklist anchor */
 /**/
 /* Declare linked list item as based structure. */
 /**/
 DCL 01 LIST_ITEM BASED(ADDRSS), /* Map of list item */
 02 CHARDATA CHAR(80),
 02 NEXT_ITEM POINTER;
 PUT SKIP LIST('***');
 PUT SKIP LIST('PL/I linked list example is now in motion');
 PUT SKIP LIST('***');
 ANCHOR = NULL;
 DO LCOUNT = 1 TO 3;
 /**/
 /* Call CEEGTST to get storage from user heap. */
 /**/
 CALL CEEGTST (HEAPID, NBYTES, ADDRSS, FC);
 IF FBCHECK(FC, CEE000) THEN DO;

 /**/
 /* If storage is obtained successfully, the */
 /* linked list elements are based on the */
 /* address of the storage obtained. Append */
 /* element to end of list. The list origin */

Stack and heap storage

156 z/OS: z/OS Language Environment Programming Guide

 /* is pointed to by the variable ANCHOR. */
 /**/
 IF (ANCHOR = NULL) THEN
 ANCHOR = ADDRSS;
 ELSE
 PREV ->NEXT_ITEM = ADDRSS;
 NEXT_ITEM = NULL;
 CHARDATA = 'This is list item number ' || LCOUNT;
 PREV = ADDRSS;
 END;
 ELSE DO;
 PUT SKIP LIST ('Error ' || FC.MsgNo
 || ' in getting user storage');
 STOP;
 END;
 END;
 /***/
 /* On completion of the above loop, we have the */
 /* following layout: */
 /* */
 /* ANCHOR -> LIST_ITEM1 -> LIST_ITEM2 -> LIST_ITEM3 */
 /* */
 /* Loop thru list items 1 thru 3 and print out the */
 /* identifying text written in the CHARDATA fields. */
 /* */
 /* Test a counter variable to verify that three */
 /* items were indeed in the linked-list. */
 /***/
 ADDRSS = ANCHOR;
 LCOUNT = 0;
 DO UNTIL (ADDRSS = NULL);

 PUT SKIP LIST(CHARDATA);
 /***/
 /* Call CEEFRST to free this piece of storage. */
 /***/
 CALL CEEFRST (ADDRSS, FC);
 IF FBCHECK(FC, CEE000) THEN DO;
 LCOUNT = LCOUNT + 1;
 END;
 ELSE DO;
 PUT SKIP LIST ('Error' || FC.MsgNo
 || ' freeing storage from heap');
 STOP;
 END;
 ADDRSS = NEXT_ITEM;
 END;
 IF LCOUNT = 3 THEN DO;
 PUT SKIP LIST('**************************************');
 PUT SKIP LIST('PL/I linked list example is now ended.');
 PUT SKIP LIST('**************************************');
 END;

 END CESCSTO;

C example of storage management
Following is an example of how to manage storage for a C program using callable services.

/*Module/File Name: EDCSTOR */
/**/
/* */
/* Function : CEE3RPH - Set report heading */
/* : CEECRHP - Create user heap */
/* : CEEGTST - Obtain storage from user heap */
/* : CEECZST - Change size of this piece of storage */
/* : CEEFRST - Free this piece of storage */
/* : CEEDSHP - Discard user heap */
/* */
/* This example illustrates the invocation of the Language */
/* Environment Dynamic Storage Callable Services for a */
/* C program */
/* 1. A report heading is set for display at the beginning */
/* of the storage or options report. */
/* */
/* 2. A user heap is created. */
/* */
/* 3. Storage is allocated from the user heap. */
/* */

Stack and heap storage

Chapter 14. Stack and heap storage 157

/* 4. A change is made to the size of the allocated storage.*/
/* */
/* 5. The allocated storage is freed. */
/* */
/* 6. The user heap is discarded. */
/* */
/***/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>
void main ()
{
 _CHAR80 RPTHEAD;
 _INT4 HEAPID;
 _INT4 HPSIZE;
 _INT4 NBYTES;
 _INT4 INCR;
 _INT4 OPTS;
 _INT4 STORALC;
 _POINTER ADDRSS;
 _FEEDBACK FC;
 printf ("\n**********************************\n");
 printf ("\nCE90STO C Example is now in motion\n");
 printf ("\n**********************************\n");
 memset (RPTHEAD , ' ' , 80);
 memcpy (RPTHEAD , "User defined report heading" , 27);
 /***
 * Call CEE3RPH to set the user defined report heading *
 ***/
 CEE3RPH (RPTHEAD , &FC);
 if (_FBCHECK (FC , CEE000) != 0)
 printf ("Error in setting report heading\n");
 /***
 * Call CEECRHP to create a user heap *
 ***/
 HEAPID = 0;
 HPSIZE = 1;
 INCR = 0;
 OPTS = 0;
 STORALC = 0;
 CEECRHP (&HEAPID , &HPSIZE , &INCR , &OPTS , &FC);
 if (_FBCHECK (FC , CEE000) == 0)
 {
 /***
 * Call CEEGTST to get storage from user heap *
 ***/
 NBYTES = 4000;
 CEEGTST (&HEAPID , &NBYTES , &ADDRSS , &FC);
 if ((_FBCHECK (FC , CEE000) == 0) && ADDRSS != 0)
 {
 /***
 * Call CEECZST to change size of heap element *
 ***/
 NBYTES = 2000;
 CEECZST (&ADDRSS , &NBYTES , &FC);
 if (_FBCHECK (FC , CEE000) == 0)
 {
 STORALC = 1;
 }else{
 printf ("Error in changing size of storage\n");
 }
 }else{
 printf ("Error in getting user storage\n");
 }
 }else{
 printf ("Error in creating user heap\n");
 }
 if (STORALC != 0)
 {
 /***
 * Call CEEFRST to free this piece of storage *
 ***/
 CEEFRST (&ADDRSS , &FC);

 if (_FBCHECK (FC , CEE000) == 0)
 {
 /***
 * Call CEEDSHP to discard user heap *
 ***/
 CEEDSHP (&HEAPID , &FC);

Stack and heap storage

158 z/OS: z/OS Language Environment Programming Guide

 if (_FBCHECK (FC , CEE000) == 0)
 {
 printf ("C/370 Storage Example ended\n");
 exit(0);
 }else{
 printf ("Error discarding user heap\n");
 }
 }else{
 printf ("Error freeing storage from heap\n");
 }
 }
 exit(-1);
}

COBOL example of storage management
Following is an example of how to manage storage for a COBOL program using callable services.

CBL LIB,QUOTE
 *Module/File Name: IGZTSTOR
 **
 ** CE90STO - Call the following LE services:
 ** : CEE3RPH - Set report heading
 ** : CEECRHP - Create user heap
 ** : CEEGTST - obtain storage from user heap
 ** : CEECZST - change size of this piece of storage
 ** : CEEFRST - free this piece of storage
 ** : CEEDSHP - discard user heap
 ** This example illustrates the invocation of the LE
 ** Dynamic Storage Callable Services from a COBOL program.
 ** 1. A report heading is set for display at the beginning
 ** of the storage or options report.
 ** 2. A user heap is created.
 ** 3. Storage is allocated from the user heap.
 ** 4. A change is made to the size of the allocated storage.
 ** 5. The allocated storage is freed.
 ** 6. The user heap is discarded.
 **
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CE90STO.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 RPTHEAD PIC X(80).
 01 HEAPID PIC S9(9) BINARY.
 01 HPSIZE PIC S9(9) BINARY.
 01 INCR PIC S9(9) BINARY.
 01 OPTS PIC S9(9) BINARY.
 01 ADDRSS USAGE IS POINTER.
 01 NBYTES PIC S9(9) BINARY.
 01 NEWSIZE PIC S9(9) BINARY.
 01 FC.
 02 Condition-Token-Value.
 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.
 PROCEDURE DIVISION.
 0001-BEGIN-PROCESSING.
 DISPLAY "***************************************".
 DISPLAY "CE90STO COBOL Example is now in motion.".
 DISPLAY "***************************************".
 MOVE "User defined report heading" TO RPTHEAD.

 * Call CEE3RPH to set the user defined report heading

 CALL "CEE3RPH" USING RPTHEAD, FC.
 IF NOT CEE000 THEN
 DISPLAY "Error in setting Report Heading"
 GOBACK
 END-IF.

 * Call CEECRHP to create a user heap

Stack and heap storage

Chapter 14. Stack and heap storage 159

 MOVE 0 TO HEAPID.
 MOVE 1 TO HPSIZE.
 MOVE 0 TO INCR.
 MOVE 0 TO OPTS.
 CALL "CEECRHP" USING HEAPID, HPSIZE, INCR, OPTS, FC.
 IF CEE000 of FC THEN

 * Call CEEGTST to get storage from user heap

 MOVE 4000 TO NBYTES
 CALL "CEEGTST" USING HEAPID, NBYTES, ADDRSS, FC
 IF CEE000 of FC THEN

 * Call CEECZST to change the size of heap element

 MOVE 2000 TO NEWSIZE
 CALL "CEECZST" USING ADDRSS, NEWSIZE, FC
 IF CEE000 of FC THEN
 PERFORM 100-FREE-ALL
 DISPLAY "COBOL Storage example pgm ended"
 ELSE
 DISPLAY "Error in changing size of storage"
 END-IF
 ELSE
 DISPLAY "Error in obtaining storage from heap"
 END-IF
 ELSE
 DISPLAY "Error in creating user heap"
 END-IF.

 GOBACK.

 100-FREE-ALL.

 * Call CEEFRST to free this storage from user heap

 CALL "CEEFRST" USING ADDRSS, FC.
 IF CEE000 of FC THEN

 * Call CEEDSHP to discard user heap

 CALL "CEEDSHP" USING HEAPID, FC
 IF CEE000 THEN
 NEXT SENTENCE
 ELSE
 DISPLAY "Error discarding user heap"
 END-IF
 ELSE
 DISPLAY "Error freeing storage from heap"
 END-IF.

PL/I example of storage management
Following is an example of how to manage storage for an Enterprise PL/I for z/OS or a PL/I for MVS & VM
program using callable services.

*PROCESS MACRO;
 CE90STO: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW;
 %INCLUDE CEEIBMCT;
 /***/
 /*Module/File Name: IBMSTOR */
 /***/
 /* FUNCTION : CEE3RPH - set report heading */
 /* : CEECRHP - create user heap */
 /* : CEEGTST - obtain storage from user heap */
 /* : CEEZCST - change size of storage block */
 /* : CEEFRST - free this piece of storage */
 /* : CEEDSHP - discard user heap */
 /* This example illustrates the use of the Language */
 /* Environment storage callable services in a PL/I */
 /* program. */
 /* */
 /* 1. A report heading is set for display at the */
 /* beginning of the storage or options report. */
 /* 2. A user heap is created. */
 /* 3. Storage is allocated from the user heap. */

Stack and heap storage

160 z/OS: z/OS Language Environment Programming Guide

 /* 4. The size of allocated storage is changed. */
 /* 5. The allocated storage is freed. */
 /* 6. The user heap is discarded. */
 /* */
 /***/

 DCL NULL BUILTIN;
 DCL ADDRESS PTR INIT(NULL); /* ADDRESS OF STORAGE */
 DCL NEWSIZE REAL FIXED BINARY(31,0)
 INIT(2000); /* NEW STORAGE SIZE */
 DCL RPTHEAD CHAR(80)
 INIT('USER DEFINED REPORT HEADING');
 DCL HEAPID REAL FIXED BINARY(31,0)
 INIT(0); /* HEAP ID FOR CEECRHP */
 DCL HPSIZE REAL FIXED BINARY(31,0)
 INIT(1); /* HEAP SIZE FOR CEECRHP */
 DCL INCR REAL FIXED BINARY(31,0)
 INIT(0); /* HEAP INCREMENT */
 DCL NBYTES REAL FIXED BINARY(31,0)
 INIT(4000); /* SIZE OF REQUIRED HEAP */
 DCL 01 FC, /* Feedback token */
 03 MsgSev REAL FIXED BINARY(15,0),
 03 MsgNo REAL FIXED BINARY(15,0),
 03 Flags,
 05 Case BIT(2),
 05 Severity BIT(3),
 05 Control BIT(3),
 03 FacID CHAR(3), /* Facility ID */
 03 ISI /* Instance-Specific Information */
 REAL FIXED BINARY(31,0);

 DCL OPTS REAL FIXED BINARY(31,0)
 INIT(0); /* HEAP OPTIONS */
 PUT SKIP LIST('PL/I Storage example is now in motion');

 /**/
 /* Call CEE3RPH to set user defined report heading */
 /**/
 CALL CEE3RPH (RPTHEAD, FC);
 IF ^ FBCHECK(FC, CEE000) THEN DO;
 PUT SKIP LIST ('Error ' || FC.MsgNo
 || ' in setting Report Heading');
 STOP;
 END;
 /**/
 /* Call CEECRHP to create user heap */
 /**/
 CALL CEECRHP (HEAPID, HPSIZE, INCR, OPTS, FC);
 IF FBCHECK(FC, CEE000) THEN DO;
 /***/
 /* Call CEEGTST to get storage from user heap */
 /***/
 CALL CEEGTST (HEAPID, NBYTES, ADDRESS, FC);
 IF FBCHECK(FC, CEE000) THEN DO;
 /**/
 /* Call CEECZST to change the size of block */
 /**/
 CALL CEECZST (ADDRESS, NEWSIZE, FC);
 IF FBCHECK(FC, CEE000) THEN DO;
 CALL FREE_ALL;
 PUT SKIP LIST ('PL/I Storage Example program ended');
 END;
 ELSE DO;
 PUT SKIP LIST('Error ' || FC.MsgNo
 || ' in changing size of storage');
 STOP;
 END;
 END;
 ELSE DO;
 PUT SKIP LIST('Error ' || FC.MsgNo
 || ' in getting user storage');
 STOP;
 END;
 END;
 ELSE DO;
 PUT SKIP LIST ('Error' || FC.MsgNo
 || ' in creating user heap');
 STOP;
 END;

 /* Logical end of Main program CE90STO */
 FREE_ALL: PROC;

Stack and heap storage

Chapter 14. Stack and heap storage 161

 /**/
 /* Call CEEFRST to free this piece of storage */
 /**/
 CALL CEEFRST (ADDRESS, FC);
 IF FBCHECK(FC, CEE000) THEN DO;
 /***/
 /* Call CEEDSHP to discard user heap */
 /***/
 CALL CEEDSHP (HEAPID, FC);
 IF ^ FBCHECK(FC, CEE000) THEN DO;
 PUT SKIP LIST ('Error ' || FC.MsgNo
 || ' discarding user heap');
 STOP;
 END;
 END;
 ELSE DO;
 PUT SKIP LIST ('Error ' || FC.MsgNo
 || ' freeing storage from heap');
 STOP;
 END;

 END FREE_ALL;

 END CE90STO;

User-created heap storage
Language Environment can also manage, as a heap, storage that is obtained by a C/C++ application. The
following functions provide this user-created heap storage capability:
_ucreate()

Creates a heap using storage that is provided by the caller.
_umalloc()

Allocates storage elements from the user-created heap.
_ufree()

Returns storage elements to the user-created heap.
_uheapreport()

Generates a storage report to assist in tuning the application's use of the user-created heap.

The storage capability allows the application more flexibility in choosing the attributes of the heap
storage. For instance, the storage could be shared memory that is accessed by multiple programs.

For more information about the user-created heap functions, see z/OS XL C/C++ Runtime Library
Reference.

Alternative Vendor Heap Manager
Language Environment provides a mechanism such that a vendor can provide an alternative Vendor Heap
Manager (VHM) that can be used by Language Environment C/C++ applications. The VHM replaces the
malloc() (default operator new and default operator new [] are included), free() (default operator delete
and default operator delete [] are included), calloc() and realloc() functions for non-XPLINK and XPLINK.

The VHM will not manage the following:

• CEEGTST
• CEEVGTST
• CEEFRST
• CEEVFRST
• CEECZST
• CEEVCZST
• CEEVGTSB
• Additional heaps (CEECRHP)

Stack and heap storage

162 z/OS: z/OS Language Environment Programming Guide

• User-created heaps (__ucreate, __umalloc, __ufree)
• ANYHEAP
• BELOWHEAP

Using _CEE_HEAP_MANAGER to invoke the alternative Vendor Heap Manager
This environment variable is set by the end-user or the application to indicate that the Vendor Heap
Manager (VHM), identified by the dllname, is to be used to manage the user heap. The format of the
environment variable is:

_CEE_HEAP_MANAGER=dllname

Note: This environment variable must be set using one of the following mechanisms:

• ENVAR runtime option
• Inside the file specified by the _CEE_ENVFILE environment variable
• Inside the file specified by the _CEE_ENVFILE_S environment variable. _CEE_ENVFILE_S will enable a

list of environment variables to be set from a specified file and will also strip trailing white space from
each name=value line read from a file.

You must set the environment variable before any user code obtains control; that is, before the HLL user
exit, static constructors, or main obtains control. If you set it after the user code has begun executing, the
VHM will not be activated but the value of the environment variable will be updated.

Stack and heap storage

Chapter 14. Stack and heap storage 163

Stack and heap storage

164 z/OS: z/OS Language Environment Programming Guide

Chapter 15. Introduction to Language Environment
condition handling

This section outlines the Language Environment condition handling model in a POSIX(OFF) environment.
It describes what constitutes a condition in Language Environment and how Language Environment
supplements existing HLL condition handling methods. It also presents several condition handling
scenarios to demonstrate how Language Environment condition handling works.

If you use mixed-language applications, it is especially important for you to know how Language
Environment condition handling works with existing high-level language (HLL) condition handling
schemes.

Described in detail later in this section are the steps involved in condition handling under Language
Environment, HLL-specific condition handling considerations, Language Environment—POSIX signal
handling interactions, and how you can communicate events that happen in a routine to another routine.

If your application is running under CICS, you should refer to the CICS-specific condition handling
information, which is discussed in “Condition handling under CICS” on page 357. If your application
is running under IMS, you should refer to the IMS-specific condition handling information, which is
discussed in “Condition handling under IMS” on page 367.

Concepts of Language Environment condition handling
There are two main concepts of Language Environment condition handling: the stack frame-based model
and the unique, 12-byte condition token that it provides to communicate information about conditions to
Language Environment resources and services.

Language Environment uses stack frames to keep track of a routine's order of execution, and the condition
handlers available for each routine. This ensures that conditions can be isolated and handled precisely
where they occur in a routine.

One of the most useful features of the condition handling model is the condition token: a 12-byte data
type that contains information about each condition. You can use the condition token as a feedback code
or to communicate with Language Environment message services. Unlike a return code, which is specific
to the caller and callee of a routine, a condition token communicates between all the routines involved
in an application. A condition token contains more instance-specific information about a condition than a
return code does.

Language Environment supplements, but does not replace, existing HLL condition handling techniques
such as C/C++ signal handlers (created using the signal() function), PL/I ON-units, and return
code-based programming techniques. HLL condition handling techniques are discussed in Chapter 16,
“Language Environment and HLL condition handling interactions,” on page 181.

Language Environment condition handling is most beneficial when used as part of mixed-language
applications because it is consistent for all applications. If you are coding in a single language, you can
use the condition handling semantics of that language, but if you have any ILC applications, you need the
consistency across languages that Language Environment provides.

Language Environment can respond in many ways to a condition. For example, Language Environment
can invoke a condition handler, a term used to define the specific routine that actually recognizes and
responds to the condition. A condition handler can be registered by the CEEHDLR (register user-written
condition handler) service, or be part of the language-specific condition handling services, such as a C/C+
+ signal handler or a PL/I ON-unit. HLL condition handling semantics that are intrinsic to the programming
language also exist; an example is the COBOL ON SIZE phrase.

Related runtime options are as follows:
ABPERC

Percolates (removes from Language Environment condition handling) a single abend

Condition handling introduction

© Copyright IBM Corp. 1991, 2022 165

DEPTHCONDLMT
Indicates how deep conditions might be nested

ERRCOUNT
Indicates how many severity 2, 3, and 4 conditions can occur before issuing an abend.

TRAP
Indicates whether Language Environment routines should handle abends and program interrupts.

XUFLOW
Indicates if exponent underflow should cause program interrupt.

Related callable services are as follows:
CEE3CIB

Returns pointer to the condition information block that is associated with a condition token passed to
a user-written condition handler

CEE3GRN
Gets name of routine that incurred the condition currently being processed

CEE3GRO
Returns the offset of the location within the most current Language Environment-conforming routine
where a condition occurred

CEE3SPM
Queries or modifies (by enabling or masking) hardware conditions

CEE3SRP
Sets a resume point within user application code to resume from a Language Environment user
condition handler

CEEGQDT
Retrieves q_data token from the ISI

CEEHDLR
Registers user-written condition handler

CEEHDLU
Unregisters user-written condition handler

CEEITOK
Returns the initial condition token from the current condition information block

CEEMRCE
Moves the resume cursor to an explicit location where resumption is to occur after a condition has
been handled

CEEMRCR
Moves resume cursor relative to handle cursor. You might view this as performing a GOTO out of block,
or setjmp() and longjmp().

CEESGL
Signals a condition

The stack frame model
A stack consists of an ordered set of stack elements, called stack frames, which are managed in a last-in
first-out manner. Unqualified references to stack mean invocation stack. The invocation stack can contain
multiple invocation stack frames, which represent invocation instances of routines. A stack frame is added
to the stack on entry to a routine and removed from the stack on exit from the routine.

The Language Environment condition handling model is based on stack frames, in which condition
handling can be different in different stack frames. Another condition handling model is global condition
handling, which means that one condition handling mechanism remains in effect for the life of an
application. The distinction between global condition handling and condition handling within a stack
frame-based model can affect how a condition is handled in your application, particularly if it is a
mixed-language application.

Condition handling introduction

166 z/OS: z/OS Language Environment Programming Guide

The following cause a stack frame to be added to the invocation stack:

• A function call in C or C++ that has not been inlined
• Entry into a program in COBOL
• Entry into a main program or subprogram in Fortran
• Entry into a procedure or begin block in PL/I
• Entry into an ON-unit in PL/I

A stack frame is added to the stack every time a new routine is entered and removed when it is exited.
Language Environment uses stack frames to keep track of such things as the routine currently executing,
the point at which an error occurs, and the point at which execution should resume after the condition is
handled.

Each new stack frame can contain user-written condition handlers registered with CEEHDLR, but
language-specific handlers such as C/C++ signal handlers are not associated with each stack frame. User
condition handlers can be unregistered explicitly (by calling CEEHDLU) or implicitly, as when the routine
that registered the handler returns control to its caller.

Two cursors, or pointers, keep track of the state of condition handling. The cursors are named the handle
and resume cursors.

Handle cursor
If a condition occurs or is raised, the handle cursor initially points to the most recently established
condition handler within the stack frame. As condition handling progresses, the handle cursor moves to
earlier handlers within the stack frame, or to the first handler in the calling stack frame.

Resume cursor
The resume cursor generally points to the next sequential instruction where a routine would continue
running if it were to resume. Initially, the resume cursor is positioned after the machine instruction that
caused or signaled the condition. You can move the resume cursor relative to the handle cursor by calling
CEEMRCR. You can use CEEMRCE to move the resume cursor to an explicit location in the application
when the application resumes.

What is a condition in Language Environment?
Language Environment defines a condition as any event that can require the attention of a running
application or the HLL routine supporting the application. A condition is also known as an exception,
interrupt, or signal. Language Environment makes it possible to respond to events that in the past might
have caused a routine to abend, including hardware-detected errors or operating system-detected errors.

All of the following can generate a condition in Language Environment:
Hardware-detected errors

Also known as program interruptions, these are signaled by the central processing unit. Examples
are the fixed-overflow and addressing exceptions. The operating system derives the error codes from
the codes defined for the machine on which the application is running. The error codes differ from
machine to machine.

Operating system-detected errors
These are software errors and are reported as abends. An example is an OPEN error.

Software-generated signals
Signals are conditions intentionally and explicitly created by Language Environment (using CEESGL),
language library routines, language constructs (such as C's raise() or PL/I's SIGNAL), or user-
written condition handling routines.

Condition handling introduction

Chapter 15. Introduction to Language Environment condition handling 167

Under Language Environment, an exception is the original event, such as a hardware signal, software-
detected event, or user-signaled event, that is a potential condition. Through the enablement step
(described briefly in “Steps in condition handling” on page 168 and in detail in Chapter 16, “Language
Environment and HLL condition handling interactions,” on page 181), Language Environment might deem
an exception to be a condition, at which point it can be handled by Language Environment, user-written
condition handlers, if they are present, or HLL condition handling semantics.

Steps in condition handling
Language Environment condition handling is performed in three distinct steps: the enablement, condition,
and termination imminent steps.

During the condition and termination imminent steps, the stack is used to determine the order of
condition handler processing. Condition handlers associated with the most recent stack frame added
to the stack are given first chance to handle the condition. Condition handlers associated with the next
stack frame are next given a chance, and so on until either the condition is handled or default Language
Environment condition handling semantics take effect.

In a POSIX(OFF) environment, only routines that are currently active on the stack have an effect on
condition handling. For example, in a COBOL — PL/I application, a COBOL main program calls a PL/I
subroutine. The subroutine then returns control to COBOL. The PL/I routine is no longer on the stack and
does not affect condition handling. See “Language Environment and POSIX signal handling interactions”
on page 197 for information about signal handling under z/OS UNIX.

Enablement step
Enablement refers to the determination that an exception should be processed as a condition. The
enablement step begins at the time an exception occurs in your application. In general, you are not
involved with the enablement step; Language Environment determines which exceptions should be
enabled (treated as conditions) and which should be ignored, based on the languages currently active
on the stack. If you do not specify explicitly or as a default any of the services or constructs discussed
later in this section, the default enablement of your HLL applies.

If Language Environment ignores an exception, the exception is not seen as a condition and does not
undergo condition handling. Processing resumes at the next sequential instruction.

You can affect the enablement of exceptions in the following ways:

• Set the TRAP runtime option to handle or ignore abends and program checks.

See “TRAP effects on the condition handling process” on page 169 for more information.
• Specify in the assembler user exit or ABPERC runtime option an abend code or list of codes to be

percolated (passed to the operating system).

See “Language Environment abends and the enablement step” on page 169 for more information.
• Disable specific conditions by doing one of the following:

– Code a construct such as signal(sigfpe, SIG_IGN) in a C/C++ function or a PL/I
NOZERODIVIDE prefix in a PL/I procedure to request that program checks (in this case divide-by-
zero) be ignored if they occur in either routine. Execution continues at the next sequential instruction
after the one that caused the divide-by-zero. Condition handlers never get a chance to handle the
program check because it is not considered a condition.

– Call the CEE3SPM callable service or use the XUFLOW runtime option to disable hardware conditions.

See “Using CEE3SPM and XUFLOW to enable and disable hardware conditions” on page 170 for more
information.

In summary, not all hardware interrupts, software conditions, or user-signaled events become conditions.
Those that are not ignored and do become conditions enter the condition step. See “Condition step” on
page 171 for the details of what takes place during the condition step.

Condition handling introduction

168 z/OS: z/OS Language Environment Programming Guide

TRAP effects on the condition handling process
The TRAP runtime option specifies how Language Environment handles abends and program interrupts;
TRAP(ON,SPIE) is the IBM-supplied default. For more information about the TRAP runtime option, see
TRAP in z/OS Language Environment Programming Reference.

When TRAP(ON,SPIE) is in effect, Language Environment is notified of abends and program interrupts.
Language semantics, C/C++ signal handlers, PL/I ON-units, and user-written condition handlers can then
be invoked to handle them. An exception to this behavior is that Language Environment cannot handle
Sx22 abends, even if TRAP(ON) is specified.

CEESGL and TRAP
When a condition is raised using the CEESGL callable service, C/C++ signal handlers, PL/I ON-units, and
user-written condition handlers are always invoked if present, regardless of the setting of TRAP. If none
of these handle the condition, then the default action of the HLL semantics could be taken. For more
information about CEESGL, see CEESGL—Signal a condition in z/OS Language Environment Programming
Reference.

Language Environment abends and the enablement step
You can prevent Language Environment from automatically issuing abends for certain exceptions by
requesting that an abend code or codes be percolated. If an abend is percolated, neither Language
Environment nor an HLL can handle it; only the operating system can respond to the abend.

Abends that are not retryable (for example, x37 ABENDs) are always percolated.

Additionally, abends can be percolated in three ways:

• You can specify in the assembler user exit CEEXBITA a list of abend codes that Language Environment
percolates. You can specify both system abends and user abends. See Chapter 28, “Using runtime user
exits,” on page 371 for more information.

• The ABPERC runtime option allows you to specify which (if any) abend code should be percolated by
Language Environment. ABPERC is intended for use as a debugging tool that allows the application to
execute with TRAP(ON).

For a list of abends issued by Language Environment. see Language Environment abend codes in z/OS
Language Environment Runtime Messages.

For information about using ABPERC to debug your application, see Using Language Environment
runtime options in z/OS Language Environment Debugging Guide.

See Language Environment runtime options in z/OS Language Environment Programming Reference for
more information about the TRAP and ABPERC runtime options.

• If an abend is issued from a request block (RB) on which Language Environment did not establish an
ESTAE, the abend will be percolated to the system.

For example, COBOL is the main program, running on an RB, where Language Environment establishes
an ESTAE. The COBOL application determines an error condition has occurred, and it calls an assembler
program. This assembler program issues an SVC LINK to a non-Language Environment enabled
assembler program, creating a new RB. Neither of these assembler programs establishes an ESTAE
or an ESPIE. The assembler program on the new RB, where no Language Environment recovery has
been established, issues an SVC ABEND. When the SVC ABEND is issued from the second RB, Language
Environment, which is only active on the first RB, will percolate the abend to the system.

As a result, Language Environment member languages will not be called for termination processing and
any open files may be closed by MVS task termination. If there are DCB exits associated with any of the
open files, these exits may be called from task termination, and may result in some unexpected S0Cx
abends since the member language did not initiate the close of the files.

To avoid these scenarios, do one of the following:

Condition handling introduction

Chapter 15. Introduction to Language Environment condition handling 169

– Make the assembler program Language Environment conforming by using CEEENTRY and CEETERM
macros.

– Do not use SVC LINK to issue abends from assembler programs. Use the Language Environment
callable service CEE3ABD

– Make sure that all files are closed in the application before linking to an assembler routine to issue an
abend.

Using CEE3SPM and XUFLOW to enable and disable hardware conditions
You can change the enablement of certain hardware interrupts using the CEE3SPM callable service and
XUFLOW runtime option under Language Environment. For more information about CEE3SPM and its
syntax, see CEE3SPM—Query and modify Language Environment hardware condition in z/OS Language
Environment Programming Reference.

Language Environment provides the CEE3SPM callable service to replace assembler language routines
that manipulate bits 20 through 23 of the Program Status Word (PSW) to enable or disable the following
hardware interrupts:

• Decimal overflow
• Exponent underflow
• Fixed-point overflow
• Significance

The XUFLOW runtime option specifies whether an exponent underflow exception causes a program
interrupt. Both CEE3SPM and XUFLOW can change the condition handling semantics of the HLL or HLLs
of your application. Therefore, use CEE3SPM and XUFLOW only if you understand the effect they have on
your application.

C and C++ considerations
C and C++ ignore requests to enable the decimal overflow, exponent underflow, fixed-point overflow, or
significance exceptions.

COBOL considerations
The decimal overflow and fixed-point overflow exceptions cannot be enabled in a COBOL program; COBOL
ignores any request to enable these exceptions.

Fortran considerations
The fixed-point overflow, decimal overflow, and exponent underflow masks are ON by default. Mask
settings remain in effect until changed by CEE3SPM or XUFLOW, or until the application calls a new load
module containing code from a language that specifies the masks ON.

The Fortran XUFLOW callable service can affect the semantics of any ILC application or any program
setting made with CEE3SPM.

PL/I considerations
PL/I semantics depend on the program mask being given certain settings:

• The fixed-point overflow, decimal overflow, and exponent underflow masks are ON. For Enterprise PL/I
for z/OS, the fixed-point overflow mask is OFF.

• The significance mask is OFF.

Condition handling introduction

170 z/OS: z/OS Language Environment Programming Guide

Condition step
The condition step begins after the enablement step has completed and Language Environment
determines that an exception in your application should be handled as a condition. In the simplest form
of this step, Language Environment traverses the stack beginning with the stack frame for the routine
in which the condition occurred and progresses towards earlier stack frames. Condition handlers are
invoked at each intervening stack frame and given a chance to respond in any of the ways described in
“Responses to conditions” on page 176. The condition step lasts until a condition handler requests a
resume or until default condition handling occurs (condition went unhandled). Throughout the following
discussion, refer to Figure 56 on page 171.

A B D F

C E G

Routine 4 SF

Routine 3 SF

Routine 2 SF

Routine 1 SF

Figure 56. Condition processing

1. Language Environment condition handling begins at the most recently activated stack frame. This is
the stack frame associated with the routine that incurred the condition. In Figure 56 on page 171, this
is A, or routine 4.

2. If the debug tool is present, and the setting of the TEST runtime option indicates that it should be given
control, it is invoked. For more information about the TEST runtime option, see TEST | NOTEST in z/OS
Language Environment Programming Reference.

3. If the debug tool is not invoked, or does not handle the condition, Language Environment traverses
the stack, stack frame by stack frame, towards earlier stack frames. This is in the direction of arrow
B in Figure 56 on page 171. User-written condition handlers established using CEEHDLR, and then
language-specific condition handlers present at each stack frame such as C/C++ signal handlers or
PL/I ON-units, can all respond by percolating, promoting, or handling the condition (see “Responses to
conditions” on page 176 for a discussion of these actions).

4. Condition handling is complete if one of the handlers requests the application to resume execution. If
all stack frames have been visited, and no condition handler has requested a resume, the language of
the routine in which the exception occurred can enforce default condition handling semantics.

5. If the HLL of the routine that originated the condition does not issue a resume, what occurs next
depends on whether there is a PL/I routine active on the stack.

a. The condition is percolated if there is no currently active PL/I routine or if the condition is not
one that PL/I promotes to the ERROR condition (see “Promoting conditions to the PL/I ERROR
condition” on page 194 for details). Language Environment default actions are then taken based on
the severity of the unhandled condition, as indicated in Table 34 on page 172.

If the condition is of severity 2 or above, Language Environment promotes the condition to T_I_U
(termination imminent due to an unhandled condition) and returns to routine 4 to redrive the
stack (this occurs at points C and D in Figure 56 on page 171). For more information about the
termination imminent step and T_I_U, see “Termination imminent step” on page 173.

b. If the condition is one that PL/I promotes to the PL/I ERROR condition (see “Promoting conditions
to the PL/I ERROR condition” on page 194 for details), the condition is promoted at the location
represented as C in Figure 56 on page 171, and another pass is made of the stack. The following
takes place:

Condition handling introduction

Chapter 15. Introduction to Language Environment condition handling 171

• On the next pass of the stack (D), any ERROR ON-unit or user-written condition handler is
invoked. If the ON-unit or user-written condition handler issues a resume, condition handling
ends. Execution resumes where the resume cursor points.

• If no ON-unit or user-written condition handler issues a resume, the ERROR condition is
promoted (at E) to T_I_U. (See “Processing the T_I_U condition” on page 173 for a discussion of
T_I_U.)

• A final pass of the stack is made, beginning in Routine 4 where the original condition occurred (F).
Because T_I_U maps to the PL/I FINISH condition, both established PL/I FINISH ON-units and
user-written condition handlers registered for T_I_U are invoked.

• If no user-written or HLL condition handlers act on the condition, Language Environment begins
thread termination activities in response to the unhandled condition (G). See Table 34 on page
172 for the default actions that Language Environment takes for conditions of different severity
levels.

Influencing condition handling with the ERRCOUNT runtime option
The ERRCOUNT option allows you to specify the number of errors that are tolerated during the execution
of a thread. Each condition of severity 2 or above, regardless of its origin, increments the error count
by one. POSIX conditions are not counted. If the error count exceeds the limit, Language Environment
terminates the enclave with abend code 4091 and reason code 11.

For syntax and more information about using the ERRCOUNT runtime option, see TERMTHDACT in z/OS
Language Environment Programming Reference.

Table 34. Default responses to unhandled conditions. The default responses to unhandled conditions fall into
one of two types, depending on whether the condition was signaled using CEESGL and an fc parameter, or the
condition came from any other source.

Severity of condition Condition signaled by user in a call to
CEESGL with an fc

Condition came from any other source

0 (informative
message)

Return the CEE069 condition token and
resume processing at the next sequential
instruction.

For a description of the CEE069 condition
token, see the fc table in CEESGL—Signal
a condition in z/OS Language Environment
Programming Reference

Resume without issuing message.

1 (warning message) Return the CEE069 condition token and
resume processing at the next sequential
instruction.

If the condition occurred in a stack
frame associated with a COBOL
program, resume and issue the
message.

If the condition occurred in a
stack frame associated with a non-
COBOL routine, resume without issuing
message.

2 (program
terminated in error)

Return the CEE069 condition token and
resume processing at the next sequential
instruction.

Promote condition to T_I_U, redrive
the stack, then terminate the thread
if the condition remains unhandled.
Message issued if TERMTHDACT(MSG)
is specified.

See “Processing the T_I_U condition”
on page 173 for more information about
T_I_U.

Condition handling introduction

172 z/OS: z/OS Language Environment Programming Guide

Table 34. Default responses to unhandled conditions. The default responses to unhandled conditions fall into
one of two types, depending on whether the condition was signaled using CEESGL and an fc parameter, or the
condition came from any other source. (continued)

Severity of condition Condition signaled by user in a call to
CEESGL with an fc

Condition came from any other source

3 (Program
terminated in severe
error)

Return the CEE069 condition token and
resume processing at the next sequential
instruction.

Promote condition to T_I_U, redrive
the stack, then terminate the thread
if the condition remains unhandled.
Message issued if TERMTHDACT(MSG)
is specified.

4 (program
terminated in critical
error)

Promote condition to T_I_U, redrive the
stack, then terminate the thread if the
condition remains unhandled. Message
issued if TERMTHDACT(MSG) is specified.

Promote condition to T_I_U, redrive
the stack, then terminate the thread
if the condition remains unhandled.
Message issued if TERMTHDACT(MSG)
is specified.

Termination imminent step
The termination imminent step occurs for certain unhandled conditions or as the result of STOP-like
language constructs such as C/C++ exit() or abort(); Fortran STOP statement or a call to EXIT,
SYSRCX, or DUMP; or PL/I STOP. The termination imminent step occurs when one of the following events
occurs:

• The T_I_U condition (Termination Imminent due to Unhandled condition) is raised
• The T_I_S condition (Termination Imminent due to Stop) is raised to indicate that the thread can

potentially terminate

When T_I_U or T_I_S is raised, another pass is made of the stack. See “Processing the T_I_U condition”
on page 173 and “Processing the T_I_S condition” on page 174 for details on what can happen during and
after the pass.

You can directly signal T_I_U and T_I_S using the CEESGL callable service. When you do, Language
Environment behaves as described in “CEESGL and the termination imminent step” on page 175.

Processing the T_I_U condition
Table 34 on page 172 indicates that for severity 4 conditions signaled by CEESGL, and for severity 2 and
higher conditions that remain unhandled after all condition handlers have had a chance to handle them,
Language Environment promotes the unhandled condition to T_I_U. T_I_U is a severity 3 condition with
the representation shown as follows:

Table 35. T_I_U condition representation

Symbolic
feedback code
(fc)

Severity Message
number

Message text

CEE066 3 0198 Termination of a thread was signaled.

After promoting the condition to T_I_U, Language Environment does the following:

1. Language Environment revisits each stack frame on the stack, beginning with the stack frame in which
the condition occurred, and progressing towards earlier stack frames. At each stack frame, HLL and
user-written condition handlers are given a chance to handle the condition.

The T_I_U condition maps to the PL/I FINISH condition. Therefore, an established PL/I FINISH ON-
unit or registered user-written condition handler can be invoked to handle the condition. After the
ON-unit or condition handler completes its processing, the termination activities described in Step 3
take place.

Condition handling introduction

Chapter 15. Introduction to Language Environment condition handling 173

2. If, during the course of condition handling, the resume cursor is moved and a resume is requested
by a condition handler, execution resumes at the instruction pointed to by the resume cursor. If a
resume is requested for the T_I_U condition without moving the resume cursor, the thread terminates
immediately with no clean-up. For more information about CEEMRCR, see CEEMRCR - Move resume
cursor in z/OS Language Environment Programming Reference.

3. If all stack frames have been visited, and the condition remains unhandled, or a FINISH ON-unit
or user-written condition handler has processed the condition and returned, Language Environment
performs the following termination activities:

• Sets the reason and return codes. The return code value is based on the severity of the original
unhandled condition, not on the T_I_U condition (which is a severity 3).

• Issues a message for the condition.
• Prints a traceback and dump depending on the setting of the TERMTHDACT runtime option.
• Terminates the thread.

Multithreading is supported only in a POSIX(ON) environment. Unless your application is doing
multithreading, when a thread terminates, the entire enclave terminates.

Processing the T_I_S condition
The termination imminent step of condition handling can also be entered as the result of the T_I_S
(Termination_Imminent due to STOP) condition being signaled. T_I_S is a severity 1 condition with the
following representation:

Table 36. T_I_S condition representation

Symbolic
feedback code
(fc)

Severity Message
number

Message text

CEE067 1 0199 Termination of a thread was signaled.

The T_I_S condition is raised by Language Environment immediately upon detection of a language STOP-
like construct such as:

• C/C++ exit() function
• COBOL STOP RUN
• Fortran STOP statement
• Fortran END statement in a main program
• PL/I EXIT statement
• PL/I STOP statement

The HLL constructs listed above initiate termination activities for the enclave in two steps:

1. Language Environment traverses the stack beginning at the stack frame for the routine containing the
STOP-like statement and proceeds, stack frame by stack frame, towards earlier stack frames. User-
written and HLL condition handlers at each stack frame are given a chance to handle the condition.

T_I_S maps to the PL/I FINISH condition. Therefore, both established PL/I FINISH ON-units and
user-written condition handlers can be invoked. After the ON-unit or condition handler completes its
processing, the termination activities described in Step 2 take place.

2. If all stack frames have been visited, and the condition remains unhandled, or an ON-unit or condition
handler has processed the condition and returned, Language Environment:

• Sets the reason and return codes
• Terminates the thread

Language Environment performs only one pass of the stack for STOP-like statements.

Condition handling introduction

174 z/OS: z/OS Language Environment Programming Guide

Termination imminent step and the TERMTHDACT runtime option
You can use the TERMTHDACT runtime option to set the type of information you receive after your
application terminates in response to a severity 2, 3, or 4 condition. For example, you can specify that a
message or dump is to be generated if the application terminates.

TERMTHDACT behavior under z/OS UNIX differs slightly; for details, see “Termination imminent step
under z/OS UNIX” on page 200.

PL/I considerations
For those PL/I conditions that do not raise the ERROR condition as part of their implicit action, PL/I
requires that a message be issued. For these conditions, the message is issued regardless of the setting of
TERMTHDACT. Therefore, messages can be delivered even when TERMTHDACT(QUIET) is set.

If the condition remains unhandled (for example, the PL/I FINISH condition is still regarded as unhandled
after normal return from a FINISH ON-unit), and the application terminates, the message associated with
the condition is not issued again at termination.

CEESGL and the termination imminent step
You can signal T_I_U and T_I_S directly with the CEESGL callable service. Two reasons you might need to
do this are:

• To force the driving of a FINISH ON-unit or similar construct that would perform clean-up activities
• To test a PL/I ON-unit or user-written condition handler that you have designed to handle T_I_U or

T_I_S

If you signal T_I_U or T_I_S by calling CEESGL with the feedback code parameter, the following occurs:

1. Language Environment visits each stack frame on the stack, beginning with the stack frame in which
the condition was signaled, and progressing towards older stack frames. At each stack frame, HLL and
user-written condition handlers are given a chance to handle the condition.

T_I_U and T_I_S both map to the PL/I FINISH condition. Therefore, an established PL/I FINISH
ON-unit can be invoked to handle the condition.

2. If all stack frames have been visited, and the condition remains unhandled, or a FINISH ON-unit has
processed the condition and returned, Language Environment returns the CEE069 condition token to
the routine that called CEESGL, and processing resumes at the next sequential instruction.

Invoking condition handlers
After a condition has been enabled, Language Environment steps through the stack and passes control to
the most recently established condition handling routines in the stack. Condition handling routines can be
in the form of the debug tool, a user-written condition handler, or a language-specific condition handling
mechanism:
z/OS Debugger

If you have invoked a debug tool using the TEST runtime option or the CEETEST callable service,
the debug tool gains control when a condition occurs. Unless a condition is promoted and is passed
through the stack again for additional condition handling, a debug tool is invoked only once per stack.

User-written condition handler
User-written condition handlers are routines that you supply to handle specific conditions that might
arise in the runtime environment. As shown in Figure 57 on page 176, a LIFO queue containing zero or
more user-written condition handlers is associated with each stack frame. A different queue exists for
each stack frame. For example, if routine A calls routine B, there is a new queue associated with the
stack frame for routine B.

Condition handling introduction

Chapter 15. Introduction to Language Environment condition handling 175

Routine A

Register A1

Register A2

Invoke Routine B

.

.

.

.

Routine B

Register B1
.

.

Handler Routine A1

Handler Routine A2

Handler Routine B1

Figure 57. Queues of user-written condition handlers

User-written condition handlers are registered on a stack frame-by-stack frame basis using the
CEEHDLR callable service. A call to CEEHDLR from a given routine adds a user-written condition
handler onto the queue for the stack frame associated with that routine. Registering a condition
handling routine using CEEHDLR implicitly requests Language Environment to pass control to this
routine when a condition occurs. For example, you could call CEEHDLR to register two user-written
condition handlers for the same stack frame, one that handles floating-point underflow conditions and
another that handles floating-point divide conditions.

The most recent user condition handler registered using CEEHDLR is the first to be invoked by
Language Environment. Note that you could also register a single user condition handler to handle
both of these conditions.

The user-written condition handlers can respond to a condition in any of the ways described in
“Responses to conditions” on page 176.

User-written condition handlers are given a chance to handle a given condition before the language-
specific condition handling semantics take effect.

Language-specific condition handling semantics
If language-specific semantics are established within a stack frame, they are honored. Of course, the
language-specific handling mechanisms act only on those conditions for which the language has a
defined action. The language percolates all other conditions by passing them on to the next condition
handler.

If a condition is unhandled after the stack is traversed, default language-specific and Language
Environment condition semantics take over.

Responses to conditions
Condition handlers are routines written to respond to conditions in one of the following ways:
Resume

A resume occurs when a condition handler determines that the condition was handled and
normal application execution should resume. A program resumes running usually at the instruction
immediately following the point where the condition occurred.

A resume cursor points to the place where a routine should resume. The resume cursor can be
manipulated to be placed at a specific point by using the CEEMRCR (move resume cursor) callable
service.

Condition handling introduction

176 z/OS: z/OS Language Environment Programming Guide

Percolate
A condition is percolated if a condition handler declines to handle it. User-written condition handlers,
for example, can be written to act on a particular condition, but percolate all other conditions.
Language Environment can continue condition handling in one of the following places:

• With the next condition handler associated with the current stack frame. This can be either the
first condition handler in a queue of user-established condition handlers, or the language-specific
condition semantics.

• With the most recently established condition handler associated with the calling stack frame.

Promote
A condition is promoted when a condition handler converts the condition into one with a different
meaning. A condition handler can promote a condition for a variety of reasons, including the condition
handler's knowledge or lack of knowledge about the cause of the original condition. A condition can
be promoted to simulate conditions that would normally come from a different source.

Fix-up and resume
The qualifying data is modified and a resume occurs with a corrective action. There are several
possible responses that can be applied:
resume with new input value

A new input value is specified and the failing operation is tried again. The condition token for this
action has the condition name CEE0CE.

resume with new output value
The program continues using a specified result in the place of what the failing operation would
have provided. The condition token for this action has the condition name CEE0CF.

For more information about how these responses can be used in developing user-written condition
handlers, see “User-written condition handler interface” on page 202.

Condition handling scenarios
The following condition handling scenarios can help you better understand what occurs during the
condition handling steps. The scenarios differ in complexity, with Scenario 1 being the easiest to
understand.

See Chapter 16, “Language Environment and HLL condition handling interactions,” on page 181 if you are
interested in specific HLL condition handling behavior.

Scenario 1: Simple condition handling
Refer to Figure 58 on page 177 throughout the following discussion.

Routine B

Routine A

Divide-by-zero exception occurs here

Figure 58. Scenario 1: Division by zero with no user condition handlers present

Condition handling introduction

Chapter 15. Introduction to Language Environment condition handling 177

In this scenario, no C/C++ handlers created by a call to signal(), PL/I ON-units, or user-written
condition handlers registered using the CEEHDLR service are established at any stack frame in the
application.

1. A divide-by-zero exception occurs in routine B.
2. The divide-by-zero exception is enabled by the language of the stack frame in which it occurred

because it is a problem that, if it remains unhandled, causes termination.
3. The following occurs in the condition step:

• If any user-written condition handlers have been registered using the CEEHDLR callable service
on the routine B's stack frame, they are given control. No handlers have been registered, so the
condition is percolated.

• If a C/C++ signal handler is registered, or if a PL/I ON-unit is established on the stack frame, it is
given control. Neither one exists on routine B's stack frame, so the condition is percolated.

• If any user-written condition handlers have been registered using CEEHDLR on routine A's stack
frame, they are given control. No handlers have been registered, so the condition is percolated.

• If a C/C++ signal handler is registered or if a PL/I ON-unit is established on routine A's stack frame,
it is given control. No C/C++ signal handler or PL/I ON-unit has been established for the stack frame,
so the condition is percolated.

• After the oldest stack frame (in this case, that for routine A) has been checked, HLL and Language
Environment default actions occur. Assume that the HLL percolates the condition to Language
Environment.

Language Environment examines the severity of the unhandled divide-by-zero condition (severity 3),
promotes the condition to T_I_U, and requests that the stack be redriven. This is the end of the
condition step and the beginning of the termination imminent step.

4. The following occurs during the termination imminent step:

• The stack frame for routine B is revisited, and if a user-written condition handler is present, it is given
control. No handlers are registered, so T_I_U is percolated.

• If a C/C++ signal handler or PL/I ON-unit can respond to the T_I_U condition, it is given control. In
this case, there are none, so the condition is percolated.

• The stack frame for routine A is revisited, and checked for user-written condition handlers registered
for the T_I_U condition, C/C++ signal handlers or PL/I ON-units. No handlers are registered, so T_I_U
is percolated.

• Language Environment takes the default action for the unhandled T_I_U condition, which terminates
the enclave.

Scenario 2: User-written condition handler present for T_I_U
Scenario 2 is much the same as Scenario 1, except that routine A does have a user-written condition
handler established. Refer to Figure 59 on page 179 throughout the following scenario.

Condition handling introduction

178 z/OS: z/OS Language Environment Programming Guide

Routine B Divide-by-zero condition occurs here

Routine A

Cond HdlrA

Figure 59. Scenario 2: Division by zero with a user-written condition handler present in routine A

In this scenario, routine A is a routine that invokes other prewritten applications. If any of the components
of the prewritten application fail, routine A must remain up and take alternate action. Therefore, routine
A has a user-written condition handler registered. The handler is designed to handle the T_I_U condition
by issuing a nonlocal jump to a location within routine A. The handler percolates all conditions other than
T_I_U.

1. A divide-by-zero exception occurs in routine B.
2. The divide-by-zero exception is enabled by the language of the stack frame in which it occurred

because it is a problem that, if it remains unhandled, causes termination.
3. The following occurs in the condition step:

• If a user-written condition handler has been registered for the divide-by-zero condition on routine
B's stack frame, it is given control. One has not been registered, so the condition is percolated.

• If a C/C++ signal handler has been registered or a PL/I ON-unit has been established for the
divide-by-zero condition, it is given control. No C/C++ signal handler or ON-unit is present, so the
condition is percolated to Language Environment.

• If a user-written condition handler has been registered on routine A's stack frame, it is given control.
However, because the divide-by-zero condition is not the one the handler is looking for, the condition
is percolated.

• If a C/C++ signal handler is registered or a PL/I ON-unit is established for the condition on routine A's
stack frame, it is given control. Neither one is present, so the condition is percolated.

• After the earliest stack frame (in this case, that for routine A) has been checked, HLL and Language
Environment default actions occur. In this case, assume that the HLL percolates the condition to
Language Environment.

Language Environment examines the severity of the unhandled divide-by-zero condition (severity 3),
promotes the condition to T_I_U, and requests that the stack be redriven. This is the end of the
condition step and the beginning of the termination imminent step.

4. The following occurs during the termination imminent step:

• Language Environment revisits the stack frame for routine B, checking for user-written condition
handlers registered for the T_I_U condition. No handlers are registered, so T_I_U is percolated.

• If a PL/I FINISH ON-unit is present, it is given control. In this example, there isn't one, so the
condition is percolated.

• Language Environment revisits the stack frames for routine A, checking for user-written condition
handlers registered for the T_I_U condition. There is one, it is given control. The user code in the
handler, using either HLL or Language Environment facilities, causes control to pass to a location
within routine A.

5. Control resumes with routine A at the location specified. The condition is now handled.

Condition handling introduction

Chapter 15. Introduction to Language Environment condition handling 179

Scenario 3: Condition handler present for divide-by-zero
Scenario 3 is much the same as scenario 2, except that routine B has a user-written condition handler
established to handle the divide-by-zero condition. Refer to Figure 60 on page 180 throughout the
following scenario.

Routine B

Routine A

Cond HldrA

Cond HldrB

Divide-by-zero condition occurs here

Figure 60. Scenario 3: Division by zero with a user handler present in routine B

The handler established by routine B is designed to deal with divide-by-zero and possibly other conditions
that occur either during its execution or in the routines that it calls. For a divide-by-zero condition, the
handler is to print a message and continue processing.

1. A divide-by-zero exception occurs in routine B.
2. The divide-by-zero exception is enabled by the language of the stack frame in which it occurred

because it is a problem that, if it remains unhandled, causes termination.
3. The following occurs in the condition step:

• If a user-written condition handler has been registered using the CEEHDLR callable service on
routine B's stack frame, it is given control. The handler recognizes the divide-by-zero as a condition
it is capable of dealing with. It produces a message, does appropriate clean-up, and then causes
resumption either through HLL constructs or Language Environment services.

4. The condition is now considered to be handled and is never seen by stack frame A or the Language
Environment default handler.

Condition handling introduction

180 z/OS: z/OS Language Environment Programming Guide

Chapter 16. Language Environment and HLL condition
handling interactions

This section discusses the condition handling discussion. It would be helpful for you to read Chapter
15, “Introduction to Language Environment condition handling ,” on page 165 before reading this topic.
Chapter 15, “Introduction to Language Environment condition handling ,” on page 165 introduces you
to terminology and concepts that are discussed in the present topic, and offers a brief overview of pre-
Language Environment HLL condition handling. It discusses in detail the Language Environment condition
handling model and the many services that you can use to tailor how conditions are handled in your
application. In addition, it introduces the three steps of condition handling in Language Environment.

This topic discusses HLL condition handling semantics, focusing on how HLL semantics interact with
the Language Environment condition handling model and services. C, C++, COBOL, Fortran, and PL/I are
each discussed, and condition handling scenarios and examples are provided. This topic also outlines the
interactions between POSIX signal handling and Language Environment condition handling. See one of
the following sections for details:

• “C condition handling semantics” on page 181
• “C++ condition handling semantics” on page 188
• “COBOL condition handling semantics” on page 189
• “Fortran condition handling semantics” on page 192
• “PL/I condition handling semantics” on page 193
• “Language Environment and POSIX signal handling interactions” on page 197

If you are running a single-language application written in C or PL/I, which have extensive built-in error
handling functions, and you are relying entirely upon the semantics of these languages to handle errors,
you will not notice much difference in how errors are handled under Language Environment.

However, if you are running a single-language application written in COBOL or assembler that has little
built-in error handling, you might notice a change in how errors are handled under Language Environment.
For example, in an application that relies on abend codes to handle errors, you might need to alter the
assembler user exit to get the same behavior under Language Environment as under the previous runtime
environment. See Chapter 28, “Using runtime user exits,” on page 371 for information about modifying
the assembler user exit.

For information about condition handling in ILC applications, see z/OS Language Environment Writing
Interlanguage Communication Applications.

C condition handling semantics
This section describes C condition handling in a POSIX(OFF) environment. If you run applications that
contain POSIX functions, you should also read “Language Environment and POSIX signal handling
interactions” on page 197, which discusses the interaction between POSIX signal handling and Language
Environment condition handling.

C employs a global condition handling model, which, on initialization, defines the actions that are taken
when a condition is raised. The actions defined by C apply to an entire enclave, not just to a routine
or block within an enclave. You can alter a specific action that the C condition handler takes when a
condition is raised, however, by coding signal() function calls in your applications.

C recognizes a number of errors; some correspond directly to the errors detected by the hardware or
the operating system, and some are unique to C. All actions for condition handling are controlled by the
contents of the C global error table. Table 37 on page 182 contains default C-language error handling
semantics.

Condition handling interactions

© Copyright IBM Corp. 1991, 2022 181

Table 37. C conditions and default system actions

C Condition Origin Default action

SIGILL Execute exception
Operation exception
Privileged operation

raise(SIGILL)

Abnormal termination (return
code=3000)

SIGSEGV Addressing exception
Protection exception
Specification exception

raise(SIGSEGV)

Abnormal termination (return
code=3000)

SIGFPE Data exception
Decimal divide
Exponent overflow
Fixed-point divide
Floating-point divide

raise(SIGFPE)

Abnormal termination (return
code=3000)

SIGABRT abort() function

raise(SIGABRT)

Abnormal termination (return
code=2000)

SIGABND Abend the function Abnormal termination (return
code=3000)

SIGTERM Termination request

raise(SIGTERM)

Abnormal termination (return code =
3000)

SIGINT Attention condition Abnormal termination (return code =
3000)

SIGIOERR I/O errors Ignore the condition

SIGUSR1 User-defined condition Abnormal termination (return
code=3000)

SIGUSR2 User-defined condition Abnormal termination (return
code=3000)

Masked Fixed-point overflow
HFP exponent underflow
HFP significance

These exceptions are disabled. They are
ignored during the condition handling
process, even if you try to enable them
using the CEE3SPM callable service.

Comparison of C-Language Environment terminology
The term signal is defined differently under C than under Language Environment, and you need to know
the distinction to understand how C and Language Environment condition handling interact. Here is a
comparison of the terminology Language Environment and C use to describe the same general idea:

• Using Language Environment services, you register a condition handler by using CEEHDLR, and you raise
a condition by using CEESGL.

Condition handling interactions

182 z/OS: z/OS Language Environment Programming Guide

• Using C functions, you register a signal handler by using the signal() function, and you raise a signal
using the raise() function.

You can think of signal as the C term for a Language Environment condition. To simplify the following
discussion, the term condition is used in place of signal.

C signal handling functions are recognized in C++ applications. You can write a condition handling
routine in C++ using C signal() and raise() functions. C++-unique exception handling functions are
discussed in “C++ condition handling semantics” on page 188.

Controlling condition handling in C
In C, conditions can come from two main sources:

• An exception might occur because of an error in the code. The exception might or might not be seen as a
condition, depending on how you use the signal() function.

• You can explicitly report a condition by using the raise() function.

Using the signal() function
The C signal() function call alters the actions that the global error table specifies will be taken for a
given condition. You can use signal() to do the following:

• Ignore the condition completely. You do this by specifying signal(sig_num,SIG_IGN), where
sig_num represents the condition to be ignored. When the action for the condition is to ignore it,
the condition is considered to be disabled. The condition will therefore not be seen.

Note: Exceptions to this rule are the SIGABND condition and the system or user abend represented by
Language Environment message number 3250. These are never ignored, even if you specify SIG_IGN in
a call to signal().

• Reset condition handling to the defaults shown in Table 37 on page 182. Actions for handling a
condition are implicitly reset to the system default when the condition is reported, but at times you
need to explicitly reset condition handling. Specify signal(sig_num, SIG_DFL), where sig_num is
the condition to be reset.

• Call a signal handler to handle the condition. Specify signal(sig_num, sig_handler), where
sig_num represents the condition to be handled, and sig_handler represents a pointer to the user-
written function that is called when the condition occurs.

The signal handler specified in signal() is given a chance to handle a condition only after any
user-written handler established using CEEHDLR is invoked.

Using the raise() function
When the C raise() function is called for any of the conditions listed in Table 37 on page 182, a
corresponding Language Environment condition is automatically raised by a call to the CEESGL callable
service. Any of these conditions (EDC6000 through EDC6004) can be handled by a user-written condition
handler registered using the CEEHDLR service. For detailed descriptions of conditions EDC6000 through
EDC6004, see XL C/C++ runtime messages in z/OS Language Environment Runtime Messages.

For more information about the CEEHDLR callable service, see CEEHDLR—Register user-written condition
handler in z/OS Language Environment Programming Reference.

For more information about the CEESGL callable service, see CEESGL—Signal a condition in z/OS
Language Environment Programming Reference.

For more information about using the raise() function, see raise() - Raise signal in z/OS XL C/C++
Runtime Library Reference.

C atexit() considerations
In all C applications, the atexit list is honored only after all condition handling activity has taken place
and all user code is removed from the stack, which invalidates any jump buffer previously established.

Condition handling interactions

Chapter 16. Language Environment and HLL condition handling interactions 183

With C, you can register a number of routines that gain control during the termination of an enclave. When
using the C atexit() function, consider the following:

• A C atexit routine can nominate only C routines, but those routines can call routines written in other
languages.

• User-written condition handlers can be registered while running an atexit routine. However, any jump
buffers established are invalid.

• If a severity 2 or greater condition arises while running an atexit routine and it is unhandled, further
atexit routines are skipped and the Language Environment environment is terminated.

• A C exit() function or PL/I STOP or EXIT statement issued within an atexit routine halts all other
atexit functions.

• If, while running an atexit routine, an attempt to register another atexit routine is made, the
registration is ignored. The atexit routine returns a nonzero result indicating a failure to register the
routine.

C++ supports atexit(), but any function pointer input to atexit() must be declared as having extern
"C" linkage.

C condition handling actions
In this section, the condition handling semantics of C-only applications are described as they relate to the
Language Environment condition handling model.

If an exception occurs while a C routine is executing, the following activities are performed:

1. The Language Environment enablement step of condition handling is entered.

If the action defined for the exception is to ignore it for one of the following reasons, the condition
is disabled. Execution continues at the next sequential instruction after the point where the condition
occurred.

• You have specified SIG_IGN in a call to the signal() function for any C condition except SIGABND
or the system or user abend represented by the Language Environment message number 3250.

• The exception is one of those listed as masked in Table 37 on page 182.
• You did not specify any action, but the default action for the condition is SIG_IGN (see Table 37 on

page 182).
• You are running under CICS and a CICS handler is pending.

2. If SIG_IGN is not specified or defaulted for the exception, and the exception is not masked, the
Language Environment condition step of condition handling is entered. These activities then occur:

• If the debug tool is present, and the setting of the TEST runtime option indicates that it should
be given control, it is invoked. See TEST | NOTEST in z/OS Language Environment Programming
Reference for information about the TEST runtime option.

• If the debug tool is not invoked, or does not handle the condition, any user-written condition
handlers registered using CEEHDLR for that stack frame are invoked.

• If no user-written condition handlers are registered for the condition that has occurred, and if you
have registered a signal handler for the condition, that handler is invoked.

• If the signal handler handles the condition, control returns to the routine in which the condition
occurred. If the signal handler cannot handle the condition, it might force termination by issuing
exit() or abort(), or might issue a longjmp().

Condition handling can only continue after a signal handler gains control if you specify SIG_DFL in
a call to signal(). If you do, the condition is percolated to the next user-written condition handler
registered using CEEHDLR, or to the language-specific condition handler associated with the next
stack frame.

• If condition handlers at every stack frame have had a chance to respond to the condition and it still
remains unhandled, the Language Environment default actions described in Table 34 on page 172
take place.

Condition handling interactions

184 z/OS: z/OS Language Environment Programming Guide

• If the Language Environment default action is to promote the condition to T_I_U (Termination
Imminent due to an Unhandled condition), the termination imminent step of condition handling is
entered.

3. When the condition is promoted to T_I_U, Language Environment makes another pass of the stack
looking for user-written condition handlers registered for T_I_U.

If, on the next pass of the stack, no condition handler issued a resume or moved the resume cursor,
Language Environment terminates the enclave.

C condition handling examples
The following sections describe various scenarios of condition handling.

Condition occurs with no signal handler present
The following three figures illustrate how a condition such as a divide-by-zero is handled in a C routine in
Language Environment if you do not use any Language Environment callable services, or don't have any
user-written condition handlers registered.

There is no user-written condition handler or signal handler registered for C370C or any of the other
C routines, so the condition is percolated through all of the stack frames on the stack. At this point, C
default actions take place of percolating the condition to Language Environment. Language Environment
takes its default action for an unhandled severity 3 condition and terminates the application. A message,
trace, Language Environment dump, or a user address space dump could be generated depending on the
setting of TERMTHDACT. For more information about TERMTHDACT, see TERMTHDACT in z/OS Language
Environment Programming Reference.

Figure 61 on page 185 is a C main routine that calls C370B, a subroutine that passes data to another
subroutine, C370C.

/*Module/File Name: EDCMLTA */
/***/
/* Demonstrate a failing C/370 program */
/* with multiple active routines */
/* on the stack. The call sequence is as follows: */
/* C370A ---> C370B ---> C370C (which does a divide-by-zero) */
/***/

#include <stdio.h>

int y = 0;
void C370B(void);

int main(void) {

 printf("In Program C370A\n");
 C370B();
}

Figure 61. C370A routine

Figure 62 on page 186 is a C subroutine that calls C370C, and passes data to it.

Condition handling interactions

Chapter 16. Language Environment and HLL condition handling interactions 185

/*Module/File Name: EDCMLTB */
/**/
/* This routine is called to pass data forward to C370C. */
/* C370C will then cause a zero divide. */
/**/

#include <stdio.h>

extern int y;
void C370C(int);

void C370B(void) {

 int x;
 printf("In Program C370B\n");
 x = y;
 C370C(x);
}

Figure 62. C370B routine

Figure 63 on page 186 generates a divide-by-zero. The divide-by-zero condition is percolated back to
C370B, to C370A, and to Language Environment default behavior.

/*Module/File Name: EDCMLTC */
/**/
/* This routine is called by C370B to generate a zero divide. */
/**/

#include <stdio.h>

void C370C(int y) {

 printf("In Program C370C\n");
 y = 1/y;
}

Figure 63. C370C routine

Condition occurs with signal handler present
Figure 64 on page 187 contains a simple example of a C application in which y = a/b is a
mathematical operation. signal (SIGFPE, c_handler) is a signal invocation that registers the
routine c_handler() and gives it control if a floating-point divide exception occurs.

Condition handling interactions

186 z/OS: z/OS Language Environment Programming Guide

/*Module/File Name: EDCCSIG */
/**/
/* A routine with a C/370 condition handler registered. */
/**/

#include <stdio.h>
#include <signal.h>

#ifdef __cplusplus
extern "C" {
#endif
 void c_handler(int);
#ifdef __cplusplus
}
#endif
int main(void) {
 int a=8, b=0, y;
 /* .
 .
 . */
 signal (SIGFPE, c_handler);
 /* .
 .
 . */
 y = a/b;
 /* .
 . */
}

void c_handler(int i)
{
 printf("handled SIGFPE\n");
 /* .
 . */
 return;
}

Figure 64. C condition handling example

If b = 0, a floating-point divide condition occurs. Language Environment condition handling begins:

• The enablement step occurs.

– If Table 37 on page 182 indicates that floating-point divide is a masked exception, the exception is
ignored. The floating-point divide is not a masked exception, however.

– If SIG_IGN is specified for the SIGFPE exception in any of the three examples, then the SIGFPE
exception is ignored. However, this does not occur.

The floating-point divide condition is enabled and enters the condition step of condition handling.
• If a debug tool is present, it receives control.
• If a user-written condition handler is registered by CEEHDLR for that stack frame, it receives control.

If none of the above takes place, the condition manager gives the C signal-handler control. This handler
in turn invokes c_handler() as specified in the signal() function in Figure 64 on page 187. Control is
then returned to the instruction following the one that caused the condition.

C signal representation of S/370 exceptions
S/370 exceptions and abends are mapped to C signals. Therefore, if both of the following condition are
true, you can apply C signal handling functions to S/370 exceptions and abends:

• You have set the TRAP(ON,SPIE) or the TRAP(ON,NOSPIE) runtime option (Language Environment
condition handling is enabled)

• You do not request in the assembler user exit or in the ABPERC runtime option that any of the abends be
percolated (ABPERC(NONE))

Following are the C signal representations for the following exceptions.

Condition handling interactions

Chapter 16. Language Environment and HLL condition handling interactions 187

• For S/370 exceptions generated by the hardware or math library, see Table 38 on page 188. Some of the
exceptions listed in the table can be masked off for normal Language Environment execution.

• For abends, see Table 39 on page 188.

Table 38. Mapping of S/370 exceptions to C signals

Interrupt code Interrupt code description C signal type

01 Operation exception SIGILL

02 Privileged-operation exception SIGILL

03 Execution exception SIGILL

04 Protection exception SIGSEGV

05 Addressing exception SIGSEGV

06 Specification exception SIGILL

07 Data exception SIGFPE

08 Fixed-point overflow exception n/a

09 Fixed-point divide exception SIGFPE

10 Decimal-overflow exception SIGFPE

11 Decimal-divide exception SIGFPE

12 Exponent-overflow exception SIGFPE

13 Exponent-underflow exception n/a

14 Significance exception n/a

15 Floating-point divide exception SIGFPE

Table 39 on page 188 lists the C signal type for abends that can occur under Language Environment.

Table 39. Mapping of abend signals to C signals

Message Abend Description C Signal Type

CEE3250 User-initiated abends (SVC 13) SIGABND

CEE3250 MVS(VSAM or others)-initiated abends SIGABND

No message
delivered

Language Environment abends for severity 4 errors (U40xx) n/a

No message
delivered

Language Environment-initiated abends n/a

C++ condition handling semantics
C++ includes the C condition handling model and C++ constructs throw, try, and catch. For more
information about these C++ constructs, see z/OS XL C/C++ Language Reference. If you use C exception
handling constructs (signal/raise) in your C++ routine, condition handling will proceed as described
in “C condition handling semantics” on page 181. You can use C or C++ condition handling constructs in
your C++ applications, but do not mix C constructs with C++ constructs in the same application because
undefined behavior could result.

If you use C exception handling, a C++ routine can register a signal handler by coding signal() to
handle exceptions raised in either a C or a C++ routine. If you use the C++ exception handling model, only
C++ routines can catch a thrown object. When a thrown object is handled by a catch clause, execution

Condition handling interactions

188 z/OS: z/OS Language Environment Programming Guide

will continue after the catch clause in the routine. If a thrown object goes unhandled after each stack
frame has had a chance to handle it, C++ defines that the terminate() function is called. By default,
terminate() calls abort(). You can call the C++ library function set_terminate() to register your
own function to be called by terminate. When terminate() finishes calling the user's function, it will
call abort().

C routines do not support try, throw, and catch, nor can C routines use signal() to register a handler
for thrown objects. A C++ routine cannot register a handler via signal() to catch thrown objects; it must
use catch clauses. try, throw, and catch cannot handle hardware exceptions, nor C, COBOL, PL/I, or
Language Environment exceptions.

COBOL condition handling semantics
COBOL native condition handling is very different from C, PL/I, or Fortran native condition handling.

COBOL provides some condition handling on a statement-by-statement basis; for example, the ON
EXCEPTION phrase of the CALL statement, the ON EXCEPTION phrase of the INVOKE statement, and
the ON SIZE ERROR phrase of the COMPUTE statement. For other conditions, COBOL generally reports
the error. An assembler user exit is available for COBOL to specify events that should cause an abend.

For more information about user exits, see Chapter 28, “Using runtime user exits,” on page 371. For a
discussion of COBOL condition handling in an ILC application, see z/OS Language Environment Writing
Interlanguage Communication Applications. The following discussion applies to stacks comprised solely
of COBOL programs.

If an exception occurs in a COBOL program, COBOL does nothing until every condition handler at every
stack frame has been interrogated.

After all stack frames have been visited, COBOL does the following:

1. Checks to see if the condition has a facility ID of IGZ (is a COBOL-specific condition). If not, COBOL
percolates the condition to the Language Environment condition manager.

2. Handles the condition based on its severity (see Table 34 on page 172 for an explanation of severity
codes and their meaning under Language Environment).

If the condition severity is 1, a message describing the condition is issued to the destination specified
in the MSGFILE runtime option, and processing resumes in the program in which the error occurred.

If the severity is 2 or higher, COBOL percolates the condition to the Language Environment condition
manager. The Language Environment default action then takes place.

COBOL condition handling examples
The following examples demonstrate how conditions are handled in Language Environment if you do not
use any Language Environment callable services, and do not have any user-written condition handlers
registered. The COBOLA program in Figure 65 on page 190 calls COBOLB in Figure 66 on page 190,
which in turn calls the COBOLC program, in Figure 67 on page 191. A divide-by-zero condition occurs in
COBOLC.

The divide-by-zero is enabled as a condition, so the condition step of Language Environment condition
handling is entered. There is no user-written condition handler that is registered for COBOLC or any
of the other COBOL programs, so the condition is percolated through all of the stack frames. COBOL's
default action for the divide-by-zero condition is to percolate the condition to Language Environment.
The divide-by-zero condition has a severity of 3. The Language Environment default response to an
unhandled severity 3 condition is to terminate the application and issue a message if TERMTHDACT(MSG)
is specified.

Condition handling interactions

Chapter 16. Language Environment and HLL condition handling interactions 189

CBL LIB,QUOTE,NODYNAM
 *Module/File Name: IGZTMLTA

 * *
 * Demonstrate a failing COBOL program with multiple active *
 * routines on the stack. The call sequence is as follows: *
 * *
 * COBOLA --> COBOLB --> COBOLC (which causes a zero divide) *
 * *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. COBOLA.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 1 Y PIC 999 VALUE ZERO.
 *
 PROCEDURE DIVISION.
 DISPLAY "In COBOLA.".
 CALL "COBOLB" USING Y.

 GOBACK.

Figure 65. COBOLA program

Figure 66 on page 190 calls COBOLC and passes data to it.

CBL LIB,QUOTE,NOOPTIMIZE,NODYNAM

 * *
 * IBM Language Environment *
 * *
 * Licensed Materials - Property of IBM *
 * *
 * 5645-001 5688-198 *
 * (C) Copyright IBM Corp. 1991, 1997 *
 * All Rights Reserved *
 * *
 * US Government Users Restricted Rights - Use, *
 * duplication or disclosure restricted by GSA *
 * ADP Schedule Contract with IBM Corp. *
 * *

 *Module/File Name: IGZTMLTB

 * *
 * Second routine called in the following call sequence: *
 * *
 * COBOLA --> COBOLB --> COBOLC (which causes a zero divide) *
 * *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. COBOLB.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 1 X PIC 999 VALUE ZERO.
 LINKAGE SECTION.
 1 Y PIC 999.
 *
 PROCEDURE DIVISION USING Y.
 DISPLAY "In COBOLB.".
 MOVE Y TO X.
 CALL "COBOLC" USING X.

 GOBACK.

Figure 66. COBOLB program

Figure 67 on page 191 generates a divide-by-zero condition. The divide-by-zero condition is percolated
back to COBOLB, to COBOLA, and to Language Environment default behavior.

Condition handling interactions

190 z/OS: z/OS Language Environment Programming Guide

CBL LIB,QUOTE,NODYNAM
 *Module/File Name: IGZTMLTC

 * *
 * Third routine called in the following call sequence: *
 * *
 * COBOLA --> COBOLB --> COBOLC (which causes a zero divide) *
 * *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. COBOLC.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 LINKAGE SECTION.
 1 Y PIC 999.
 *
 PROCEDURE DIVISION USING Y.
 DISPLAY "In COBOLC.".
 COMPUTE Y = 1 / Y.

 GOBACK.

Figure 67. COBOLC program

Resuming execution after an IGZ condition occurs
When a COBOL condition with a facility ID of IGZ occurs, you must call CEEMRCR with a 0 or 1
type_of_move before a resume is attempted. You cannot resume in place after an IGZ condition occurs
because the current stack frame is that for the runtime library routine. If a user-written condition handler
issued a result_code 10 (see “User-written condition handler interface” on page 202) without moving
the resume cursor first, that would be a resume in place. A 0 type_of_move results in a resume at the
instruction in the program following the call to the COBOL runtime library routine. For example, if you
encounter an error when trying to open a file, you cannot resume in place. You must either move the
resume cursor and then resume, or percolate the condition.

Resuming execution after a COBOL STOP RUN statement
There is a different constraint on resuming after a COBOL STOP RUN statement. When a STOP RUN is
issued, Termination Imminent due to Stop (T_I_S) is raised (see “Processing the T_I_S condition” on
page 174 for more information about T_I_S). Therefore, you can respond to a STOP RUN by registering a
user-written condition handler to recognize T_I_S.

This condition handler cannot call CEEMRCR with a 0 type_of_move, which means to move the resume
cursor to the point in your program just after the STOP RUN statement. This violates the standard
definition of a STOP RUN being the last statement to execute in the program in which it is coded.
Assuming your program is a subroutine, you could issue a 1 type_of_move to move the resume cursor to
the call return point of the stack frame previous to the one of the program that issued the STOP RUN. You
could also percolate the condition.

Reentering COBOL programs after stack frame collapse
A stack frame collapse occurs when the condition manager skips over one or more active routines and
execution resumes in an earlier routine on the stack. This can occur due to either of the following:

• An explicit GOTO out of block issued from a C or PL/I routine
• Moving the resume cursor using the CEEMRCR callable service and requesting a resume

Language Environment resets any intervening COBOL programs from an active to inactive state, provided
they are the following:

• VS COBOL II programs compiled with the CMPR2 compiler option
• VS COBOL II programs compiled with NOCMPR2 that do not use nested programs

Condition handling interactions

Chapter 16. Language Environment and HLL condition handling interactions 191

• COBOL for OS/390 & VM, COBOL for MVS & VM or COBOL/370 programs compiled with the CMPR2
compiler option or

• COBOL for OS/390 & VM, COBOL for MVS & VM and COBOL/370 programs compiled with NOCMPR2 that
do not use the combination of the INITIAL attribute, nested programs, and file processing in the same
compilation unit

• Enterprise COBOL for z/OS programs that do not use the combination of the INITIAL attribute, nested
programs, and file processing in the same compilation unit

After a stack frame collapse, the routines listed above can be reentered.

Language Environment issues a warning message during stack frame collapse for each intervening
COBOL program that does not adhere to the above restrictions. In addition, after the GOTO or resume
is performed, any attempt to re-enter these programs is diagnosed as an attempted recursive entry error.

Handling fixed-point and decimal overflow conditions
The ON SIZE ERROR phrase continues to be invoked by COBOL to handle fixed-point and decimal
overflow conditions, regardless of whether these conditions are enabled by Language Environment.

Fortran condition handling semantics
Fortran language syntax provides limited error handling through the ERR and IOSTAT specifiers that can
be coded on Fortran I/O statements, and the STAT specifier that can be coded on Fortran ALLOCATE
and DEALLOCATE statements. When ERR, IOSTAT, or STAT are present on a statement, and an error is
detected, Fortran semantics take precedence over Language Environment condition handling and control
returns immediately to the Fortran program.

Language Environment does not support the use of the Fortran global error option table or extended error
handling services.

Arithmetic program interruptions from vector instructions
When one of the following arithmetic program interruptions occurs during the execution of a vector
instruction, the interaction with a condition handler is equivalent to the corresponding exception for a
scalar instruction:

• Fixed-point overflow exception
• Exponent-overflow exception
• Exponent-underflow exception
• Floating-point divide exception
• Unnormalized-operand exception
• Square-root exception

The unnormalized-operand exception occurs only for vector instructions, but the same considerations
apply. Exceptions caused by vector instructions or scalar instructions are comparable in terms of the
information available to the condition handler and the possible resume and fix-up and resume actions that
the condition handler can request.

Whenever a condition handler is entered because a vector instruction caused one of the arithmetic
program interruptions, the information available to that handler represents an exception for only a single
element involved in the vector instruction. Both the condition token provided directly to the user condition
handler and the qualifying data that it can use are the same as for the corresponding scalar instruction
exception. None of this information reflects anything about a vector instruction. Therefore, the condition
handler must treat the condition as though it were a scalar exception in which the equivalent scalar
instruction is simply one of the successive elementary operations that comprise the vector instruction.

The same resume and fix-up and resume actions for scalar conditions can be requested when they apply
to one of the operations that comprise the vector instruction. For example, when the resume with new
input value action (result code 60 with a new condition token of CEE0CE) is allowed for the condition and

Condition handling interactions

192 z/OS: z/OS Language Environment Programming Guide

is requested by the user condition handler to provide a new input value for the failing operation, the new
input value is used to reexecute the failing vector instruction. This is identical to providing a new input
value for a scalar instruction except that a particular element of a vector register is involved. Similarly,
when the resume with new output value action (result code 60 with a new condition token of CEE0CF)
is allowed for the condition and is requested by the user condition handler to provide a new result for
the failing operation, the new result that the user condition handler provides replaces the appropriate
element of the vector register. This is identical to providing a new result for a scalar instruction in that
the new result replaces whatever the instruction left in its result position; in the vector case, the result
position is a particular element of a vector register. For the vector instruction, resumption then occurs by
continuing to execute the failing vector instruction but starting with the next element.

Because a vector instruction is semantically equivalent to a loop of elementary operations, more than
one arithmetic program interruption can occur for the same vector instruction but for different elements.
When this occurs, each exception is presented one at a time as a condition to any condition handlers that
are involved.

Restrictions on using vector instructions in user-written condition handlers
When a vector instruction causes a program interruption, no vector instructions can be executed from
within any user-written condition handler entered for the condition. In addition, if one of these condition
handlers incurs another condition, then subordinate user-written condition handlers that are entered
for any nested conditions are also prohibited from executing vector instructions. This restriction is not
diagnosed and violation of it causes unpredictable results.

PL/I condition handling semantics
Enterprise PL/I for z/OS condition handling semantics are the same as PL/I except that Enterprise PL/I for
z/OS, like C, ignores any hardware fixed-point overflow exceptions.

When an exception occurs in a PL/I routine, PL/I language semantics for handling the condition prevail.
Therefore, the behavior of PL/I condition handling in applications consisting of only PL/I routines is
unchanged under Language Environment.

In PL/I, you handle all runtime conditions by writing ON-units. An ON-unit is a procedure that is
established in a block when the ON statement for the ON-unit is run. The ON-unit itself runs when
the specified condition in the ON statement is raised. The establishment of an ON-unit applies to all
dynamically descendent (inherited from calling procedure) blocks of the block that established it; a
condition occurring in a called procedure could result in an ON-unit being run in the caller.

This section provides a high-level view of how condition handling works if an exception occurs in a
PL/I routine, and only PL/I routines are on the stack. For a more detailed explanation of PL/I condition
handling, refer to PL/I for MVS & VM Language Reference. For details about how PL/I condition handling
works in an ILC application, see z/OS Language Environment Writing Interlanguage Communication
Applications.

PL/I condition handling actions
Refer to Figure 68 on page 194 throughout the following summary of the steps taken to process a
condition when there are only PL/I routines on the stack.

Condition handling interactions

Chapter 16. Language Environment and HLL condition handling interactions 193

1 2 4 6

3 5 7

Routine 4 SF

Routine 3 SF

Routine 2 SF

Routine 1 SF

Figure 68. PL/I condition processing

1. Assume a condition such as CONVERSION, which is severity 3, occurs in routine 4.
2. Language Environment moves down the stack towards the earliest stack frame. If a PL/I ON-unit is

established for the CONVERSION condition, it is given control.
3. If all stack frames have been visited and no ON CONVERSION unit was found, a message is issued. The

condition is promoted to the ERROR condition if it meets any of the qualifications listed in “Promoting
conditions to the PL/I ERROR condition” on page 194. Otherwise, the PL/I implicit action occurs. A
CONVERSION condition would be promoted to ERROR.

4. The Language Environment condition manager makes another pass of the stack, beginning in Routine 4
where the original condition occurred. If a PL/I ERROR ON-unit is established, it is invoked.

5. If either of the following occurs:

• An ERROR ON-unit is found, but it does not issue a GOTO out of bloc.k
• No ERROR ON-unit is found.

then the ERROR condition is promoted to T_I_U (Termination Imminent due to an Unhandled
Condition). T_I_U maps to the PL/I FINISH condition. (See “Termination imminent step” on page 173
for a discussion of T_I_U.)

6. Language Environment makes yet another pass of the stack, beginning in Routine 4 where the original
condition occurred. If a PL/I FINISH ON-unit is established, it is invoked.

7. If all stack frames have been visited, and no FINISH ON-unit issued a GOTO out of block, then
Language Environment begins thread termination activities in response to the unhandled condition.
Since a message was issued for the CONVERSION condition before it was promoted to the ERROR
condition, no message is issued at this time.

Promoting conditions to the PL/I ERROR condition
PL/I promotes the following conditions to the PL/I ERROR condition:

• Any PL/I condition for which the implicit action is to promote to the ERROR condition. The appropriate
ONCODE is used. See PL/I for MVS & VM Language Reference for details.

Mapping non-PL/I conditions to PL/I conditions
Some non-PL/I conditions map directly to PL/I conditions:

• The Language Environment conditions listed in the first column below map directly to the PL/I
conditions in the second column.
Attention

ATTENTION
Decimal divide

ZERODIVIDE

Condition handling interactions

194 z/OS: z/OS Language Environment Programming Guide

Decimal overflow
FIXEDOVERFLOW

Exponent overflow
OVERFLOW

Exponent underflow
UNDERFLOW

Fixed-point divide
ZERODIVIDE

Fixed-point overflow
FIXEDOVERFLOW

Floating-point divide
ZERODIVIDE

These Language Environment conditions map directly to the PL/I conditions. They are detected by the
hardware and are normally represented by condition tokens with a facility ID of CEE when raised. They
are represented by an IBM condition token only when signaled by the PL/I SIGNAL statement.

• The following map directly to ERROR:

– A Language Environment condition of severity 2, 3, or 4 that does not map to one of the PL/I
conditions listed above

For these conditions, an established ERROR ON-unit is run on the first pass of the stack. In general,
the ONCODE is 9999. Some Language Environment conditions that map to ERROR, however, are
represented by an ONCODE other than 9999. Examples are some of the conditions raised by the
Language Environment math services.

– Any other condition of severity 2, 3, or 4

For these conditions, an established ERROR ON-unit is run on the first pass of the stack; the ONCODE
is 9999.

Additional PL/I condition handling considerations
Keep the following additional PL/I condition handling considerations in mind:

• Non-PL/I conditions of severity 0 or 1 are not promoted to ERROR.
• Promoting any non-PL/I condition to a PL/I condition is prohibited.
• Raising a PL/I condition using the CEESGL callable service is prohibited.
• Issuing a call to CEEMRCR from within a PL/I ON-unit to move the resume cursor is prohibited. But,

you can move the resume cursor by using CEEMRCR from within a Language Environment user-written
condition handler.

PL/I condition handling example
The following example shows an example of condition handling for PL/I.

*PROCESS MACRO;
 /*Module/File Name: IBMDIVZ
 /***/
 /* */
 /* PL/I Condition Handling Functions: */
 /* : Establish ZERODIVIDE ON-unit */
 /* : GO TO out of ZERODIVIDE ON-unit */
 /* : PL/I Normal return from ZERODIVIDE ON-unit */
 /* : Revert ZERODIVIDE ON-unit */
 /* : PL/I System action on ZERODIVIDE condition */
 /* */
 /* 1. This example establishes a ZERODIVIDE ON-unit. */
 /* 2. A subprogram, sdivide, is called and causes a ZERODIVIDE */
 /* condition to occur. */
 /* 3. The ZERODIVIDE ON-unit is entered. A GOTO out of the ON-unit */
 /* is processed. The program resumes at the label */
 /* "after_1st_zerodivide". */

Condition handling interactions

Chapter 16. Language Environment and HLL condition handling interactions 195

 /* 4. A new ZERODIVIDE ON-unit is established and it overrides the */
 /* current established ZERODIVIDE ON-unit. */
 /* 5. The subroutine sdivide is called a second time. */
 /* 6. The newly established ZERODIVIDE ON-unit is entered. A GOTO */
 /* is not executed, and the program resumes at the location */
 /* following the instruction that caused the condition. This */
 /* is the PL/I normal return action for the ZERODIVIDE condition. */
 /* 7. The established ZERODIVIDE ON-unit is canceled by executing */
 /* the REVERT ZERODIVIDE statement. */
 /* 8. Sdivide is called a third time. Because there is no */
 /* ZERODIVIDE ON-unit established, the PL/I implicit action */
 /* is executed. Namely, the ERROR condition is raised and the */
 /* program is terminated. */
 /** */
 /***/

 CEPLCND: Proc Options(Main);

 %INCLUDE CEEIBMAW;
 %INCLUDE CEEIBMCT;
 dcl in_zdiv_ou1 char (1), in_zdiv_ou2 char(1),fell_thru char(1);
 in_zdiv_ou1 = 'N';
 in_zdiv_ou2 = 'N';
 fell_thru = 'N';
 /**/
 /* A ZERODIVIDE ON-unit is established when control reaches the */
 /* ON statement. */
 /**/
 on zerodivide begin;
 in_zdiv_ou1 = 'Y';
 go to after_1st_zerodivide;
 end;

 /**/
 /* The first call to sdivide will result in the ZERODIVIDE */
 /* condition being raised. The preceding established ON-unit */
 /* gets control. Due to a GO TO out of the ON-unit, execution */
 /* resumes immediately at label after_1st_zerodivide. This is */
 /* verified by checking that the flow of control did not resume */
 /* at the instruction following the ZERODIVIDE condition. */
 /**/
 call sdivide;after_1st_zerodivide:
 if (fell_thru = 'Y') then do;
 put skip list ('Error in flow of control after'
 || ' the first call to sdivide. ');
 end;
 /**/
 /* A new ZERODIVIDE ON-unit is established when control */
 /* reaches the following ON ZERODIVIDE statement. */
 /**/
 on zerodivide begin;
 in_zdiv_ou2 = 'Y';
 end;

 /**/
 /* Subroutine sdivide is called a second time to raise the */
 /* ZERODIVIDE condition. Control enters the established */
 /* ZERODIVIDE ON-unit. On exit from the preceding zerodivide */
 /* ON-unit, control returns to the instruction following the */
 /* divide by zero in subroutine SDIVIDE. A check is made to */
 /* detect if control flowed to the instruction following the */
 /* one that caused the zerodivide condition to be raised. */
 /**/
 call sdivide;
 if (fell_thru = 'N') then do;
 put skip list
 ('Error in flow of control after second call to cepldiv. ');
 end;
 /**/
 /* The ZERODIVIDE ON-unit is canceled by action of the */
 /* REVERT statement. */
 /**/
 revert zerodivide;
 if (in_zdiv_ou1 = 'N' | in_zdiv_ou2 = 'N') then
 put skip list ('Error in flow of control to ON-units');
 else do;
 put skip list ('The PL/I condition handling example'
 || ' will terminate with PL/I message IBM0301');

 /***/
 /* Sdivide is called for the third and final time. Because */
 /* there are no established ON-units, the implicit action */

Condition handling interactions

196 z/OS: z/OS Language Environment Programming Guide

 /* for ZERODIVIDE takes place. */
 /***/
 call sdivide;
 put skip list ('Error in flow of control after third'
 || ' call to sdivide. ');
 end;

 /***/
 /* The sdivide subroutine causes a ZERODIVIDE condition. */
 /***/
 sdivide: proc;
 dcl int fixed bin (15,0);
 dcl int_2 fixed bin (15,0) init(5);
 dcl int_3 fixed bin (15,0) init(0);
 int = int_2 / int_3;
 fell_thru = 'Y';
 end sdivide;

 End ceplcnd;

Language Environment and POSIX signal handling interactions
If you want to run an application that uses POSIX signal handling functions under z/OS UNIX, you need
to know how Language Environment condition handling might affect your application. For a detailed
discussion of POSIX signal handling functions, see z/OS XL C/C++ Programming Guide. For details
about the Language Environment condition handling model, see Chapter 15, “Introduction to Language
Environment condition handling ,” on page 165.

In Language Environment, POSIX signals are distinguished as follows:
Synchronous Signal Handling

If a signal is delivered to the thread that caused the signal to be sent (the incurring thread), and
the signal is not blocked, Language Environment’s synchronous signal handling semantics apply
and you can use Language Environment condition services to handle the condition as described in
“Synchronous POSIX signal and Language Environment condition handling interactions” on page 198.
Like asynchronous signals, synchronous POSIX signals do not increment the ERRCOUNT error count.

Asynchronous Signal Handling
Asynchronous signals include the following:

• Signals generated because of a kill(), raise(), pthread_kill(), killpg() or sigqueue()
(on MVS) in a multithread environment that are delivered to a thread that did not cause the signal to
be sent.

• Signals generated because of a kill(), killpg() or sigqueue() (on MVS) from a different
POSIX process.

• All signals that were blocked when first sent, and later unblocked.
• Signals generated by an external interrupt not caused by any specific thread. For example, signals

can be generated in response to a command typed in at the terminal.
• SIGCHLD, which is sent to a parent process when one of its child processes terminates.
• Signals, such as SIGALRM, generated by the kernel.

Asynchronous signals are handled according to the semantics defined by POSIX. Language
Environment condition handling semantics do not apply; for example, the ERRCOUNT runtime option
does not increment its error count when an asynchronous signal is sent.

POSIX signal handling can take effect even if no C routine is present on the stack. For example, a COBOL
program calls C routine C1. C1 registers a POSIX signal catcher, then C1 returns control to the COBOL
program. The registered POSIX signal handler would still be present to handle a POSIX signal even though
the stack no longer contains a C stack frame.

Condition handling interactions

Chapter 16. Language Environment and HLL condition handling interactions 197

Synchronous POSIX signal and Language Environment condition handling
interactions

This topic discusses how Language Environment processes most synchronous POSIX signals. (The term
POSIX signal includes both POSIX-defined signals and C-language signals.) With the exception of the
POSIX signals listed in “POSIX signals that do not enter condition handling” on page 200, normal
Language Environment condition handling steps occur after a specific thread is selected as the target
of a possible signal delivery. This applies whether the signal was directed to a specific thread or to a
process (or processes).

Synchronous signal handling takes effect for the following signals, unless they are blocked by the signal
mask:

• A signal you generate by calling the CEESGL (signal a condition) callable service
• A hardware or software exception caused by a specific thread, which will be delivered to the incurring

thread

These are the exceptions typically caught by ESTAE.
• A kill() to the current process, a raise(), or a sigqueue() if the process has but a single thread or

the signal happens to be delivered to the thread that issued the kill(), raise() or sigqueue().
• A pthread_kill() issued by a thread to itself

The signal mask is ignored for a signal caused by a program check.

Language Environment processes POSIX signals by using the three general steps of Language
Environment condition handling: enablement, condition, and termination imminent, as described in
“Enablement step for signals under z/OS UNIX” on page 198, “Condition step for POSIX signals under
Language Environment” on page 199, and “Termination imminent step under z/OS UNIX” on page 200.

Enablement step for signals under z/OS UNIX
Figure 69 on page 199 illustrates how z/OS UNIX determines if a signal is enabled, ignored, or blocked.
A few POSIX signals do not go through this process. See “POSIX signals that do not enter condition
handling” on page 200 for details.

If a signal is ignored or blocked, the signal does not enter Language Environment synchronous condition
handling. If a signal is enabled, z/OS UNIX passes it to the Language Environment enablement step
(described in “Enablement step” on page 168). From there, Language Environment either disables the
signal, or passes it into the Language Environment condition step.

Condition handling interactions

198 z/OS: z/OS Language Environment Programming Guide

Figure 69. Enablement step for signals under z/OS UNIX

Condition step for POSIX signals under Language Environment
You might find it helpful to read about the Language Environment condition step before reading this topic.

1. At each stack frame (or until the condition is handled, or all of your application's stack frames have
been visited), do the following:

• If a user-written condition handler registered using the CEEHDLR callable service is present on the
stack frame, Language Environment gives it a chance to handle the condition.

• If the signal action was set in a call to signal(), the action requested by the signal handler takes
place.

If the signal action was set in a call to sigaction(), sigactionset() or bsd_signal(), the
action is ignored until a later step.

2. When all application stack frames have been visited, the incurring stack frame's language defaults are
applied.

Condition handling interactions

Chapter 16. Language Environment and HLL condition handling interactions 199

C applies its default only if the signal action was set in a call to signal(). Otherwise, the signal is
percolated.

3. If the signal is percolated from the previous step, the following occurs:

• If the signal is a POSIX signal whose signal action was set in a call to sigaction(),
sigactionset() or bsd_signal(), the POSIX action (SIG_DFL or a catcher) is applied.

• For any other signal, Language Environment applies its default actions (described in Table 34
on page 172). If the condition that the signal represents is of severity 2 or greater, Language
Environment promotes the condition to Termination Imminent due to an Unhandled Condition
(T_I_U).

Termination imminent step under z/OS UNIX
In a POSIX(ON) environment, Language Environment’s termination imminent step takes place as
described in “Termination imminent step” on page 173, with one exception: the behavior of the
TERMTHDACT runtime option. If POSIX(ON) is set, TERMTHDACT takes effect only if enclave termination
results from a program check or abend, not from signal generating functions such as CEESGL, raise(),
kill(), pthread_kill(), killpg() or sigqueue().

POSIX signals that do not enter condition handling
Certain POSIX signals do not go through the condition handling steps described above:

• SIGKILL and SIGSTOP cannot be caught or ignored; they always take effect.
• SIGCONT immediately begins all stopped threads in a process if SIG_DFL is set.
• SIGTTIN, SIGTTOU, and SIGSTP immediately stop all threads in a process if SIG_DFL is set.

IBM extensions to POSIX signals that do not go through condition handing:

• SIGDUMP cannot be caught or ignored; it always takes effect.
• SIGTHSTOP and SIGTHCONT cannot be caught or ignored; they always take effect.

Condition handling interactions

200 z/OS: z/OS Language Environment Programming Guide

Chapter 17. Coding a user-written condition handler

This topic describes how you can code a user-written condition handling routine and provides examples
for Language Environment-conforming HLLs.

Your user-written condition handler can test for the occurrence of a particular condition by coding a
12-byte condition token or by coding a symbolic feedback code. You can use the Language Environment
callable service CEEHDLR to register the condition handler. For information about using CEEHDLR, see
“User-written condition handler interface” on page 202.

The USRHDLR runtime option enables you to register a user-written condition handler at stack frame 0
without having to recompile your application to include a call to CEEHDLR. This is particularly useful in
supporting Fortran applications because Fortran applications are unable to directly call CEEHDLR.

Nested conditions can be used in your routine as long as the language your routine is written in allows it to
be recursively entered. You should design the routine to handle specific conditions rather than designing
the routine to handle a wide variety of conditions. You should also code the condition handling routine
to respond to the original condition on the first pass of the stack, rather than coding a routine to handle
T_I_U on the second pass of the stack. This helps ensure that the handling that you perform addresses
the original condition. The more specific the condition is that you design the handler for, the more precise
the fix can be.

PL/I considerations
User condition handlers can now be written in PL/I; that is, you can register a PL/I external procedure as a
user-written condition handler using the Language Environment callable service CEEHDLR, and unregister
it using CEEHDLU.

Restrictions on PL/I user-written condition handlers are:

• If a user handler is registered in the PL/I main routine, it must be unregistered using CEEHDLU before
the main returns via a RETURN statement or by reaching the END statement. One implication is that a
user handler registered in the main routine does not gain control for the PL/I FINISH condition raised
due to normal termination of the main routine.

• You cannot collapse multiple BEGIN blocks using a RETURN statement when CEEHDLR has been
invoked within a nested block.

• The following condition handling pseudovariables and built-in functions are still restricted to PL/I
ON-units and are not available in user handlers:

– DATAFIELD
– ONCHAR
– ONCODE
– ONCOUNT
– ONFILE
– ONKEY
– ONLOC
– ONSOURCE

• User-written condition handlers are not supported in PL/I multitasking applications.

Invocation of a procedure registered as a user handler
A PL/I parameter declared as a structure expects an extra PL/I descriptor; however, Language
Environment passes argument lists by reference and has no knowledge of PL/I descriptors. Therefore

User-written condition handler

© Copyright IBM Corp. 1991, 2022 201

for the parameter list to be received, declare the parameters with the OPTIONS(BYVALUE) option as
shown in Figure 70 on page 202.

 PLIHDLR: PROC(ptr1, ptr2, ptr3, ptr4) OPTIONS(BYVALUE);

 DCL (ptr1, ptr2, ptr3, ptr4) POINTER;
 DCL 1 Current_condition BASED(ptr1)
⋮
 ;
 DCL Token FIXED BIN(31) BASED(ptr2);
 DCL Result_code FIXED BIN(31) BASED(ptr3);
 DCL 1 New_condition BASED(ptr4)
⋮
 ;

Figure 70. Parameter declarations in a PL/I user-written condition handler

Types of conditions you can handle
A user-written condition handler can, in general, intercept and process any condition, regardless of the
language of the routine in which the condition occurred. This means that you can code a user-written
condition handler to respond to condition tokens with any of the following facility IDs:

• CEE, representing Language Environment and POSIX-defined conditions
• EDC, representing C and C++ conditions
• IGZ, representing COBOL conditions
• FOR, representing Fortran conditions
• IBM, representing PL/I conditions

In general, your user-written condition handler can use any of the Language Environment condition
handling services. Specific exceptions follow:

• The ways in which you can resume after an IGZ condition of severity 2 or above are restricted. See
“Resuming execution after an IGZ condition occurs” on page 191 for details.

• If an IBM condition of severity 2 or above was raised, then you cannot issue a resume without first
moving the resume cursor.

This restriction does not apply to IBM conditions of severity 0 or 1, or any IBM conditions signaled using
the PL/I SIGNAL statement.

• You cannot promote any condition to an IBM condition (one that belongs to PL/I). You can promote IBM
conditions to conditions with facility IDs of CEE, EDC, FOR, or IGZ.

For more information about coding user-written condition handlers to respond to conditions of different
facility IDs, see “Using symbolic feedback codes” on page 234.

User-written condition handler interface
Use CEEHDLR to register a user-written condition handler. For more information about CEEHDLR,
see CEEHDLR—Register user-written condition handler in z/OS Language Environment Programming
Reference.

User-written condition handlers are automatically unregistered when the stack frame they're associated
with is removed from the stack due to a return, GOTO out of block, or a move of the resume cursor. You
can, however, call CEEHDLU to explicitly unregister a user-written condition handler. For more information
about CEEHDLU, see CEEHDLU—Unregister user-written condition handler in z/OS Language Environment
Programming Reference.

Recursion is allowed if a handler is registered within a handler, and nested conditions are allowed.

User-written condition handler

202 z/OS: z/OS Language Environment Programming Guide

It is invalid to promote a condition without returning a new condition token. You cannot promote a
condition to a PL/I condition.

condition_handler (c_ctok , token , result_code , new_condition)

c_ctok (input)
A 12-byte condition token that identifies the current condition being processed. Language
Environment uses this parameter to tell your condition handler what condition has occurred.

token (input)
A 4-byte integer that specifies the token you passed into Language Environment when this condition
handler was registered by a call to the CEEHDLR callable service.

result_code (output)
A 4-byte integer that contains instructions about responses the user-written condition handler
wants Language Environment to make when processing the condition. The result_code is passed by
reference. Valid responses are shown in Table 40 on page 203.

Table 40. Valid result codes from user-written condition handlers

Response
Result_Code

value Action

resume 10 Resume at the resume cursor (condition has been handled).
Unless the resume cursor has been moved, this response
can only be used if the condition being handled specifically
allows this form of resumption.

percolate 20 Percolate to the next condition handler. If a result_code
is not explicitly set by a handler, this is the default
result_code.

21 Percolate to the first user-written condition handler for the
stack frame that is before the one to which the handle
cursor points. This can skip a language-specific condition
handler for this stack frame as well as the remaining user-
written condition handlers in the queue for this stack frame.

promote 30 Promote to the next condition handler.

31 Promote to the stack frame before the one to which the
handle cursor points. This can skip a language-specific
condition handler for this stack frame as well as any
remaining user-written condition handler in the queue at
this stack frame.

32 Promote and restart condition handling at the first condition
handler of the stack frame of the handle cursor.

fix-up and
resume

60 Provide the fix-up actions indicated by new_condition and
by any qualifying data values that apply to the condition;
then resume execution. This response is only allowed if the
resume cursor has not been moved and only if the condition
being handled allows this response. new_condition must be
set by the condition handler to request one of the specific
actions for the condition.

If result_code is not explicitly set by the handler, the default response is Value=20, Percolate to
the next condition handler.

User-written condition handler

Chapter 17. Coding a user-written condition handler 203

new_condition (output)
A 12-byte condition token that represents either the promoted condition for a promote response
(result_code values of 30, 31, and 32) or the requested fix-up actions for a fix-up and resume response
(result_code value of 60).

When a result_code of 60, denoting fix-up and resume, is set by the condition handler, new_condition
must be set to a condition token that indicates what fixup action is requested. Many conditions,
including mathematical routines, use the condition tokens in Table 41 on page 204 to resume with
corrective action (either resume with new input value or resume with new output value). For some
conditions, there may be other condition tokens that can be provided by the condition handler in
new_condition to request specific fixup actions.

Table 41. Designating requested fixup actions

Symbolic
feedback
code (fc)

Severity Message number Fixup action

CEE0CE 1 398 Fixup with new input value. The service that
signaled the condition is invoked again with the
new argument value provided by the handler as
qualifying data.

CEE0CF 1 399 Fixup with new output value. The service that
signaled the condition returns as its result, the
value provided by the handler as qualifying data.

Registering user-written condition handlers using USRHDLR
Use the USRHDLR runtime option to register a user-written condition handler to run at one of the
following times (or both):

• At stack frame 0, the condition handler specified as lmname is invoked after the default HLL condition
handler for the main program, but before the HLL condition handler for stack frame 0. The condition
percolated or promoted by this user-written condition handler is not passed to any other condition
handler.

• The condition handler specified as lmname2 is given control after each condition completes the
enablement phase, but before any other registered user condition handler is given control.

NOUsrhdlr

USrhdlr (

lmname , lmname2

)

NOUsrhdlr
Specifies that no user-written condition handler is registered.

USrhdlr
Specifies that a user-written condition handler is registered.

lmname
The entry point name or alias name of a load module that contains the user-written condition handler
to be registered at stack frame 0.

lmname2
The entry point name or alias name of a load module that contains the user-written condition handler
to be registered to get control after the enablement phase and before any other condition handler.

The condition handlers registered by the USRHDLR runtime option can return any of the result codes
allowed for a condition handler registered with the CEEHDLR callable service.

User-written condition handler

204 z/OS: z/OS Language Environment Programming Guide

For more information about the USRHDLR runtime option, see USRHDLR | NOUSRHDLR in z/OS Language
Environment Programming Reference.

Nested conditions
A nested condition is one that occurs within a C/C++ signal handler, PL/I ON-unit, or user-written
condition handler invoked to handle a condition. When conditions occur during the condition handling
process, the handling of the original condition is suspended and further action is taken based on the state
of the condition handling.

The DEPTHCONDLMT runtime option indicates whether nested conditions are permitted while your
application runs. If you specify DEPTHCONDLMT(1), handling of the initial condition is allowed, but
any additional nested condition causes your application to abend. If you specify DEPTHCONDLMT(0),
an unlimited number of nested conditions is permitted. If you specify some other integer value for
DEPTHCONDLMT, Language Environment allows handling of the initial condition plus additional levels of
nested conditions before your application abends.

If a nested condition is allowed within a user-written condition handler, Language Environment begins
handling the most recently raised condition. After the most recently raised condition is properly handled,
execution begins at the instruction pointed to by the resume cursor, the instruction following the point
where the condition occurred. If a user-written condition handler is registered using CEEHDLR within
another user condition handler, nested conditions are handled by the most recently registered condition
handler.

If any HLL or user-written condition handler moves the resume cursor closer to the oldest stack frame
both conditions are considered handled. The application resumes running at the instruction pointed to by
the resume cursor. The resume cursor can be moved using the CEEMRCR callable service, or by language
constructs such as GOTO.

Nested conditions in applications containing a COBOL program
You must take special care when dealing with nested conditions in ILC applications. For example, the
following scenario can cause your application to abend:

1. A nested condition occurs within a COBOL user-written condition handler (CBLUHDLR). Condition
handlers written in COBOL must be compiled with Enterprise COBOL for z/OS, COBOL for OS/390 &
VM, COBOL for MVS & VM, or COBOL/370.

2. The COBOL user-written condition handler calls another user-written condition handler established
using CEEHDLR to handle the nested condition.

3. The user-written condition handler percolates the condition.

In this scenario, the condition can be percolated back to the stack frame where the original condition
occurred. Since condition handling actions for the routine where the condition originally occurred include
calling CBLUHDLR, CBLUHDLR can be recursively entered. This is not permitted under COBOL/370, and
your application abends.

If CBLUHDLR is compiled with Enterprise COBOL for z/OS, COBOL for OS/390 & VM, or COBOL for MVS &
VM; then the recursive call is allowed if RECURSIVE is specified in the PROGRAM-ID. A rule of thumb is to
ensure that COBOL user-written condition handlers that call other user-written condition handlers do not
regain control or, make sure they are capable of being recursively entered.

Using Language Environment condition handling with nested COBOL
programs

If your application contains both nested COBOL programs and calls to Language Environment condition
handling services, keep the following restrictions in mind:

• Do not call CEEHDLR from a nested COBOL program.
• Do not call CEEMRCR with a 1 type_of_move from a user handler associated with a stack frame that

was called by a nested COBOL program. In Figure 71 on page 206, Program A calls nested Program B.

User-written condition handler

Chapter 17. Coding a user-written condition handler 205

Program B calls Program C, which registers a user-written condition handler, UWCHC. UWCHC cannot
call CEEMRCR with a 1 type_of_move, which would move the resume cursor back to nested Program
B.

Program A

Program C UWCHC

Nested
Program B

Figure 71. Restricted type_of_move If COBOL nested programs are present

Examples with a registered user-written condition handler
This section contains C, C++, COBOL, PL/I, and assembler examples in which user-written condition
handlers are registered to respond to specific conditions that might occur in an application.

• In “Handling a divide-by-zero condition in C, C++, COBOL, or PL/I” on page 206, C, C++, COBOL, and
PL/I call CEEHDLR and CEEMRCR to handle a divide-by-zero condition.

• In “Handling an out-of-storage condition in C, C++, COBOL, or PL/I” on page 213, C, C++, COBOL, and
PL/I call CEEHDLR and CEEMRCR to handle an out-of-storage condition.

• In “Signaling and handling a condition in a C/C++ routine” on page 221, C or C++ call CEEHDLR
CEEGQDT, and CEEMRCR to respond to a signaled condition.

• In “Handling a divide-by-zero condition in a COBOL program” on page 223, COBOL calls CEEHDLR,
CEE3GRN, and CEEMOUT to respond to the significance condition (which was enabled using CEE3SPM).

• In “Handling a program check in an assembler routine” on page 227, assembler calls CEEHDLR to
register a condition handler that responds to a program check.

Handling a divide-by-zero condition in C, C++, COBOL, or PL/I
Figure 72 on page 207 and the following examples provide an illustration of how user-written condition
handlers can handle conditions such as a divide-by-zero in a C, C++, COBOL, or PL/I application. In the
C or C++ examples in “C or C++ handling a divide-by-zero condition” on page 207, the COBOL examples
in “COBOL handling a divide-by-zero condition” on page 209, and the PL/I examples in “PL/I handling
a divide-by-zero condition” on page 211, the main routine calls CEEHDLR to register the user-written
condition handler (“USRHDLR program (COBOL)” on page 210 for COBOL). The main routine then calls the
DIVZERO routine (Figure 73 on page 210 for COBOL), in which a divide-by-zero exception occurs.

User-written condition handler

206 z/OS: z/OS Language Environment Programming Guide

DIVZERO's SF

MAIN's SF

USRHDLR

CALL CEEMRCR (0, fc)

Arg=1/0

RESUME
CURSOR

HANDLE
CURSOR

CALL DIVZERO

Figure 72. Handle and resume cursor movement as a condition is handled

Divide-by-zero is enabled as a condition in the following steps:

1. The handle cursor, which first points at DIVZERO's stack frame, moves down the stack to the USRHDLR
condition handler, the first user-written condition handler established to handle conditions for the
main routine's stack frame.

2. For divide-by-zero conditions, USRHDLR issues a call to CEEMRCR (Move Resume Cursor Relative to
Handle Cursor) with a 0 type_of_move, meaning move the resume cursor to the call return point of the
stack frame associated with the handle cursor. (The call return point is the next instruction after the
call to the DIVZERO routine.)

3. Execution resumes in the main routine at this point. A divide-by-zero condition is the only type of
program interrupt for which USRHDLR causes a resume.

4. All other program interrupts are percolated to the next condition handler on the stack.

For simplicity, the examples shown in this topic do not include calls to some Language Environment
services that could also be useful for handling conditions in your application. For example, you might code
in the USRHDLR routine a call to the CEE3GRN callable service in order to get the name of the routine that
incurred the condition.

C or C++ handling a divide-by-zero condition
The following example contains the C/C++ routine that performs the tasks involved with handling a
divide-by-zero condition in C, C++, COBOL, or PL/I.

#pragma noinline(divzero)
/*Module/File Name: EDCDIVZ */
/**/
/* */
/* MAIN .-> DIVZERO */
/* - register handler | - force a divide-by-zero */
/* - call DIVZERO --' */
/* ==> "resume point" */
/* - unregister handler */
/* USRHDLR: */
/* - if divide-by-zero */
/* - move resume cursor */
/* - resume at "resume point" */
/* */
/**/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>

#ifdef __cplusplus
extern "C" {
#endif

 void usrhdlr(_FEEDBACK *, _INT4 *, _INT4 *, _FEEDBACK *);

User-written condition handler

Chapter 17. Coding a user-written condition handler 207

#ifdef __cplusplus
}
#endif

void divzero(int);

int main(void) {

 _FEEDBACK fc;
 _INT4 divisor;
 _INT4 token;
 _ENTRY pgmptr;
 /* Register a user-written condition handler. */
 pgmptr.address = (_POINTER)&usrhdlr;
 pgmptr.nesting = NULL;
 token = 97; CEEHDLR (&pgmptr, &token, &fc);
 if (_FBCHECK (fc , CEE000) != 0) {
 printf("CEEHDLR failed with message number %d\n",
 fc.tok_msgno);
 exit(99);
 }
 printf("MAIN: Registered USRHDLR.\n");

 /* Call DIVZERO to divide by zero and drive USRHDLR */
 divisor = 0;
 divzero(divisor);
 printf("MAIN: Resumption after DIVZERO.\n");

 /* Unregister the user condition handler. */
 CEEHDLU (&pgmptr, &fc);
 if (_FBCHECK (fc , CEE000) != 0) {
 printf("CEEHDLU failed with message number %d\n",
 fc.tok_msgno);
 exit(99);
 }

 printf("MAIN: Unregistered USRHDLR.\n");
} /* end main */

void divzero(int arg) {
 printf(" DIVZERO: Starting.\n");
 arg = 1 / arg;
 printf(" DIVZERO: Returning to its caller.\n");
} /* end divzero */

/**/
/* usrhdlr will handle DIVIDE-BY-ZERO conditions... */
/* all others will be percolated. */
/**/

void usrhdlr(_FEEDBACK *cond,_INT4 *input_token,
 _INT4 *result, _FEEDBACK *new_cond)
 {
 _INT4 move_type_0 = 0;
 _INT4 move_type_1 = 1;
 _FEEDBACK feedback;

 /* values for handling the conditions */
 #define resume 10
 #define percolate 20
 #define promote 30
 #define promote_sf 31
 printf(">>> USRHDLR: Entered User Handler \n");
 printf(">>> passed token value is %d\n",*input_token);
/* check if the DIVIDE-BY-ZERO message (0C9) */
 if (cond->tok_msgno == 3209) {
 CEEMRCR (&move_type_0, &feedback);
 if (_FBCHECK (feedback , CEE000) != 0) {
 printf("CEEMRCR failed with message number %d\n",
 feedback.tok_msgno);
 exit(99);
 }
 *result = resume;
 printf(">>> USRHDLR: Resuming execution\n");
 }
 else { /* not DIVIDE-BY-ZERO */
 *result = percolate;
 printf(">>> USRHDLR: Percolating it\n");
 }
} /* end usrhdlr */

User-written condition handler

208 z/OS: z/OS Language Environment Programming Guide

COBOL handling a divide-by-zero condition
The program in the following example registers a user-written condition handler, calls the DIVZERO
subroutine, and unregisters the condition handler on return from the subroutine.

CBL LIB,QUOTE,NODYNAM,NOOPT
 *Module/File Name: IGZTDIVZ
 **
 * *
 * EXCOND .-> DIVZERO *
 * - register handler | - force a divide-by-zero *
 * - call DIVZERO --' *
 * ==> "resume point" *
 * - unregister handler *
 * USRHDLR *
 * - if divide-by-zero, then: *
 * - move resume cursor *
 * - resume at "resume point" *
 * *
 **

 IDENTIFICATION DIVISION.
 PROGRAM-ID. EXCOND.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 77 DIVISOR PIC S9(9) BINARY.
 **
 ** Declarations for condition handling
 **
 77 TOKEN PIC X(4).
 77 PGMPTR USAGE IS PROCEDURE-POINTER.
 01 FC.
 02 Condition-Token-Value.
 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.
 PROCEDURE DIVISION.
 PARA-CND01A.
 **
 ** Register a user-written condition handler. **
 **
 SET PGMPTR TO ENTRY "USRHDLR".
 MOVE ZERO TO TOKEN.
 CALL "CEEHDLR" USING PGMPTR TOKEN FC.
 IF CEE000 of FC THEN
 DISPLAY "EXCOND: REGISTERED USRHDLR."
 ELSE
 DISPLAY "CEEHDLR failed with msg "
 Msg-No of FC UPON CONSOLE
 STOP RUN
 END-IF.
 **
 ** Call DIVZERO to force a divide-by-zero and drive USRHDLR **
 **
 MOVE 00 TO DIVISOR.
 CALL "DIVZERO" USING DIVISOR.
 DISPLAY "EXCOND: RESUMED AFTER DIVZERO.".

 ** Unregister the user-written condition handler.**

 CALL "CEEHDLU" USING PGMPTR FC.
 IF CEE000 of FC THEN
 DISPLAY "EXCOND: UNREGISTERED USRHDLR."
 ELSE
 DISPLAY "CEEHDLU failed with msg "
 Msg-No of FC UPON CONSOLE
 STOP RUN
 END-IF.

User-written condition handler

Chapter 17. Coding a user-written condition handler 209

 GOBACK.
 END PROGRAM EXCOND.

Figure 73 on page 210 shows the subroutine DIVZERO that generates the divide-by-zero condition.

CBL LIB,QUOTE,NODYNAM,NOOPT
 *Module/File Name: IGZTDIVS
 IDENTIFICATION DIVISION.
 PROGRAM-ID. DIVZERO.

 DATA DIVISION.
 LINKAGE SECTION.
 01 ARG PIC S9(9) BINARY.

 PROCEDURE DIVISION USING ARG.
 DISPLAY " DIVZERO: STARTING.".
 COMPUTE ARG = 1 / ARG.
 DISPLAY " DIVZERO: RETURNING TO ITS CALLER.".

 GOBACK.
 END PROGRAM DIVZERO.

Figure 73. DIVZERO program (COBOL)

USRHDLR program (COBOL)
The following example shows the user-written condition handler registered by EXCOND to handle the
divide-by-zero condition. When the divide-by-zero condition arises, USRHDLR calls CEEMRCR with a 0
type of move. Doing so moves the resume cursor to the point in EXCOND after the call to DIVZERO.

CBL LIB,QUOTE
 *Module/File Name: IGZTDIVU
 **
 * *
 * USRHDLR *
 * *
 **
 IDENTIFICATION DIVISION.
 PROGRAM-ID. USRHDLR.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 MISC-VARIABLES.
 02 MOVE-TYPE-0 PIC S9(9) BINARY VALUE ZERO.
 02 MOVE-TYPE-1 PIC S9(9) BINARY VALUE 1.
 01 FEEDBACK.
 02 FB-SEVERITY PIC 9(4) BINARY.
 02 FB-DETAIL PIC X(10).
 *
 LINKAGE SECTION.
 **
 * *
 * Note: the symbolic names of the condition tokens *
 * for S/370 program interrupt codes 0C1 thru 0CF *
 * are CEE341 through CEE34F *
 * *
 **
 01 TOKEN PIC X(4).
 01 RESULT-CODE PIC S9(9) BINARY.
 88 RESUME VALUE +10.
 88 PERCOLATE VALUE +20.
 88 PERC-SF VALUE +21.
 88 PROMOTE VALUE +30.
 88 PROMOTE-SF VALUE +31.

 01 CURRENT-CONDITION.
 02 Condition-Token-Value.
 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.

User-written condition handler

210 z/OS: z/OS Language Environment Programming Guide

 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.

 01 NEW-CONDITION.
 02 Condition-Token-Value.
 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.

 PROCEDURE DIVISION USING CURRENT-CONDITION TOKEN
 RESULT-CODE NEW-CONDITION.

 DISPLAY ">>> USRHDLR: Entered User Condition Handler ".
 IF CEE349 of CURRENT-CONDITION THEN
 **
 * Expected condition, divide by zero, occurred... *
 * move resume cursor to stack frame which registered *
 * the handler, and resume execution at that point. *
 **
 CALL "CEEMRCR" USING MOVE-TYPE-0 FEEDBACK
 SET RESUME TO TRUE
 DISPLAY ">>> USRHDLR: Resuming execution"
 ELSE
 **
 * UNexpected condition encountered.. percolate it!*
 **
 SET PERCOLATE TO TRUE
 DISPLAY ">>> USRHDLR: Percolating it"
 END-IF.

 GOBACK.
 END PROGRAM USRHDLR.

PL/I handling a divide-by-zero condition
The following example shows the PL/I program that performs the tasks in “Handling a divide-by-zero
condition in C, C++, COBOL, or PL/I” on page 206.

*Process macro;
 /* Module/File Name: IBMHDLR */
 /**/
 /* */
 /* EXCOND .-> DIVZERO */
 /* - register handler | - force a divide-by-0 */
 /* - call DIVZERO --' */
 /* ==> "resume point" */
 /* - unregister handler */
 /* USRHDLR: */
 /* - if divide-by-zero then */
 /* - move resume cursor */
 /* - resume at "resume" */
 /* point */
 /* */
 /**/
 Excond :Proc Options(Main);

 /**/
 /* Important elements are found in these includes */
 /* - feedback declaration */
 /* - fbcheck macro call */
 /* - condition tokens such as CEE000 */
 /* - entry declarations such as ceehdlr */
 /**/

 %include ceeibmct;
 %include ceeibmaw;

 dcl Usrhdlr external entry;

 dcl 1 fback feedback;

User-written condition handler

Chapter 17. Coding a user-written condition handler 211

 dcl divisor fixed bin(31);
 dcl token fixed bin(31);

 /***/
 /* Register a user-written condition handler */
 /***/
 token = 97;
 Call ceehdlr(Usrhdlr, token, fback);
 If fbcheck (fback, cee000) then
 display ('MAIN: registered USRHDLR');
 else
 do;
 display ('CEEHDLR failed with message number ' ||
 fback.MsgNo);
 stop;
 end;
 /***/
 /* Call DIVZERO to divide by zero */
 /* and drive USRHDLR */
 /***/
 divisor = 0;
 call divzero (divisor);
 display ('MAIN: resumption after DIVZERO');

 /***/
 /* Unregister the user condition handler */
 /***/

 Call ceehdlu (Usrhdlr, fback);
 If fbcheck (fback, cee000) then
 display ('MAIN: unregistered USRHDLR');
 else
 do;
 display ('CEEHDLU failed with message number ' ||
 fback.MsgNo);
 stop;
 end;

 /***/
 /* Subroutine that simply raises ZERODIVIDE */
 /***/
 divzero: proc (arg);
 dcl arg fixed bin(31);

 display(' DIVZERO: starting.');
 arg = 1 / arg;
 display(' DIVZERO: Returning to its caller');

 end divzero;

 end Excond;

The following example is the usrhdlr program (PL/I) to handle divide-by-zero conditions.

*Process macro;
 /* Module/File Name: IBMMRCR */
 /**/
 /* */
 /* Usrhdlr - the user handler routine. */
 /* Handle DIVIDE-BY-ZERO conditions, */
 /* percolate all others. */
 /* */
 /**/
 Usrhdlr: Proc (@condtok, @token, @result, @newcond)
 options(byvalue);

 %include ceeibmct;
 %include ceeibmaw;

 /* Parameters */
 dcl @condtok pointer;
 dcl @token pointer;
 dcl @result pointer;
 dcl @newcond pointer;
 dcl 1 condtok based(@condtok) feedback;
 dcl token fixed bin(31) based(@token);
 dcl result fixed bin(31) based(@result);
 dcl 1 newcond based(@newcond) feedback;
 dcl 1 fback feedback;
 dcl move_type fixed bin(31);

User-written condition handler

212 z/OS: z/OS Language Environment Programming Guide

 dcl resume fixed bin(31) static initial(10);
 dcl percolate fixed bin(31) static initial(20);
 dcl promote fixed bin(31) static initial(30);
 dcl promote_sf fixed bin(31) static initial(31);
 display ('>>> USRHDLR: Entered user handler');
 display ('>>> USRHDLR: passed token value is ' ||
 token);

 /* Check if this is the divide-by-zero token */
 if fbcheck (condtok, cee349) then
 do;
 move_type = 0;
 call ceemrcr (move_type, fback);
 If fbcheck (fback, cee000) then
 do;
 result = resume;
 display ('>>> USRHDLR: Resuming execution');
 end;
 else
 do;
 display
 ('CEEMRCR failed with message number ' ||
 fback.MsgNo);
 stop;
 end;
 end;
 else /* something besides div-zero token */
 do;
 result = percolate;
 display ('>>> USRHDLR: Percolating it');
 end;
 end Usrhdlr;

Handling an out-of-storage condition in C, C++, COBOL, or PL/I
You can use the Language Environment condition handling services to resolve an out-of-storage condition
in your application. In the user-written condition handler examples that follow, CEEGTST and CEECZST
are used to get and reallocate heap storage. CEEMRCR is also used to handle an out-of-storage condition
in a user subroutine, and allow the subroutine to be invoked again. For the user code that corresponds to
this scenario, see:

• The examples in “C/C++ examples using CEEHDLR, CEEGTST, CEECZST, and CEEMRCR” on page 214 for
C or C++

• The examples in “COBOL examples using CEEHDLR, CEEGTST, CEECZST, and CEEMRCR” on page 216
for COBOL

• The examples in “PL/I examples using CEEHDLR, CEEGTST, CEECZST, and CEEMRCR” on page 219 for
PL/I

in which:

1. The out-of-storage condition arises in your subroutine, and Language Environment gives control to the
user-written condition handler you have registered through CEEHDLR for the out-of-storage condition.

2. The condition handler detects the out-of-storage condition and calls CEEMRCR to set the resume
cursor to resume execution at the return address of your subroutine call.

3. On return from the user condition handler, your main program regains control as if your subroutine has
actually run.

4. The main program tests a completion indicator and discovers that the subroutine did not actually
complete.

5. Your program then recognizes that it has been invoked with insufficient storage for maximum
efficiency, and frees some previously allocated storage.

6. The subroutine is invoked a second time and completes successfully.

See z/OS Language Environment Programming Reference for the syntax of all Language Environment
condition handling services.

User-written condition handler

Chapter 17. Coding a user-written condition handler 213

C/C++ examples using CEEHDLR, CEEGTST, CEECZST, and CEEMRCR
The following routine calls CEEHDLR to register a user-written condition handler for the out-of-storage
condition, calls CEEGTST to allocate heap storage, and calls CEECZST to alter the size of the heap storage
requested.

/*Module/File Name: EDCOOSR */
 /***/
 /* */
 /* Function : CEEHDLR - Register user condition handler */
 /* : CEEGTST - Get Heap Storage */
 /* : CEECZST - Change the size of heap element */
 /* */
 /* 1. A user condition handler CECNDHD is registered. */
 /* 2. A large amount of HEAP storage is allocated. */
 /* 3. A function sub() is called that is known to */
 /* require a large amount of storage. It is not */
 /* known whether the storage for sub() is */
 /* available during this run of the application. */
 /* 4. If sufficient storage for sub() is not available, */
 /* a storage condition is generated by Language */
 /* Environment. */
 /* 5. CECNDHD gets control and sets resume at the */
 /* next instruction following the call to sub(). */
 /* 6. A test for completion of sub() is made after */
 /* the function call. If sub() did not complete, a */
 /* large amount of storage is freed, and sub() is */
 /* invoked a second time. */
 /* 7. sub() runs successfully once it has enough storage */
 /* available. */
 /* */
 /* Note: In order for this example to complete */
 /* successfully, the FREE suboption of the HEAP */
 /* runtime option must be in effect. */
 /* */
 /***/
#include <stdio.h>
#include <string.h>
#include <leawi.h>
#include <ceeedcct.h>
#define BIGSTOR 300000
#define BIGINDX BIGSTOR-1

#ifdef __cplusplus
extern "C" {
#endif

 void CECNDHD(_FEEDBACK *, _INT4 *, _INT4 *, _FEEDBACK *);

#ifdef __cplusplus
}
#endif

 char *sub();
 void main ()
 {
 _FEEDBACK feedback;
 _ENTRY pgmptr;
 _POINTER addrss;
 _INT4 token;
 _INT4 hpsize;
 _INT4 heapid;
 _INT4 newsize;
 char *RAN;
 /***/
 /* Call CEEHDLR to register user condition handler CECNDHD.*/
 /***/
 pgmptr.address = (_POINTER)&CECNDHD;
 pgmptr.nesting = NULL;
 token = 97;
 CEEHDLR(&pgmptr, &token, &feedback);
 if (_FBCHECK (feedback , CEE000) != 0)
 printf("CEEHDLR failed with message number %d\n",
 feedback.tok_msgno);
 else
 printf("Condition handler registered\n");
 /***/
 /* Call function sub(). When it becomes active, an out- */
 /* of-storage condition arises if the region is too small. */

User-written condition handler

214 z/OS: z/OS Language Environment Programming Guide

 /***/
 heapid = 0;
 hpsize = BIGSTOR;
 CEEGTST (&heapid , &hpsize , &addrss , &feedback);
 if (_FBCHECK (feedback , CEE000) != 0)
 printf("CEEGTST failed with message number %d\n",
 feedback.tok_msgno);
 RAN = sub ();
 if (RAN != "r")
 {
 /***/
 /* If sub() did not run, reduce the size of allocated */
 /* storage and call it a second time. */
 /***/
 newsize = 2000;
 CEECZST (&addrss, &newsize, &feedback);
 if (_FBCHECK (feedback , CEE000) != 0)
 printf("CEECZST failed with message number %d\n",
 feedback.tok_msgno);
 printf("Function sub is called for the 2nd time\n");
 RAN = sub ();
 printf("Function sub ran successfully\n", *RAN);
 };
 } /* end of main */
 char *sub()
 {
 char w2[BIGSTOR];
 w2[BIGINDX] = 'B';
 return("r");
 } /* end of sub */

When any condition occurs in the main routine, user condition handler CECNDHD in the following routine
receives control and tests for the out-of-storage condition. If the out-of-storage condition has occurred,
then CECNDHD calls CEEMRCR to return to the instruction in the main routine after the call to function
sub() that produced the out-of-storage condition.

/*Module/File Name: EDCOOSH */
 /**/
 /* */
 /* Function : CEEMRCR - Move resume cursor relative */
 /* to handle cursor. */
 /* */
 /* CECNDHD is a user condition handler that is registered */
 /* by a main routine. CECNDHD gets control from the */
 /* condition manager and tests for the STORAGE CONDITION. */
 /* If a STORAGE CONDITION is detected, the resume cursor */
 /* is moved so that control is returned to the caller of */
 /* the routine encountering the STORAGE CONDITION. */
 /* */
 /**/
 #include <stdio.h>
 #include <string.h>
 #include <leawi.h>
 #include <ceeedcct.h>
 #define RESUME 10
 #define PERCOLATE 20
 #define PROMOTE 30
 #define PROMOTE_STACK_FRAME 31

 #ifdef __cplusplus
 extern "C" {
 #endif

 void CECNDHD (_FEEDBACK *, _INT4 *, _INT4 *, _FEEDBACK *);

 #ifdef __cplusplus
 }
 #endif

 void CECNDHD (_FEEDBACK *cond, _INT4 *input_token,
 _INT4 *result, _FEEDBACK *new_cond)

{
 _FEEDBACK feedback;
 _INT4 movetyp;
 /**/
 /* Determine if entry was for OUT-OF-STORAGE condition. */
 /**/

User-written condition handler

Chapter 17. Coding a user-written condition handler 215

 if (_FBCHECK (*cond , CEE0PD) == 0)
 {
 printf("SUB not run because of storage condition.\n");
 /**/
 /* Call CEEMRCR to move resume cursor. */
 /**/
 movetyp = 0;
 CEEMRCR (&movetyp , &feedback);
 if (_FBCHECK (feedback , CEE000) != 0)
 {
 *result = PERCOLATE;
 }
 else
 {
 *result = RESUME;
 }
 }
 else
 {
 /***/
 /* Percolate all conditions except for OUT-OF-STORAGE. */
 /***/
 *result = PERCOLATE;
 }
}

COBOL examples using CEEHDLR, CEEGTST, CEECZST, and CEEMRCR
The following program calls CEEHDLR to register a user-written condition handler for the out-of-storage
condition, calls CEEGTST to allocate heap storage, and calls CEECZST to alter the size of the heap storage
requested.

CBL LIB,QUOTE,NODYNAM
 *Module/File Name: IGZTOOSR
 **
 * *
 * CECNDXP - Call the following Language Environment *
 * services: *
 * *
 * : CEEHDLR - Register user condition handler *
 * : CEEGTST - Get Heap Storage *
 * : CEECZST - Change the size of heap element *
 * *
 * 1. A user condition handler CECNDHD is registered. *
 * 2. A large amount of HEAP storage is allocated. *
 * 3. A subroutine CESUBXP is called that is known to *
 * require a large amount of storage. It is not known *
 * whether the storage for CESUBXP is available during *
 * this run of the application. *
 * 4. If sufficient storage for CESUBXP is not available, *
 * a storage condition is generated by Language *
 * Environment. *
 * 5. CECNDHD gets control and sets resume at the *
 * next instruction following the call to CESUBXP. *
 * 6. A test for completion of CESUBXP is made after *
 * the subroutine call. If CESUBXP did not complete, *
 * a large amount of storage is freed, and CESUBXP *
 * is invoked a second time. *
 * 7. CESUBXP runs successfully once it has enough *
 * storage available. *
 * *
 * Note: In order for this example to complete *
 * successfully, the FREE suboption of the HEAP *
 * runtime option must be in effect. *
 **
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CECNDXP.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 TOKEN PIC X(4).
 01 HEAPID PIC S9(9) BINARY.
 01 HPSIZE PIC S9(9) BINARY.
 01 NEWSIZE PIC S9(9) BINARY.
 01 ADDRSS PIC S9(9) BINARY.
 01 PGMPTR USAGE IS PROCEDURE-POINTER.
 01 FEEDBACK.
 02 Condition-Token-Value.
 COPY CEEIGZCT.

User-written condition handler

216 z/OS: z/OS Language Environment Programming Guide

 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.
 01 COMPLETED PIC X.
 88 RAN VALUE "Y".
 88 NOTRUN VALUE "N".
 PROCEDURE DIVISION.
 0001-BEGIN-PROCESSING.

 ** Register user condition handler CECNDHD using CEEHDLR. **

 SET PGMPTR TO ENTRY "CECNDHD".
 MOVE 97 TO TOKEN
 CALL "CEEHDLR" USING PGMPTR TOKEN.
 MOVE 0 TO HEAPID.

 ** Allocate large amount of heap storage. **

 MOVE 500000 TO HPSIZE.
 CALL "CEEGTST" USING HEAPID, HPSIZE, ADDRSS, FEEDBACK.
 IF CEE000 OF FEEDBACK THEN

 ** Call CESUBXP, which requires a large stack. **

 SET NOTRUN TO TRUE
 CALL "CESUBXP" USING COMPLETED

 * Check whether CESUBXP completed, or failed with *
 * storage condition. If CESUBXP did not run, *
 * resize the heap element down by a large amount *
 * and call it again. *

 IF NOTRUN THEN
 DISPLAY "Reduce storage acquired BY main program"
 " AND CALL CESUBXP again."
 MOVE 300 TO NEWSIZE
 CALL "CEECZST" USING ADDRSS, NEWSIZE
 CALL "CESUBXP" USING COMPLETED
 END-IF
 ELSE
 DISPLAY "Call TO GET Storage Failed WITH MESSAGE "
 Msg-No OF FEEDBACK
 END-IF.

 GOBACK.
 END PROGRAM CECNDXP.

When any condition occurs in the main program, the user condition handler CECNDHD (see the following
program) receives control and tests for the out-of-storage condition. If the out-of-storage condition has
occurred, then CECNDHD calls CEEMRCR to return to the instruction in the main program after the
subroutine call that produced the out-of-storage condition.

CBL LIB,QUOTE,NODYNAM
 *Module/File Name: IGZTOOSH

 * *
 * CECNDHD - Call CEEMRCR to move the resume cursor *
 * relative to the handle cursor. *
 * *
 * CECNDHD is a user condition handler that is registered *
 * by the program CECNDXP. CECNDHD gets control from the *
 * condition manager and tests for the STORAGE CONDITION. *
 * If a STORAGE CONDITION is detected, the resume cursor *
 * is moved so that control is returned to the caller of *
 * the routine encountering the STORAGE CONDITION. *
 * *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CECNDHD.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 Movetyp PIC S9(9) BINARY.

User-written condition handler

Chapter 17. Coding a user-written condition handler 217

 01 Feedback.
 02 Condition-Token-Value.
 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.
 LINKAGE SECTION.
 01 Current-condition.
 02 Condition-Token-Value.
 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.
 **
 01 Token PIC X(4).
 **
 01 Result-code PIC S9(9) BINARY.
 88 resume VALUE +10.
 88 percolate VALUE +20.
 88 perc-sf VALUE +21.
 88 promote VALUE +30.
 88 promote-sf VALUE +31.
 01 New-condition.
 02 Condition-Token-Value.
 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.

 PROCEDURE DIVISION USING current-condition, token,
 result-code, new-condition.

 ** Determine if entry was for OUT OF STORAGE condition. **

 IF CEE0PD OF current-condition THEN
 DISPLAY "COBOL subroutine could NOT RUN because",
 " of the insufficient storage condition."

 ** Call CEEMRCR to move the resume cursor **

 MOVE 0 TO Movetyp
 CALL "CEEMRCR" USING Movetyp, Feedback
 IF CEE000 OF Feedback THEN
 SET resume TO TRUE
 ELSE
 SET promote TO TRUE
 MOVE feedback TO new-condition
 END-IF
 ELSE
 SET percolate TO TRUE
 END-IF

 GOBACK.
 END PROGRAM CECNDHD.

The following program is a COBOL subroutine that causes the out-of-storage condition.

CBL LIB,QUOTE,NODYNAM
 *Module/File Name: IGZTOOSS

User-written condition handler

218 z/OS: z/OS Language Environment Programming Guide

 **
 * *
 * CESUBXP - *
 * *
 * When CESUBXP gets control, a request is made to *
 * Language Environment to allocate storage for the *
 * declared array W2. An out-of-storage condition takes *
 * place, provided the caller has not allocated a large *
 * amount of storage. *
 * *
 **
 IDENTIFICATION DIVISION.

 PROGRAM-ID. CESUBXP.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 ARRAY.
 05 W2 PIC X OCCURS 3000000 TIMES.
 LINKAGE SECTION.
 01 PARM1 PIC X.
 88 RAN-OK VALUE "Y".

 PROCEDURE DIVISION USING PARM1.
 PARA-CND01A.
 MOVE "B" TO W2(2999999).
 SET RAN-OK TO TRUE.

 GOBACK.
 End program CESUBXP.

PL/I examples using CEEHDLR, CEEGTST, CEECZST, and CEEMRCR
The following program calls CEEHDLR to register a user-written condition handler for the out-of-storage
condition, calls CEEGTST to allocate heap storage, and calls CEECZST to alter the size of the heap storage
requested.

*Process macro;
 /***/
 /* */
 /* CECNDXP - Call the following Language Environment */
 /* services: */
 /* - CEEHDLR - Register user condition handler */
 /* - CEEGTST - Get heap storage */
 /* - CEECZST - Change the size of heap element */
 /* - CEEHDLU - Unregister user condition handler */
 /* */
 /* 1. A user condition handler CEENDHD is registered. */
 /* 2. A large amount of HEAP storage is allocated. */
 /* 3. A subroutine, Sub, is called which is known to */
 /* require a large amount of storage. It is not known */
 /* whether the storage for Sub is available during */
 /* this run of the application. */
 /* 4. If sufficient storage for Sub is not available, */
 /* a storage condition is generated. */
 /* 5. CECNDHD gets control and sets resume at the */
 /* next instruction following the call to Sub. */
 /* 6. A test for completion of Sub is made after */
 /* the subroutine call. If Sub did not complete, */
 /* a large amount of storage is freed, and Sub */
 /* is invoked a second time. */
 /* 7. Sub runs successfully once it has enough */
 /* storage available. */
 /* */
 /* Note: In order for this example to complete */
 /* successfully, the FREE suboption of the HEAP */
 /* runtime option must be in effect. */
 /* */
 /***/
 Cecndxp: proc options(main);

 /**/
 /* Important elements are found in these includes */
 /* - feedback declaration */
 /* - fbcheck macro call */
 /* - condition tokens such as CEE000 */
 /* - entry declarations such as ceehdlr */
 /**/

User-written condition handler

Chapter 17. Coding a user-written condition handler 219

 %include ceeibmct;
 %include ceeibmaw;

 dcl Cecndhd external entry;

 dcl 1 fback feedback;
 dcl token fixed bin(31);
 dcl newsize fixed bin(31);
 dcl (heapid, hpsize) fixed bin(31);
 dcl addrss pointer;
 dcl ran char(1);
 /***/
 /* Register a user-written condition handler */
 /***/
 token = 97;
 Call ceehdlr(Cecndhd, token, fback);
 If fbcheck (fback, cee000) then
 display ('registered user handler');
 else
 display ('CEEHDLR failed with message number ' ||
 fback.MsgNo);

 /***/
 /* Allocate some HEAP storage, and then call */
 /* subroutine Sub. When Sub becomes active, */
 /* an out-of-storage condition arises if */
 /* the region is too small. */
 /***/

 heapid = 0;
 hpsize = 500000;
 call ceegtst (heapid, hpsize, addrss, fback);
 If fbcheck (fback, cee000) then ;
 else
 display ('CEEGTST failed with message number ' ||
 fback.MsgNo);
 ran = 'x';
 ran = sub();
 if ran ¬= 'r' then
 do;
 /***/
 /* If Sub did not run, reduce the size of */
 /* allocated storage and call Sub a 2nd */
 /* time. */
 /***/
 newsize = 2000;
 call ceeczst (addrss, newsize, fback);
 If fbcheck (fback, cee000) then ;
 else
 display ('CEECZST failed with message number '
 || fback.MsgNo);
 display ('Call subroutine for the 2nd time');
 ran = sub();
 end;
 /***/
 /* Unregister the user condition handler */
 /***/

 Call ceehdlu (Cecndhd, fback);
 If fbcheck (fback, cee000) then ;
 else
 display ('CEEHDLU failed with message number ' ||
 fback.MsgNo);
 /***/
 /* Internal subroutine Sub */
 /***/
 Sub: proc returns (char(1));
 dcl big(3000000) char(1);
 big(2999999) = 'B';
 return('r');
 end sub;

 end Cecndxp;

When any condition occurs in CECNDXP, the user condition handler CECNDHD in the following program
receives control and tests for the out-of-storage condition. If the out-of-storage condition has occurred,
then CECNDHD calls CEEMRCR to return to the instruction in the main program after the subroutine call
that produced the out-of-storage condition.

User-written condition handler

220 z/OS: z/OS Language Environment Programming Guide

*Process macro;
 /**/
 /* */
 /* Cecndhd - Call CEEMRCR to move the resume cursor */
 /* relative to the handle cursor */
 /* */
 /* Cecndhd is a user condition handler that is */
 /* registered by the program Cecndxp. Cecndhd gets */
 /* control from the condition manager and tests */
 /* for the STORAGE condition. If a storage */
 /* condition is detected, the resume cursor is */
 /* moved so that control is returned to the caller */
 /* of the routine encountering the STORAGE */
 /* condition. */
 /* */
 /**/
 Cecndhd: Proc (@condtok, @token, @result, @newcond)
 options(byvalue);

 %include ceeibmct;
 %include ceeibmaw;

 /* Parameters */
 dcl @condtok pointer;
 dcl @token pointer;
 dcl @result pointer;
 dcl @newcond pointer;

 dcl 1 condtok based(@condtok) feedback;
 dcl token fixed bin(31) based(@token);
 dcl result fixed bin(31) based(@result);
 dcl 1 newcond based(@newcond) feedback;

 dcl 1 fback feedback;

 dcl move_type fixed bin(31);

 dcl resume fixed bin(31) static initial(10);
 dcl percolate fixed bin(31) static initial(20);
 dcl promote fixed bin(31) static initial(30);
 dcl promote_sf fixed bin(31) static initial(31);

 /* Check if this is the out-of-storage token */

 if fbcheck (condtok, cee0pd) then
 do;
 display ('Sub not run: out of storage');

 /* Call CEEMRCR to move resume cursor */
 move_type = 0;
 call ceemrcr (move_type, fback);
 If fbcheck (fback, cee000) then
 do;
 result = resume;
 end;
 else
 do;
 result = percolate;
 end;
 end;
 else /* something besides out-of-storage */
 do;
 result = percolate;
 end;

 end Cecndhd;

Signaling and handling a condition in a C/C++ routine
The next program shows how a user-written condition handler gains control for a condition that was
signaled using CEESGL, and calls CEEGQDT to access a data structure that was set up in the signaling
routine. The CEEMRCR callable service resets the resume cursor, and execution resumes at the new point.

/*Module/File Name: EDCSIGH */
/**/
/* This example shows how several of the Language Environment */
/* condition management callable services are used. The services */
/* shown are: */

User-written condition handler

Chapter 17. Coding a user-written condition handler 221

/* CEEHDLR -- register a user condition handler */
/* CEESGL -- signal a condition to the condition manager */
/* CEEGQDT -- get the q_data_token */
/* CEEMRCR -- move the resume cursor */
/* */
/* The example also shows how to directly construct a condition token */
/* and provides a sample user condition handler. */
/**/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>

void b(void);

#ifdef __cplusplus
extern "C" {
#endif

void handler(_FEEDBACK *,_INT4 *,_INT4 *,_FEEDBACK *);

#ifdef __cplusplus
}
#endif

typedef struct { /* condition info structure */
 int error_value;
 char err_msg[80];
 int retcode;
} info_struct;

int main(void) {

 printf("In main program\n");
 b();
 /* CEEMRCR should put the resume cursor at this point */
 printf("Finished\n");
}
void b(void) {

 _FEEDBACK fc,condtok;
 _ENTRY routine;
 _INT4 token,qdata;
 info_struct *info;
 _INT2 c_1,c_2,cond_case,sev,control;
 _CHAR3 facid;
 _INT4 isi;
 printf("In routine b\n");
 token = 99;
 routine.address = (_POINTER)&handler;
 routine.nesting = NULL;
 /* register the condition handler: */
 CEEHDLR(&routine,&token,&fc);

 if (_FBCHECK (fc , CEE000) != 0) {
 printf("CEEHDLR failed with message number %d\n",
 fc.tok_msgno);
 exit(2999);
 }

 /* build the condition token */
 c_1 = 1;
 c_2 = 99;
 cond_case = 1;
 sev = 1;
 control = 0;
 memcpy(facid,"ZZZ",3);
 isi = 0;

 CEENCOD(&c_1,&c_2,&cond_case,&sev,&control,
 facid,&isi,&condtok,&fc);
 if (_FBCHECK (fc , CEE000) != 0) {
 printf("CEENCOD failed with message number %d\n",
 fc.tok_msgno);
 exit(2999);
 }

 /* set up the condition info structure */
 info = (info_struct *)malloc(sizeof(info_struct));
 if (info == NULL) {
 printf("error allocating info_struct\n");

User-written condition handler

222 z/OS: z/OS Language Environment Programming Guide

 exit(2399);
 }
 memset(info->err_msg,' ',79);
 info->err_msg[79] = '\0';
 info->error_value = 86;
 memcpy(info->err_msg,"Test message",12);
 info->retcode = 99;

 /* set qdata to be the condition info structure */
 qdata = (int)info;
 /* signal the condition */
 CEESGL(&condtok,&qdata,NULL);

 printf("Failed: handler should have moved resume cursor past this\n");
}
/**/
/* User condition handler */
/**/
void handler(_FEEDBACK *fc, _INT4 *token, _INT4 *result,
 _FEEDBACK *newfc) {

 _FEEDBACK cursorfc, orig_fc;
 _INT4 type;
 _INT4 qdata;

 /* if the condition is not mine (ZZZ facid) then percolate */
 if (memcmp(fc->tok_facid,"ZZZ",3) != 0) {
 *result = 20;
 return;
 }
 printf("%d is handling the condition for Control\n",*token);

 /* get the q_data_token */
 CEEGQDT(fc,&qdata,NULL);

 /* look at the q_data_token and print out a message if the */
 /* error_value was 86 */
 if (((info_struct *)qdata)->error_value == 86)
 printf("%.80s\n",((info_struct*)qdata)->err_msg);

 /* move the resume cursor to the caller of the routine */
 /* that registered this handler */
 type = 1;
 CEEMRCR(&type,&cursorfc);
 if (_FBCHECK (cursorfc , CEE000) != 0) {
 printf("CEEMRCR failed with message number %d\n",
 cursorfc.tok_msgno);
 exit(2999);
 }

 /* mark the condition as handled and return */
 printf("Condition handled\n");
 *result = 10;
 return;
}

Handling a divide-by-zero condition in a COBOL program
The following routine illustrates how a COBOL program can handle a divide-by-zero condition if one
occurs. occur. These actions occur:

1. The program enables the divide-by-zero exception. Exceptions can be enabled or disabled by calling
the CEE3SPM (Query and Modify Language Environment Hardware Condition Enablement) callable
service.

2. The program registers a user-written condition handler that recognizes the divide-by-zero condition.
3. The program then performs a divide-by-zero, which causes the user-written condition handler to get

control.
4. The handler calls CEE3GRN (Get Name of Routine that Incurred Condition), to return the name of the

routine that the condition occurred in.
5. The handler inserts the routine name and condition token into a user-defined message string, and calls

CEEMOUT (Dispatch a Message) to send the message to the Language Environment message file.

User-written condition handler

Chapter 17. Coding a user-written condition handler 223

(The Language Environment message file is a file that you can specify to store messages from a given
routine or application, or from all routines that run under Language Environment.)

6. The program uses CEEHDLR to register the user-written condition handler.

 CBL LIB,QUOTE,NODYNAM
 *Module/File Name: IGZTSIGR

 ** *
 ** IGZTSIGR - Call the following Language *
 ** Environment services: *
 ** *
 ** : CEEHDLR - register user condition *
 ** handler *
 ** : CEE3GRN - get name of routine that *
 ** incurred the condition. *
 ** : CEEMOUT - output message associated *
 ** with the condition, including *
 ** the name of the routine that *
 ** incurred the condition. *
 ** *
 ** 1. Our example registers user condition *
 ** handler IGZTSIGH. *
 ** 2. Our program then divides by zero, which *
 ** causes a hardware exception condition. *
 ** 3. IGZTSIGH gets control and prints out a *
 ** message that includes the name of the *
 ** routine that incurred the divide-by-zero *
 ** condition, IGZTSIGR. *
 ** 4. IGZTSIGH requests that Condition *
 ** management resume execution after the *
 ** point at which the condition occurred. *
 ** 5. IGZTSIGR terminates normally. *
 ** *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. IGZTSIGR.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 DIVISOR PIC S9(9) BINARY.
 01 QUOTIENT PIC S9(9) BINARY.
 **
 ** Declares for condition handling
 **
 01 PGMPTR USAGE IS PROCEDURE-POINTER.
 01 FBCODE.
 02 Condition-Token-Value.
 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.
 77 TOKEN PIC X(4). PROCEDURE DIVISION.
 0001-BEGIN-PROCESSING.
 DISPLAY "*********************************".
 DISPLAY "IGZTSIGR COBOL Example is ".
 DISPLAY " now in motion. ".
 DISPLAY "*********************************".
 ** **
 ** Register user condition handler IGZTSIGH **
 ** using CEEHDLR **
 ** **
 SET PGMPTR TO ENTRY "IGZTSIGH".
 MOVE 97 TO TOKEN.
 CALL "CEEHDLR" USING PGMPTR, TOKEN, FBCODE.
 IF (NOT CEE000 of FBCODE) THEN
 DISPLAY "Error " Msg-No of FBCODE
 " registering condition handler "
 " IGZTSIGH" UPON CONSOLE
 STOP RUN

User-written condition handler

224 z/OS: z/OS Language Environment Programming Guide

 END-IF.

 ** Divide by zero to cause a hardware exception**
 ** condition. Condition handler IGZTSIGH gets **
 ** control and CALLs CEE3GRN to obtain the **
 ** name of the routine in which the condition **
 ** was raised. **
 ** IGZTSIGH then prints a message using CEEMOUT**
 ** and passing the name "LEASMSIG." Control **
 ** returns and normal termination takes place. **
 ** **
 MOVE 0 TO DIVISOR.
 DIVIDE 5 BY DIVISOR GIVING QUOTIENT.
 DISPLAY "*********************************".
 DISPLAY "IGZTSIGR COBOL Example has ended.".
 DISPLAY "*********************************".
 GOBACK.
 End program IGZTSIGR .
CBL LIB,QUOTE,NODYNAM
 **
 ** **
 ** IGZTSIGH - Call the following Language **
 ** Environment services: **
 ** **
 ** : CEE3GRN - Get name of routine that **
 ** incurred a condition. **
 ** : CEEMOUT - output a user message **
 ** **
 ** This is the user condition handler **
 ** registered by IGZTSIGR. It calls CEE3GRN **
 ** to retrieve the name of the routine that **
 ** incurred the divide-by-zero condition. It **
 ** then calls CEEMOUT to output the message. **
 **
 **
 IDENTIFICATION DIVISION.
 PROGRAM-ID. IGZTSIGH.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 msgstr.
 02 VarStr-length PIC S9(4) BINARY.
 02 VarStr-text.
 03 VarStr-char PIC X,
 OCCURS 0 TO 256 TIMES
 DEPENDING ON VarStr-length
 OF msgstr. 01 Feedback.
 02 Condition-Token-Value.
 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.
 77 rtn-name PIC X(80).
 77 msgdest PIC S9(9) BINARY.
 77 string-pointer PIC S9(4) BINARY.
 *
 LINKAGE SECTION.
 01 Current-condition.
 02 Condition-Token-Value.
 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.
 **
 01 Token PIC X(4).
 **
 01 Result-code PIC S9(9) BINARY.
 88 resume VALUE +10.
 88 percolate VALUE +20.

User-written condition handler

Chapter 17. Coding a user-written condition handler 225

 88 perc-sf VALUE +21.
 88 promote VALUE +30.
 88 promote-sf VALUE +31.
 01 New-condition.
 02 Condition-Token-Value.
 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.
 PROCEDURE DIVISION USING current-condition,
 token, result-code,
 new-condition.

 * Check to see whether this routine was *
 * entered due to a divide-by-zero exception, *
 * or due to some other condition. *

 IF CEE349 OF current-condition THEN

 * (A divide-by-zero condition has occurred)*

 SET resume TO TRUE

 ** Call CEE3GRN to retrieve the name of the **
 ** program that incurred the divide-by-zero **
 ** exception. Build user message and include **
 ** the name of the program. **

 CALL "CEE3GRN" USING rtn-name, feedback
 IF (NOT CEE000 OF feedback) THEN
 DISPLAY "Error " Msg-No OF feedback
 " in obtaining program name."
 UPON CONSOLE
 MOVE feedback TO new-condition
 SET promote TO TRUE
 ELSE
 MOVE 1 TO string-pointer
 MOVE 255 TO VarStr-length OF msgstr
 STRING "The example program "
 rtn-name
 " incurred a divide-by-zero"
 " exception."
 DELIMITED BY " "
 INTO VarStr-text OF msgstr
 POINTER string-pointer
 SUBTRACT 1 FROM string-pointer,
 GIVING VarStr-length OF msgstr
 MOVE 2 TO msgdest

 ** Call CEEMOUT to output the user message.**

 CALL "CEEMOUT" USING msgstr,msgdest,
 feedback
 IF (NOT CEE000 OF feedback) THEN
 DISPLAY "Error in writing the "
 "message string."
 MOVE feedback TO new-condition
 SET promote TO TRUE
 END-IF
 END-IF
 ELSE

 * (A condition other than **
 * divide-by-zero has occurred) **

 SET percolate TO TRUE
 END-IF

 GOBACK.

 END PROGRAM IGZTSIGH.

User-written condition handler

226 z/OS: z/OS Language Environment Programming Guide

Handling a program check in an assembler routine
The following routine illustrates how an assembler routine can handle a program check if one should
occur. The following occurs:

1. The routine registers a user-written condition handler, LEASMHD3, that responds to a program check
by calling CEE3DMP to request a dump.

2. The routine then calls a subroutine, LEASMHD2, that generates a program check.
3. The routine gives control to the user-written condition handler.

Note that a condition handler to which an assembler routine gives control does not have to be link-edited
into the same load module as the routine; a condition handler can be dynamically loaded and can possibly
dynamically load other modules also.

SMP1 TITLE 'Sample of main program that registers a handler'
*
* Symbolic Register Definitions and Usage
*
R0 EQU 0 Parameter list address (CMS only)
R1 EQU 1 Parameter list address, 0 if no parms
R10 EQU 10 Base register for executable code
R12 EQU 12 Language Environment Common Anchor Area
* address
R13 EQU 13 Save Area/Dynamic Storage Area address
R14 EQU 14 Return point address
R15 EQU 15 Entry point address
*
* Prologue
*
CEEHDRA CEEENTRY AUTO=DSASIZ, Amount of main memory to obtain
 MAIN=YES, This routine is a MAIN program
 PPA=PPA1, Program Prolog Area for this routine
 BASE=R10 Base register for executable code
* constants, and static variables
 USING CEECAA,R12 Common Anchor Area addressability
 USING CEEDSA,R13 Dynamic Storage Area addressability
*
* Announce ourselves
*
 WTO 'CEEHDRA Says "HELLO"',ROUTCDE=11
*
* Register User Handler
*
 LA R1,USRHDLPP Get addr of proc-ptr to Handler rtn
 ST R1,PARM1 Make it 1st parameter
 LA R1,TOKEN Get addr of 32-bit token
 ST R1,PARM2 Make it 2nd parameter
 LA R1,0 Omit address for Feedback Code:
* If an error occurs while
* registering the handler,
* Language Environment signals
* the condition, rather than
* passing it back to caller
 ST R1,PARM3 Make it 3rd parameter
 LA R1,HDLRPLST Point to parameter list for CEEHDLR
 CALL CEEHDLR Invoke CEEHDLR callable service AWI
*
* Call subroutine to cause an exception
*
 CALL LEASMHD2
*
* Un-Register User Handler
*
 LA R1,USRHDLPP Get addr of proc-ptr to Handler rtn
 ST R1,HDLUPRM1 Make it 1st parameter
 LA R1,FEEDBACK Address for Feedback Code
 ST R1,HDLUPRM2 Make it 2nd parameter
 LA R1,HDLUPLST Point to parameter list for CEEHDLU
 CALL CEEHDLU Invoke CEEHDLU callable service AWI*
* Bid fond farewell
*
 WTO 'CEEHDRA Says "GOOD-BYE"',ROUTCDE=11
*
* Epilogue
*
 CEETERM RC=4,MODIFIER=1 Terminate program
*

User-written condition handler

Chapter 17. Coding a user-written condition handler 227

* Program Constants and Local Static Variables
*
USRHDLPP DC V(LEASMHD3),A(0) Procedure-pointer to Handler routine
*
 LTORG , Place literal pool here
 SPACE 3
PPA1 CEEPPA , Program Prolog Area for this routine
 EJECT
*
* Map the Dynamic Storage Area (DSA)
*
 CEEDSA , Map standard CEE DSA prologue
*
* Local Automatic (Dynamic) Storage..
*
HDLRPLST DS 0F Parameter List for CEEHDLR
PARM1 DS A Address of User-written Handler
PARM2 DS A Address of 32-bit Token
PARM3 DS A Address of Feedback Code cond token
*
HDLUPLST DS 0F Parameter List for CEEHDLR
HDLUPRM1 DS A Address of User-written Handler
HDLUPRM2 DS A Address of Feedback Code cond token
*
TOKEN DS F 32-bit Token: fullword whose *value* will
* be passed to the user handler each
* time it is called.
*
FEEDBACK DS CL12 Feedback Code condition token
*
DSASIZ EQU *-CEEDSA Length of DSA
 EJECT
*
* Map the Common Anchor Area (CAA)
*
 CEECAA
 END CEEHDRA
HDR2 TITLE 'Sample of subprogram that forces a program check'
*
* Symbolic Register Definitions and Usage
*
R1 EQU 1 Parameter list address, 0 if no parms
R11 EQU 11 Base register for executable code
R12 EQU 12 Language Environment Common Anchor Area
* address
R13 EQU 13 Save Area/Dynamic Storage Area address
R14 EQU 14 Return point address
R15 EQU 15 Entry point address*
* Prologue
*
LEASMHD2 CEEENTRY AUTO=DSASIZ, Amount of main memory to obtain *
 PPA=PPA2, Program Prolog Area for this routine *
 MAIN=NO, This program is a Subroutine *
 NAB=YES, YES because called by enabled rtn *
 BASE=R11 Base register for executable code,
* constants, and static variables
 USING CEECAA,R12 Common Anchor Area addressability
 USING CEEDSA,R13 Dynamic Storage Area addressability
*
* Announce ourselves
* WTO 'LEASMHD2 Says "HELLO"',ROUTCDE=11
*
* Cause Data Exception (Language Environment condition 3207)
*
 XC A,A Clear to Binary Zeros
* (not a valid packed number)
 AP A,=P'7' Cause Data exception
*
* Say good-bye
*
 WTO 'LEASMHD2 Says "GOOD-BYE"',ROUTCDE=11
*
* Epilogue
*
 CEETERM RC=0 Terminate program
 SPACE 3
*
* Program Constants and Local Static Variables
*
PPA2 CEEPPA , Program Prolog Area for this routine
*
 LTORG , Place literal pool here

User-written condition handler

228 z/OS: z/OS Language Environment Programming Guide

 EJECT
*
* Map the Dynamic Storage Area (CAA)
*
 CEEDSA , Map standard CEE DSA prologue
*
* Local Automatic (Dynamic) Storage..
*
A DS PL2 Packed operand (uninitialized)
*
DSASIZ EQU *-CEEDSA Length of DSA
 EJECT
*
* Map the Common Anchor Area (CAA)
*
 CEECAA
 END , of LEASMHD2
SMP3 TITLE 'User-written condition handler'*
* Symbolic Register Definitions and Usage
*
R1 EQU 1 Parameter list address (upon entry)
R2 EQU 2 Work register
R3 EQU 3 Parameter list address (after CEEENTRY)
R4 EQU 4 Will point to Result Code Argument
R10 EQU 10 Will point to Condition Token Argument
R11 EQU 11 Base register for executable code
R12 EQU 12 Common Anchor Area address
R13 EQU 13 Save Area/Dynamic Storage Area address
R14 EQU 14 Return point address
R15 EQU 15 Entry point address
*
* Prologue
*
LEASMHD3 CEEENTRY AUTO=DSASIZ, Amount of main memory to obtain *
 PPA=PPA3, Program Prolog Area for this routine *
 MAIN=NO, This program is a Subroutine *
 NAB=YES, YES--called under Language Env. *
 PARMREG=R3, R1 value is saved here *
 BASE=R11 Base register for executable code,
* constants, and static variables
 USING CEECAA,R12 Common Anchor Area addressability
 USING CEEDSA,R13 Dynamic Storage Area addressability
 USING UHDLARGS,R3 User Handler Args addressability
*
* Locate Arguments
*
 L R10,@CURCOND Get address of Condition Token
 USING $CURCOND,R10 Condition Token addressability
 L R4,@RESCODE Get address of Result Code
 USING $RESCODE,R4 Result Code addressability
*
* Announce ourselves
*
 WTO 'LEASMHD3 Says "HELLO"',ROUTCDE=11
*
* Process Condition
*
 CLC CURCOND(8),CEE347 Was this handler entered due to the
* condition it was created to
* deal with (data exception) ?
 BE BADPDATA Yes -- go process it
* No..
 MVC RESCODE,=A(PERCOLAT) Indicate PERCOLATE action
 B OUT Return to Language Environment
* condition manager
*
BADPDATA EQU * Processing for data exception:
 MVC RESCODE,=A(RESUME) Indicate RESUME action*
* Call CEE3DMP to Dump machine state
*
 LA R1,DUMPTITL Get address of Dump Title
 ST R1,PARM1 Make it first parameter
 LA R1,DUMPOPTS Get address of Dump Options string
 ST R1,PARM2 Make it second parameter
 LA R1,FC Address of Feedback Code
 ST R1,PARM3 Make it third parameter
 LA R1,DMPPARMS Point to parameter list for CEE3DMP
 CALL CEE3DMP Invoke CEE3DMP callable service AWI
*
* Sign-off
*
OUT EQU *

User-written condition handler

Chapter 17. Coding a user-written condition handler 229

 WTO 'LEASMHD3 Says "GOOD-BYE"',ROUTCDE=11
*
* Epilogue
*
 CEETERM RC=0
*
* Program Constants and Local Static Variables
*
DUMPOPTS DC CL256'THR(ALL) BLOCK STORAGE' Dump Options
*
DUMPTITL DC CL80'LEASMHD3 - Sample Dump ' Dump Title
*
PPA3 CEEPPA , Program Prolog Area for this routine
*
 LTORG , Place literal pool here
*
* Define Symbolic Value Constants for Condition Tokens
*
 CEEBALCT
 EJECT
*
* Map Arguments to User-Written Condition Handler
*
UHDLARGS DSECT
@CURCOND DS A Address of CIB
@TOKEN DS A Address of 32-bit token value from CEEHDLR
@RESCODE DS A Address of Result Code
@NEWCOND DS A Address of New Condition
 SPACE 3
$CURCOND DSECT , Mapping of the current condition
CURCOND DS A Condition token that identifies the
* current condition being processed
 SPACE 3
$TOKEN DSECT , Mapping of the 32-bit Token Argument
TOKEN DS A Value of 32-bit Token from CEEHDLR call
SPACE 3
$RESCODE DSECT , Mapping of Result Code Argument
RESCODE DS F Result Code specifies the action for
* the condition manager to take when
* control returns from the user handler:
RESUME EQU 10 Resume at the resume cursor
* (condition has been handled)
PERCOLAT EQU 20 Percolate to the next condition handler
* (if a Result Code is not explicitly set
* by the handler, this is the default)
PROMOTE EQU 30 Promote to the next condition handler
* (New Condition has been set)
* (See the Language Environment Programming Guide for other result
* code values.)
 SPACE 3
$NEWCOND DSECT , Mapping of the New Condition Argument
NEWCOND DS CL12 New Condition (condition token) specifies
* the condition promoted to.
 EJECT
*
* Map the Dynamic Storage Area (DSA)
*
 CEEDSA , Map standard CEE DSA prologue
*
* Local Automatic (Dynamic) Storage..
*
DMPPARMS DS 0F Parameter list for CEE3DMP
PARM1 DS A Address of Title string
PARM2 DS A Address of Options string
PARM3 DS A Address of Feedback Code
*
FC DS CL12 Feedback Code condition token
*
DSASIZ EQU *-CEEDSA Length of DSA
 EJECT
*
* Map the Common Anchor Area (CAA)
*
 CEECAA
 END , of LEASMHD3

User-written condition handler

230 z/OS: z/OS Language Environment Programming Guide

Chapter 18. Using condition tokens

Language Environment uses the 12-byte condition token data type to perform a variety of communication
functions. This topic describes the format of the condition token and its components, and how you can
use the condition token to react to conditions and communicate conditions with other routines.

The basics of using condition tokens
If you provide an fc parameter in a call to a Language Environment callable service, the service sets fc to a
specific value called a condition token and returns it to your application. (See “The effect of coding the fc
parameter” on page 231 for more information.)

If you do not specify the fc parameter in a call to a Language Environment service, Language Environment
generates a condition token for any nonzero condition and signals it by using the CEESGL callable service.
Signaling the condition token will pass it to Language Environment condition handling. (See “Effects of
omitting the fc parameter” on page 233 for more information.)

The condition token is used by the routines of your application to communicate with message services,
the condition manager, and other routines within the application. For example, you can use it with
Language Environment message services to write a diagnostic message associated with a particular
condition to a file. You can also determine if a particular condition has occurred by testing the condition
token, or a symbolic representation of it. See “User-written condition handler interface” on page 202 for
more information about coding user-written condition handlers. The structure of the condition token is
described in “Understanding the structure of the condition token” on page 233, and symbolic feedback
codes are discussed in “Using symbolic feedback codes” on page 234.

Language Environment condition tokens contain a 4-byte instance-specific information (ISI) token. The
ISI token can contain (depending on whether a condition occurred) insert data that further describes the
condition and that can be used, for example, to write a specific message to a file. In addition to insert
data, the ISI can contain qualifying data (q_data) that user-written condition handlers use to identify and
react to a specific condition.

Language Environment provides callable services to help you construct and decompose your own
condition tokens.
CEEDCOD

Breaks down a condition token into its component parts.
CEENCOD

Creates a new condition token in your application.

See z/OS Language Environment Programming Reference for a detailed explanation of each field in a
condition token and for more information about using CEEDCOD and CEENCOD callable services. See also
the message handling services listed in Chapter 19, “Using and handling messages,” on page 255.

The effect of coding the fc parameter
The feedback code is the last parameter of all Language Environment callable services, and the second
to last parameter of all Language Environment math services. COBOL/370 programs must provide the
feedback code parameter in each call to a Language Environment callable service; C, C++, Enterprise
COBOL for z/OS, COBOL for OS/390 & VM, COBOL for MVS & VM, and PL/I routines do not have to do
so. (See z/OS Language Environment Programming Reference for information about how to provide the
feedback code parameter in each HLL.) When the fc parameter is provided and a condition is raised, the
following sequence of events occurs:

1. The callable service in which the condition occurred builds a condition token for the condition. The
condition token is a 12-byte representation of a Language Environment condition. Each condition is
associated with a single Language Environment runtime message.

Using condition tokens

© Copyright IBM Corp. 1991, 2022 231

2. The callable service places information into the ISI, which might contain the following:

• A timestamp.
• Information that is inserted into a message associated with the condition.

For example, you can use the CEEBLDTX utility (see “Creating messages” on page 255) or the
CEECMI callable service (see CEECMI—Store and load message insert data in z/OS Language
Environment Programming Reference) to generate message inserts. Routines signaling a new
condition with a call to CEESGL should first call CEECMI to copy any insert information into the
ISI associated with the condition.

3. If the severity of the detected condition is critical (severity = 4), it is raised directly to the condition
manager. Language Environment then processes the condition, as described in “Condition step” on
page 171.

4. If the condition severity is not critical (severity less than 4), the condition token is returned to the
routine that called the service.

5. When the condition token is returned to your application, you can use the condition token in the
following ways:

• Ignore it and continue processing.
• Signal it to Language Environment using the CEESGL callable service.
• Get, format, and dispatch the message for display using the CEEMSG callable service.
• Store the message in a storage area using the CEEMGET callable service.
• Use the CEEMOUT callable service to dispatch a user-defined message string to a destination that

you specify.
• Compare the condition token to one that is known to you so that you can react appropriately. You can

test the condition token for success, equivalence or equality.

See z/OS Language Environment Programming Reference for more information about Language
Environment callable services.

Testing a condition token for success
To test a condition token for success, it is sufficient to determine if the first 4 bytes are zero; if the first 4
bytes are zero, the remainder of the condition token is zero, indicating that a successful call was made to
the service.

The Language Environment condition handling model provides two ways you can check for success using
the fc parameter. You can compare the value returned in fc to the symbolic feedback code CEE000, or
you can compare it to a 12-byte condition token containing all zeroes coded in your routine. See “Using
symbolic feedback codes” on page 234 for details.

You do not necessarily need to check the feedback code after every invocation of a service or to check
for success before proceeding with execution. However, if you want to ensure that your application is
invoking callable services successfully, test the feedback code after each call to a service.

Testing condition tokens for equivalence
Two condition tokens are equivalent if they represent the same type of condition, even if not necessarily
the same instance of the condition. For example, you could have two occurrences of an out-of-storage
condition. Though equivalent conditions, they are not necessarily equal because they occur in different
locations in your program.

To determine whether two condition tokens are equivalent, compare the first 8 bytes of each condition
token to one another. These bytes are static and do not change depending on the given instance of the
condition.

Using condition tokens

232 z/OS: z/OS Language Environment Programming Guide

You might want to check for equivalence when writing a message about a type of condition that occurs in
your application or when registering a condition handling routine to respond to a given type of condition.

There are two ways to check for equivalent condition tokens:

• You can break down the condition token by coding it as a structure and looking at its individual
components, or you can call the CEEDCOD (decompose condition token) service to break down the
condition token.For more information about the CEEDCOD service, see CEEDCOD - Decomponse a
condition token in z/OS Language Environment Programming Reference.

• The easiest way to test for equivalence is to compare the value returned in fc with the symbolic
feedback code for the condition you are interested in handling. Symbolic feedback codes represent only
the first 8 bytes of a 12-byte condition token. See “Using symbolic feedback codes” on page 234 for
details.

Testing condition tokens for equality
To determine whether two condition tokens are equal (that is, the same instance or occurrence of the
condition token), you must compare all 12 bytes of each condition token with each other. The last 4 bytes
can change from instance to instance of a given condition.

The only way to test condition tokens for equality is to compare the value returned in fc with another
condition token that has either been returned from a call to a service, or that you have coded as a 12-byte
condition token in your routine. Symbolic feedback codes are used to test for equivalence; they are not
useful in testing for equality because they represent only the first 8 bytes of the condition token.

Effects of omitting the fc parameter
When a feedback code is not provided, any nonzero condition is raised. Signaled conditions are processed
by Language Environment, as described in “Condition step” on page 171. If the condition remains
unhandled at the end of processing, Language Environment takes the Language Environment default
action (defined in Table 34 on page 172). The message delivered is the translation of the condition token
into English (or another supported national language).

Understanding the structure of the condition token
Figure 74 on page 233 illustrates the structure of the condition token, with bit offsets shown above the
components:

0 - 31 34 - 36 37 - 39 40 - 63 64 - 9532-33

0 - 15
Severity
Number

0 - 15
Class
Code

16 - 31
Message
Number

16 - 31
Cause
Code

Condition_ID Severity
Number

Control
Code

Facility_ID ISICase

Number

For Case 1 condition tokens,
Condition_ID is:

A symbolic feedback code represents the first 8 bytes of a condition
token. It contains the Condition_ID, Case Number, Severity Number,
Control Code, and Facility_ID, whose bit offsets are indicated.

For Case 2 condition tokens,
Condition_ID is:

Figure 74. Language Environment condition token

Every condition token contains the components indicated in Figure 74 on page 233.

Using condition tokens

Chapter 18. Using condition tokens 233

Condition_ID
A 4-byte identifier that, with the facility ID, describes the condition that the token communicates.
The format of Condition_ID depends on whether a Case 1 (service condition) or Case 2 (class/cause
code) condition is being represented. Language Environment callable services and most applications
can produce Case 1 conditions. Case 2 conditions could be produced by some operating systems and
compiler libraries. Language Environment does not produce them directly.

Figure 74 on page 233 illustrates the format of the Condition_ID for Case 1 and Case 2 conditions.

Case
Specifies if the condition token is for a Case 1 or Case 2 condition.

Severity
Specifies the severity of the condition represented by the condition token.

Control
Specifies if the facility ID has been assigned by IBM.

Facility ID
A 3-character alphanumeric string that identifies the product or component of a product that
generated the condition; for Language Environment, the facility ID is CEE. Although all Language
Environment-conforming HLLs use Language Environment message and condition handling services,
the actual runtime messages generated under Language Environment still carry the language
identification in the facility ID. The facility ID for PL/I, for example, is IBM.

When paired with a message number, a facility ID uniquely identifies a message in the message
source file. The facility ID and message number persist throughout an application. This allows the
meaning of the condition and its associated message to be determined at any point in the application
after a condition has occurred.

If you are creating a new facility ID to use with your own message source file, follow the guidelines
listed under the Facility_ID parameter of CEENCOD in z/OS Language Environment Programming
Reference.

If you create a new facility_ID to use with a message source file you created using CEEBLDTX (see
“Creating messages” on page 255), be aware that the facility ID must be part of the message source
file name. Therefore, you must follow the naming guidelines to ensure the module name does not
abend.

ISI
A 4-byte Instance Specific Information token associated with a given instance of the condition. A
nonzero ISI token provides instance specific information. The ISI token contains data on message
inserts for the message associated with the condition and a q_data_token containing 4 bytes of
qualifying data. The ISI token is typically built by Language Environment for system or Language
Environment-signaled conditions. It can also be built by an application for conditions signaled using
CEESGL. The CEECMI callable service can be used to define the message inserts within the ISI for a
condition token. The q_data to be placed in the ISI for a condition token is defined by signaling the
condition using CEESGL.

You can extract ISI information inside of CEEHDLR-established condition handlers. The message
insert information cannot be retrieved directly; however, the entire formatted message with inserts
can be formatted and placed in an application-provided character string using CEEMGET. The
q_data_token can be retrieved using CEEGQDT.

Using symbolic feedback codes
Language Environment provides symbolic feedback codes representing the first 8 bytes of a 12-byte
condition token. Using Language Environment symbolic feedback codes saves you from having to define
an 8-byte condition token in your code whenever you want to check for the occurrence of a condition.
Symbolic feedback codes are limited to testing for conditions rather than actual condition instances:
no ISI information is tested using symbolic feedback codes because the comparison is only performed
against the first 8 bytes of the condition token.

Using condition tokens

234 z/OS: z/OS Language Environment Programming Guide

Language Environment provides include files (copy files) that define all Language Environment symbolic
feedback codes. See “Including symbolic feedback code files” on page 235 for information about
Language Environment symbolic feedback code files.

Locating symbolic feedback codes for conditions
In Language Environment you can locate symbolic feedback codes in the following ways:

• Look in the first column of the symbolic feedback codes table listed after each of the callable services
in Language Environment callable services in z/OS Language Environment Programming Reference. The
symbolic feedback code table for the CEEGTST (get heap storage) callable service is shown in Table 42
on page 235.

Table 42. Symbolic feedback codes associated with CEEGTST

Symbolic
feedback code

Severity Message
number

Message text

CEE000 0 — The service completed successfully.

CEE0P2 4 0802 Heap storage control information was damaged.

CEE0P3 3 0803 The heap identifier in a get storage request or a d
iscard heap request was unrecognized.

CEE0P8 3 0808 Storage size in a get storage request or a realloca
te request was not a positive number.

CEE0PD 3 0813 Insufficient storage was available to satisfy a get
storage request.

To test for the condition raised when you specify an invalid heap ID from which to get storage, you can
compare the symbolic feedback code CEE0P3 to the condition token returned either from the service or
from the Language Environment condition manager (depending on whether you specified fc in the call to
CEEGTST).

• If you want to code a condition handling routine to handle a condition resulting in an error message
from your application, see z/OS Language Environment Runtime Messages, which lists error messages
and the symbolic feedback code for conditions.

Including symbolic feedback code files
Symbolic feedback codes are provided for Language Environment, C or C++, COBOL, Fortran, and PL/I
conditions. The symbolic feedback code files are stored in the SCEESAMP sample library. To use symbolic
feedback codes, you must include the symbolic feedback code files in your source code. The symbolic
feedback code files have file names of the form xxxyyyCT, where:
xxx

Indicates the facility ID of the conditions represented in the file. For example, EDCyyyCT contains
condition tokens for C- or C++-specific conditions (those with the facility ID of EDC).

xxx can be CEE (Language Environment), EDC (C or C++), FOR (Fortran), IBM (PL/I), or IGZ (COBOL).

yyy
Indicates the facility ID of the language in which the declarations are coded. For example, EDCIBMCT
contains PL/I declarations of C condition tokens. yyy can be BAL (assembler), EDC (C or C++), FOR
(Fortran), IBM (PL/I), or IGZ (COBOL).

CT
Stands for “condition token.”

To use symbolic feedback codes, include the file in your source code using the appropriate language
construct, for example:

Using condition tokens

Chapter 18. Using condition tokens 235

• In C or C++, to include the file of C or C++ declarations for IGZ (COBOL) condition tokens, specify:

#include <igzedcct>

• In COBOL, define SCEESAMP and use the COPY statement to include the file, as shown below.

Define SCEESAMP in your SYSLIB statement:

//SYSLIB DD DSNAME=CEE.SCEESAMP,DISP=SHR

Specify the following in your COBOL code to include the files containing Language Environment and
COBOL condition tokens declared in COBOL:

 ⋮
 COPY CEEIGZCT.
 COPY IGZIGZCT.
 ⋮

• In Fortran, to include the Fortran declarations for FOR (Fortran) and CEE (Language Environment)
condition tokens. specify the following.

INCLUDE (FORFORCT)
INCLUDE (CEEFORCT)

• In PL/I, to include the PL/I declarations for IBM (PL/I) and CEE (Language Environment) condition
tokens, specify:

 %INCLUDE IBMIBMCT
 %INCLUDE CEEIBMCT

Examples using symbolic feedback codes
The following examples use symbolic feedback codes to test user input and display a message if the input
is incorrect.

C and C++
In the following example, the symbolic feedback code file CEEEDCCT is included and a call is made to
CEEGTST. After the call, a test is made for the condition token representing an invalid heap ID. The fc
returned from CEEGTST is tested against the symbolic feedback code CEE0P3 listed in the CEEGTST
feedback code table. (The feedback code table is in CEEGTST—Get heap storage in z/OS Language
Environment Programming Reference). If the specified heap ID is not valid, another call is made to
CEEGTST to try again.

_FBCHECK (IBM-supplied) is used to compare only the first 8 bytes of the fc against the symbolic
feedback code.

Using condition tokens

236 z/OS: z/OS Language Environment Programming Guide

/*Module/File Name: EDCSFC */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>

main(void)
{
 _FEEDBACK fc;
 _POINTER address;
 _INT4 heapid, size;

 size = 1000;
 heapid = 999;

 CEEGTST(&heapid, &size, &address, &fc);
 if ((_FBCHECK (fc, CEE0P3)) == 0){
 printf("You specified a Heap Id that does not exist!\n\n");
 }
 printf("Try again:\n");
 heapid = 0;

 CEEGTST(&heapid, &size, &address, &fc);
 if ((_FBCHECK (fc, CEE000)) == 0){
 printf("Now it worked!\n");
 }
 else {
 printf("CEEGTST failed with message number%d \n", fc.tok_msgno);
 exit(99);
 }

 return 0;
}

Figure 75. C/C++ example testing for CEEGTST symbolic feedback code CEE0P3

COBOL
In Figure 76 on page 238, the symbolic feedback code file CEEIGZCT is accessed and a call is made
to CEESDEXP (exponential base e). The first 8 bytes of the feedback code returned are tested against
the symbolic feedback code CEE1UR to ensure that the input parameter is within the valid range for
CEESDEXP. The symbolic feedback code table for CEESDEXP is listed in z/OS Language Environment
Programming Reference. A message is displayed if the input parameter is out of range.

Using condition tokens

Chapter 18. Using condition tokens 237

CBL LIB,QUOTE

 * *
 * IBM Language Environment *
 * *
 * Licensed Materials - Property of IBM *
 * *
 * 5645-001 5688-198 *
 * (C) Copyright IBM Corp. 1991, 1997 *
 * All Rights Reserved *
 * *
 * US Government Users Restricted Rights - Use, *
 * duplication or disclosure restricted by GSA *
 * ADP Schedule Contract with IBM Corp. *
 * *

 *Module/File Name: IGZTSFC

 * *
 * CTDEMO - This routine assigns values to a *
 * condition token. *
 * *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CTDEMO.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 FBC.
 02 Condition-Token-Value.
 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.
 01 X COMP-2 VALUE +2.0E+02.
 01 Y COMP-2.
 PROCEDURE DIVISION.
 CALL "CEESDEXP" USING X FBC Y.
 IF CEE1UR of FBC THEN
 DISPLAY "Argument X out of range"
 " for CEEDEXP"
 END-IF

 GOBACK.

Figure 76. COBOL example testing for CEESDEXP symbolic feedback code CEE1UR

It is important that symbolic feedback codes be compared with only the first 8 bytes of the 12-byte
condition token. To this end, you must code the COPY statements for the symbolic feedback code
declarations in the right place within the condition token declaration.

In Figure 76 on page 238, for example, symbolic feedback code CEE1UR is compared to the first 8 bytes
of condition token FBC because of the correct placement of the COPY statements.

It is wrong to place the COPY statements before the declaration of Condition-Token-Value as shown
in Figure 77 on page 239, because the 8-byte symbolic feedback code blank-padded (X'40') to a length
of 12 bytes would be compared to the full 12-byte condition token. The comparison would always fail,
because the blanks would not match the ISI data in the last 4 bytes of the condition token.

Using condition tokens

238 z/OS: z/OS Language Environment Programming Guide

 01 FBC
 COPY CEEIGZCT. <-----+ Incorrect
 COPY IGZIGZCT. <-----+ Incorrect
 02 Condition-Token-Value
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.
⋮

Figure 77. Wrong placement of COBOL COPY statements for testing feedback code

PL/I
The example in Figure 78 on page 240 includes the symbolic feedback code file CEEIBMCT so that
Language Environment feedback codes (with facility ID CEE) will be defined. FBCHECK (IBM-supplied) is
called to compare the first 8 bytes of FC with the symbolic feedback code CEE000 to determine if the call
to CEEMGET is successful. If it is, the message associated with feedback code CEE001 is printed.

Using condition tokens

Chapter 18. Using condition tokens 239

*PROCESS MACRO;
 /* Module/File Name: IBMMGET */
 /**/
 /** **/
 /**Function : CEEMGET - Get a Message **/
 /** **/
 /**/
 PLIMGET: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW;
 %INCLUDE CEEIBMCT;

 DCL 01 CONTOK, /* Feedback token */
 03 MsgSev REAL FIXED BINARY(15,0),
 03 MsgNo REAL FIXED BINARY(15,0),
 03 Flags,
 05 Case BIT(2),
 05 Severity BIT(3),
 05 Control BIT(3),
 03 FacID CHAR(3), /* Facility ID */
 03 ISI /* Instance-Specific Information */
 REAL FIXED BINARY(31,0);
 DCL 01 FC, /* Feedback token */
 03 MsgSev REAL FIXED BINARY(15,0),
 03 MsgNo REAL FIXED BINARY(15,0),
 03 Flags,
 05 Case BIT(2),
 05 Severity BIT(3),
 05 Control BIT(3),
 03 FacID CHAR(3), /* Facility ID */
 03 ISI /* Instance-Specific Information */
 REAL FIXED BINARY(31,0);
 DCL MSGBUF CHAR(80);
 DCL MSGPTR REAL FIXED BINARY(31,0);

 /* Give CONTOK value of condition CEE001 */
 ADDR(CONTOK) -> CEEIBMCT = CEE001;
 MSGPTR = 0;

 /* Call CEEMGET to retrieve msg corresponding */
 /* to condition token */
 CALL CEEMGET (CONTOK, MSGBUF, MSGPTR, FC);
 IF FBCHECK(FC, CEE000) THEN DO;
 PUT SKIP LIST('Message text for message number'
 || CONTOK.MsgNo || ' is "' || MSGBUF || '"');
 END;
 ELSE DO;
 DISPLAY('CEEMGET failed with msg '
 || FC.MsgNo);
 STOP;
 END;

 END PLIMGET;

Figure 78. PL/I example testing for symbolic feedback code CEE000

Condition tokens for C signals under C and C++
You need the condition token representing an event as input to many Language Environment condition
and message handling services. C signals have condition token representations that you can use for this
purpose. Table 43 on page 240 contains condition tokens for C signals seen in C or C++ applications
running in a POSIX(OFF) environment. The signals listed in Table 43 on page 240 have a condition token
representation with facility ID of EDC.

Table 43. Language Environment condition tokens and non-POSIX C signals

Severity Message
number

Symbolic
feedback code

Case Severity Control ID Signal name Signal
number

3 6000 EDC5RG 1 3 1 EDC SIGFPE 8

Using condition tokens

240 z/OS: z/OS Language Environment Programming Guide

Table 43. Language Environment condition tokens and non-POSIX C signals (continued)

Severity Message
number

Symbolic
feedback code

Case Severity Control ID Signal name Signal
number

3 6001 EDC5RH 1 3 1 EDC SIGILL 4

3 6002 EDC5RI 1 3 1 EDC SIGSEGV 11

3 6003 EDC5RJ 1 3 1 EDC SIGABND 18

3 6004 EDC5RK 1 3 1 EDC SIGTERM 15

3 6005 EDC5RL 1 3 1 EDC SIGINT 2

2 6006 EDC5RM 1 2 1 EDC SIGABRT 3

3 6007 EDC5RN 1 3 1 EDC SIGUSR1 16

3 6008 EDC5RO 1 3 1 EDC SIGUSR2 17

1 6009 EDC5RP 1 1 1 EDC SIGIOERR 27

Table 44 on page 241 contains condition token for C signals seen in C or C++ applications running in a
POSIX(ON) environment. The signals listed in Table 44 on page 241 have a condition token representation
with facility ID of CEE.

Table 44. Language Environment condition tokens and POSIX C signals

Severity Message
number

Symbolic
feedback code

Case Severity Control ID Signal name Signal
number

3 5201 CEE52H 1 3 1 CEE SIGFPE 8

3 5202 CEE52I 1 3 1 CEE SIGILL 4

3 5203 CEE52J 1 3 1 CEE SIGSEGV 11

3 5204 CEE52K 1 3 1 CEE SIGABND 18

3 5205 CEE52L 1 3 1 CEE SIGTERM 15

3 5206 CEE52M 1 3 1 CEE SIGINT 2

2 5207 CEE52N 1 2 1 CEE SIGABRT 3

3 5208 CEE52O 1 3 1 CEE SIGUSR1 16

3 5209 CEE52P 1 3 1 CEE SIGUSR2 17

3 5210 CEE52Q 1 3 1 CEE SIGHUP 1

3 5211 CEE52R 1 3 1 CEE SIGSTOP 7

3 5212 CEE52S 1 3 1 CEE SIGKILL 9

3 5213 CEE52T 1 3 1 CEE SIGPIPE 13

3 5214 CEE52U 1 3 1 CEE SIGALRM 14

1 5215 CEE52V 1 1 1 CEE SIGCONT 19

1 5216 CEE530 1 1 1 CEE SIGCHLD 20

3 5217 CEE531 1 3 1 CEE SIGTTIN 21

3 5218 CEE532 1 3 1 CEE SIGTTOU 22

1 5219 CEE533 1 1 1 CEE SIGIO 23

Using condition tokens

Chapter 18. Using condition tokens 241

Table 44. Language Environment condition tokens and POSIX C signals (continued)

Severity Message
number

Symbolic
feedback code

Case Severity Control ID Signal name Signal
number

3 5220 CEE534 1 3 1 CEE SIGQUIT 24

3 5221 CEE535 1 3 1 CEE SIGTSTP 25

3 5222 CEE536 1 3 1 CEE SIGTRAP 26

1 5223 CEE537 1 1 1 CEE SIGIOERR 27

1 5224 CEE538 1 1 1 CEE SIGDCE 38

3 5225 CEE539 1 3 1 CEE SIGPOLL 5

3 5226 CEE53A 1 3 1 CEE SIGURG 6

3 5227 CEE53B 1 3 1 CEE SIGBUS 10

3 5228 CEE53C 1 3 1 CEE SIGSYS 12

1 5229 CEE53D 1 1 1 CEE SIGWINCH 28

1 5230 CEE53E 1 1 1 CEE SIGXCPU 29

1 5231 CEE53F 1 1 1 CEE SIGXFSZ 30

3 5232 CEE53G 1 3 1 CEE SIGVTALRM 31

3 5233 CEE53H 1 3 1 CEE SIGPROF 32

5234 CEE53I 1 1 1 CEE SIGDUMP 39

5235 CEE53J 1 1 1 CEE SIGDANGER 33

5236 CEE53K 1 1 1 CEE SIGTHSTOP 34

5237 CEE53L 1 1 1 CEE SIGTHCONT 35

1 5239 CEE53N 1 1 1 CEE SIGDSIOER 41

q_data structure for abends
When Language Environment fields an abend, condition CEE35I (corresponding to message number
3250) is raised. Language Environment provides q_data (qualifying data) for system or user abends as
part of the ISI token for condition CEE35I. The q_data can be retrieved using the CEEGQDT callable
service from within a CEEHDLR-established condition handler.

• See “Example illustrating retrieval of q_data” on page 243 for an example invocation.
• For the CEEGQDT syntax, see CEEGQDT—Retrieve q_data_token in z/OS Language Environment

Programming Reference.

From a Fortran routine, you can use the Fortran-specific callable services and functions described in
Language Environment for MVS & VM Fortran Run-Time Migration Guide to retrieve the q_data, and you do
not need to use the q_data_token. The q_data associated with abends is also listed by message number
in z/OS Language Environment Runtime Messages.

q_data is comprised of a list of addresses pointing to information that can be used by HLL and user-
written condition handlers to react to a condition. The q_data structure for an abend is shown in Figure 79
on page 243.

If an abend occurs, Language Environment signals condition CEE35I (corresponding to message number
3250) and builds the q_data structure shown in Figure 79 on page 243.

Using condition tokens

242 z/OS: z/OS Language Environment Programming Guide

q_data_token

parm code

Q_DATAADDRESS LIST

abend code

reason code

Figure 79. Structure of abend qualifying data

parm count (input)
A fullword field containing the total number of parameters in the q_data structure, including parm
count. In this case, the value of parm count is a fullword containing the integer 3.

abend code (input)
A 4-byte field containing the abend code in the following format:

system abend code

0 7 8 19 20 31

user abend code

system abend code
The 12-bit system completion (abend) code. If these bits are all zero, then the abend is a user
abend.

user abend code
The 12-bit user completion (abend) code. The abend is a user abend when bits 8 through 19 are
all zero.

reason code (input)
A 4-byte field containing the reason code accompanying the abend code. If a reason code is not
available (as occurs, for example, in a CICS abend), reason code has the value zero.

Usage notes
• You can use the CEEGQDT callable service to retrieve the q_data_token; see z/OS Language

Environment Programming Reference for more information.
• From a Fortran routine, you can retrieve the qualifying data using Fortran-specific callable services

and functions, which are described in Language Environment for MVS & VM Fortran Run-Time Migration
Guide.

Example illustrating retrieval of q_data
The following example shows how the abend code can be retrieved from q_data by invoking the CEEGQDT
callable service within a CEEHDLR-established condition handler written in COBOL. For an example of a
working program that includes the following code, see member IGZTCHDL in library CEE.SCEESAMP.

 ID DIVISION.
 PROGRAM-ID. GETQDATA.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 * Data items for retrieving q_data, including the *
 * q_data_token, q_data pointers, and the q_data itself. *
 * Q-DATA-TOKEN is a pointer to a list of pointers that point *
 * to the q_data. *

 77 Q-DATA-TOKEN USAGE POINTER.

 LINKAGE SECTION.

 * Mapping for the 12-byte Language Environment feedback *
 * code, which holds information about the condition that *

Using condition tokens

Chapter 18. Using condition tokens 243

 * caused this condition handler to get control. It is *
 * passed from the Language Environment condition manager. *

 01 CURRENT-CONDITION.
 05 FIRST-8-BYTES.
 COPY CEEIGZCT.
 COPY IGZIGZCT.
 10 C-SEVERITY PIC 9(4) USAGE BINARY.
 10 C-MSGNO PIC 9(4) USAGE BINARY.
 10 C-FC-OTHER PIC X.
 10 C-FAC-ID PIC X(3).
 05 C-I-S-INFO PIC 9(9) USAGE BINARY.

 * TOKEN is the 4-byte token passed from the condition *
 * manager. It can contain data from the program that *
 * registered this condition handler. *

 01 TOKEN PIC X(4).

 * RESULT-CODE is passed back to the Language Environment *
 * condition manager to indicate what it should do *
 * with this condition: resume, percolate, or promote. *

 01 RESULT-CODE PIC S9(9) USAGE BINARY.
 88 RESUME VALUE 10.
 88 PERCOLATE VALUE 20.
 88 PROMOTE VALUE 30.
 88 PROMOTE-SF VALUE 31.

 * NEW-CONDITION is the 12-byte feedback code for the new *
 * condition that must be specified for RESULT-CODE values of *
 * 30, 31, or 32, indicating that a new condition is to be *
 * promoted. *

 01 NEW-CONDITION PIC X(12).

 * Data items for retrieving q_data, including the *
 * q_data_token, q_data pointers, and the q_data itself, *
 * which consists of a parm count, an abend code, and a *
 * reason code. *

 01 Q-DATA-PTRS USAGE POINTER.
 05 Q-DATA-PARM-COUNT-PTR.
 05 Q-DATA-ABEND-CODE-PTR.
 05 Q-DATA-REASON-CODE-PTR.
 01 PARM-COUNT PIC S9(9) USAGE BINARY.
 01 ABEND-CODE PIC S9(9) USAGE BINARY.
 01 REASON-CODE PIC S9(9) USAGE BINARY.

 PROCEDURE DIVISION USING CURRENT-CONDITION TOKEN RESULT-CODE
 NEW-CONDITION.

 EVALUATE TRUE

 * When Language Environment fields a system or user *
 * abend, condition CEE35I (corresponding to message *
 * number 3250) is raised. The following code uses *
 * callable service CEEGQDT to get the q_data and examine *
 * the abend code. *

 WHEN CEE35I OF CURRENT-CONDITION
 PERFORM

 * Get q_data for the condition we are handling. *

 CALL "CEEGQDT" USING CURRENT-CONDITION
 Q-DATA-TOKEN FC
 IF SEVERITY > 0 THEN
 DISPLAY "CALL to CEEGQDT failed with "
 "Severity = " SEVERITY
 DISPLAY " and message "
 "number = " MSGNO
 GOBACK
 END-IF

 * Set up pointers to get ABEND-CODE. *

 SET ADDRESS OF Q-DATA-PTRS TO Q-DATA-TOKEN

Using condition tokens

244 z/OS: z/OS Language Environment Programming Guide

 SET ADDRESS OF ABEND-CODE TO Q-DATA-ABEND-CODE-PTR

 * Select handler code based on ABEND-CODE. *

 EVALUATE ABEND-CODE
 WHEN 777
 DISPLAY "Severe Error! Condition Handling "
 "should not get control for IMS Abends"
 SET PERCOLATE TO TRUE
 WHEN OTHER
 CONTINUE
 END-EVALUATE
 END-PERFORM

 * Handle all other conditions here. *

 WHEN OTHER
 CONTINUE

 END-EVALUATE

 END-PROGRAM GETQDATA.

q_data structure for arithmetic program interruptions
If one of the arithmetic program interruptions shown in Table 45 on page 245 occurs, and the
corresponding condition is signaled, Language Environment builds the q_data structure shown in Figure
80 on page 246.

Table 45. Arithmetic program interruptions and corresponding conditions

Program interruption (see notes 1 and
2)

Program interruption
code

Condition Message
number

Fixed-point overflow exception 08 CEE348 3208

Fixed-point divide exception 09 CEE349 3209

Exponent-overflow exception 0C CEE34C 3212

Exponent-underflow exception 0D CEE34D 3213

Floating-point divide exception 0F CEE34F 3215

Unnormalized-operand exception 1E CEE34U 3230

Notes:

1. The square root exception is also an arithmetic program interruption, but is treated like the condition
from the square root mathematical routine.

2. An arithmetic program interruption that occurs on a vector instruction is presented to a user-written
condition handler in the same form as though it had occurred on a scalar instruction. A single
vector instruction could cause multiple, possibly different, program interruptions to occur, but each
interruption is presented individually.

Using condition tokens

Chapter 18. Using condition tokens 245

Figure 80. q_data structure for arithmetic program interruption conditions

The q_data structure shown in Figure 80 on page 246 is built by Language Environment for the
conditions of exponent overflow, exponent underflow, floating-point divide, fixed-point overflow, fixed-
point divide, and unnormalized-operand exceptions. As a result, the q_data structure provides the
following information:
q_data_token (input)

The 4-byte address of the address list. This value is returned by the CEEGQDT callable service.
parm_count (input)

A 4-byte binary integer containing the value 6, which is the total number of q_data fields in the q_data
structure, including parm_count.

mach_inst_result_desc (input)
The q_data descriptor for mach_inst_result. (See “Format of q_data descriptors” on page 252 for
information about q_data descriptors.)

mach_inst_result (input)
The value left in the machine register (general register, floating-point register, or element
of a vector register) by the failing machine instruction. Based on the program interruption,
mach_inst_result has one of the following lengths and types (as reflected in the q_data descriptor
field mach_inst_result_desc):

Program interruption Length and type

Fixed-point overflow exception 4- or 8-byte binary integer

Fixed-point divide exception 8-byte binary integer

Exponent-overflow exception 4-, 8-, or 16-byte floating-point number

Exponent-underflow exception 4-, 8-, or 16-byte floating-point number

Floating-point divide exception 4-, 8-, or 16-byte floating-point number

Unnormalized-operand exception (occurs only
on vector instructions)

4- or 8-byte floating-point number

Using condition tokens

246 z/OS: z/OS Language Environment Programming Guide

This is also the result value with which execution is resumed when the user condition handler
requests the resume action (result code 10).

fixup_resume_value_desc (input)
The q_data descriptor for fixup_resume_value.

fixup_resume_value (input/output)
The fix-up value which, for the exceptions other than the unnormalized-operand exception, is the
result value with which execution is resumed when the user condition handler requests the fix-up and
resume action (result code 60 with a condition token of CEE0CF). fixup_resume_value initially has one
of the following values:

• For an exponent-underflow exception, the value 0
• For an unnormalized-operand exception, the value 0
• For one of the other program interruptions, the same value as in mach_inst_result

Based on the program interruption, fixup_resume_value has the following lengths and types (as
reflected in the q_data descriptor field fixup_resume_value_desc):

Program interruption Length and type

Fixed-point overflow exception 4- or 8-byte binary integer

Fixed-point divide exception 8-byte binary integer or two 4-byte binary
integers (remainder, quotient)

Exponent-overflow exception 4-, 8-, or 16-byte floating-point number

Exponent-underflow exception 4-, 8-, or 16-byte floating-point number

Floating-point divide exception 4-, 8-, or 16-byte floating-point number

Unnormalized-operand exception (occurs only
on vector instructions)

4- or 8-byte floating-point number

mach_inst_address (input)
The address of the machine instruction causing the program interruption.

Usage notes
• You can use the CEEGQDT callable service to retrieve the q_data_token. For more information

about CEEGQDT, see CEEGQDT—Retrieve q_data_token in z/OS Language Environment Programming
Reference.

• From a Fortran routine, you can retrieve the qualifying data using Fortran-specific callable services
and functions, which are described in Language Environment for MVS & VM Fortran Run-Time Migration
Guide.

• Using the q_data structure, a user condition handler can resume either with:

– The resume action (result code 10) using the value in mach_inst_result. The effect is the same
as though execution had continued without any change to the register contents left by the machine
instruction.

– The fix-up and resume action (result code 60 with a condition token of CEE0CF) for exceptions other
than unnormalized-operand. This allows any value to be placed in the result register that the machine
instruction used.

• You can use the CEE3SPM callable service to set or reset the exponent-underflow mask bit in the
program mask; the bit controls whether a program interruption occurs when exponent-underflow
occurs, as follows:

– When the bit is on, the program interruption occurs and condition CEE34D is signaled.
– When the bit is off, no program interruption occurs; therefore no condition is signaled.

Using condition tokens

Chapter 18. Using condition tokens 247

See CEE3SPM—Query and modify Language Environment hardware condition in z/OS Language
Environment Programming Reference for more information about the CEE3SPM callable service.

q_data structure for square-root exception
A square-root exception is the program interruption that occurs when a square root instruction is executed
with a negative argument. If a square-root exception occurs and the corresponding condition as shown in
Table 46 on page 248 is signaled, Language Environment builds the q_data structure shown in Figure 81
on page 249.

Table 46. Square-root exception and corresponding condition

Program interruption Program interruption
code

Condition Message number

Square-root exception 1D CEE1UQ 2010

For a square-root exception, Language Environment signals the same condition (CEE1UQ) as it does
when one of the square root routines detects a negative argument. For this exception, a user-written
condition handler can request the same resume and fix-up and resume actions that it can request when
the condition is signaled by one of the square root routines.

q_data structure for math and bit-manipulation conditions
For conditions that occur in the mathematical or bit manipulation routines, the Language Environment
condition manager creates q_data that user condition handlers can use to handle the condition. The
q_data structure is shown in Figure 81 on page 249, and is the same for all entry points of the
mathematical and bit manipulation routines.

Using condition tokens

248 z/OS: z/OS Language Environment Programming Guide

Figure 81. q_data structure for math and bit manipulation routines

The following information is provided by the q_data structure shown in Figure 81 on page 249:
q_data_token (input)

The 4-byte address of the address list. This value is returned by the CEEGQDT callable service.
parm_count (input)

A 4-byte binary integer containing the value 10, which is the total number of q_data fields in the
q_data structure, including parm_count.

math_operation (input)
An 8-byte field containing an abbreviation for the mathematical or bit manipulation operation for
which the condition occurred. The field is left-justified and padded with blanks. (See Table 47 on page
251 for a list of the abbreviations.)

Using condition tokens

Chapter 18. Using condition tokens 249

std_resume_value_desc (input)
The q_data descriptor for std_resume_value.

std_resume_value (input)
A default value used as the result of the mathematical or bit manipulation function when the user
condition handler requests the resume action (result code 10). The length and type of this field are
dependent on math_operation and are reflected in the q_data descriptor std_resume_value_desc.

parameter_1_desc (input)
The q_data descriptor for parameter_1.

parameter_1 (input/output)
The value of the first parameter provided to the mathematical or bit manipulation routine. The length
and type of this field are dependent on math_operation and are reflected in the q_data descriptor
parameter_1_desc.

This is the value of the first parameter that is used as input to the routine when the user condition
handler requests a resume with new input value (result code 60 with a new condition token of
CEE0CE).

parameter_2_desc (input)
The q_data descriptor for parameter_2 if the mathematical or bit manipulation routine has two input
parameters. (If the routine has only one parameter, the q_data structure has an address slot for this
field, but the address is not meaningful and the field must not be referenced.)

parameter_2 (input/output)
The value of the second parameter provided to the mathematical or bit manipulation routine if the
routine has two input parameters. (If the routine has only one parameter, the q_data structure has an
address slot for this field, but the address is not meaningful and the field must not be referenced.)
The length and type of the field are dependent on math_operation and are reflected in the q_data
descriptor parameter_2_desc.

This is the value of the second parameter that is used as input to the routine when the user condition
handler requests a resume with new input value (result code 60 with a new condition token of
CEE0CE).

fixup_resume_value_desc (input)
The q_data descriptor for fixup_resume_value. (See “Format of q_data descriptors” on page 252 for
more information about q_data descriptors.)

fixup_resume_value (output)
The value to be used as the result of the mathematical or bit manipulation function when the user
condition handler requests a resume with new output value (result code 60 with a new condition
token of CEE0CF). The length and type of this field are dependent on math_operation and are
reflected in the q_data descriptor fixup_resume_value_desc.

parameter_3_desc (input)
The q_data descriptor for parameter_3 if the mathematical or bit manipulation routine has three input
parameters. (If the routine has only one (or two) parameter(s), the q_data structure has an address
slot for this field, but the address is not meaningful and the field must not be referenced.)

parameter_3 (input/output)
The value of the third parameter provided to the mathematical or bit manipulation routine if the
routine has three input parameters. (If the routine has only one (or two) parameter(s), the q_data
structure has an address slot for this field, but the address is not meaningful and the field must not
be referenced.) The length and type of the field are dependent on math_operation and are reflected in
the q_data descriptor parameter_3_desc.

This is the value of the third parameter that is used as input to the routine when the user condition
handler requests a resume with new input value (result code 60 with a new condition token of
CEE0CE).

Using condition tokens

250 z/OS: z/OS Language Environment Programming Guide

Table 47. Abbreviations of math operations in q_data structures. Column two shows the abbreviations
that can occur in field math_operation for the math operations shown in column one.

Mathematical operation Abbreviation

Logarithm Base e LN

Logarithm Base 10 LOG

Logarithm Base 2 LOG2

Exponential (base e) E**Y

Exponentiation (x raised to the power y) X**Y

Arcsine ARCSIN

Arccosine ARCCOS

Arctangent ARCTAN

Arctangent2 ARCTAN2

Sine SIN

Cosine COS

Tangent TAN

Cotangent COTAN

Hyperbolic Sine SINH

Hyperbolic Cosine COSH

Hyperbolic Tangent TANH

Hyperbolic Arctangent ARCTANH

Square Root SQRT

Error Function ERF

Error Function Complement ERFC

Gamma Function GAMMA

Log Gamma Function LOGGAMMA

Absolute Value Function ABS

Modular Arithmetic MOD

Truncation TRUNC

Imaginary Part of Complex IPART

Conjugate of Complex CPART

Nearest Whole Number NWN

Nearest Integer NINT

Positive Difference POSDIFF

Transfer of Sign XFERSIGN

Floating Complex Multiply CPLXMULT

Floating Complex Divide CPLXDIVD

Bit Shift ISHFT

Using condition tokens

Chapter 18. Using condition tokens 251

Table 47. Abbreviations of math operations in q_data structures. Column two shows the abbreviations
that can occur in field math_operation for the math operations shown in column one. (continued)

Mathematical operation Abbreviation

Bit Clear IBCLR

Bit Set IBSET

Bit Test BTEST

Usage notes
• You can use the CEEGQDT callable service to retrieve the q_data_token; see z/OS Language

Environment Programming Reference for details.
• From a Fortran routine, you can retrieve the qualifying data using Fortran-specific callable services

and functions, which are described in Language Environment for MVS & VM Fortran Run-Time Migration
Guide.

• A user condition handler can request one of three different actions to continue the execution of a failing
mathematical or bit manipulation routine:

– The resume action (result code 10). The value in std_resume_value (either the default value provided
to the user condition handler or a modified value provided by the user condition handler) becomes
the final result value for the routine.

– The resume with new input value action (result code 60 with a new condition token of CEE0CE). The
values to be used as parameters for invoking the routine again are provided by the user condition
handler in parameter_1 and, if applicable, in parameter_2.

– The resume with new output value action (result code 60 with a new condition token of CEE0CF). The
fixup_resume_value value provided by the user condition handler becomes the final result value for
the routine.

Format of q_data descriptors
q_data descriptors contain additional information you need to fix up the parameter or result fields of
the math q_data structures, the result field of the program interruption q_data structures, or fields for
any conditions whose q_data structures contain q_data descriptors. The descriptors contain information
about the length and data type of these fields. The format of the q_data descriptor is illustrated in Figure
82 on page 252.

X'02'+0

+4 length

data_type_1 X'CE' data_type_2

Figure 82. Format of a q_data descriptor

The following information is provided by the q_data descriptor shown in Figure 82 on page 252:
data_type_1

A 1-byte binary integer value that, along with data_type_2, indicates the data type. See Table 48 on
page 253 for the values and their corresponding data types.

data_type_2
A 1-byte binary integer value that, along with data_type_1, indicates the data type. See Table 48 on
page 253 for the values and their corresponding data types.

length
A 4-byte binary integer value that represents the length of the data.

For each type code that can occur in a q_data descriptor, Table 48 on page 253 shows the corresponding
data type.

Using condition tokens

252 z/OS: z/OS Language Environment Programming Guide

Table 48. q_data descriptor data types

data_type_1 type data_type_2 type Description

2 0 String of single-byte characters with no length prefix or ending
delimiter

1 13 Signed binary integer whose length is 1, 2, 4, or 8 bytes

1 14 Floating-point number whose length is 4, 8, or 16 bytes

1 15 Complex number whose length is 8, 16, or 32 bytes

1 18 Unsigned binary integer whose length is 1 byte

Using condition tokens

Chapter 18. Using condition tokens 253

Using condition tokens

254 z/OS: z/OS Language Environment Programming Guide

Chapter 19. Using and handling messages

This topic describes how you can use the Language Environment message services to create, issue, and
handle messages for Language Environment-conforming applications.

How Language Environment messages are handled
The Language Environment message services provide a common method of handling and issuing
messages for Language Environment-conforming applications.

When a condition is raised in your application, either Language Environment common routines or
language-specific runtime routines can issue messages from the runtime message file. The messages
can provide information about the condition and suggest possible solutions to errors.

You can use Language Environment callable services and runtime options to modify message handling,
and control the destination of message output. You can also define a message log file to create a record of
the messages that Language Environment issues.

Related runtime options:
MSGFILE

Specifies a file where runtime messages issued by Language Environment are logged.
MSGQ

Specifies the maximum number of ISIs
NATLANG

Specifies the national language runtime message file.

Related callable services:
CEEMGET

Gets a message.
CEEMOUT

Dispatches a message.
CEEMSG

Gets, formats, and dispatches a message.
CEECMI

Stores and loads message insert data about a condition.

Related utilities:
CEEBLDTX

Transforms source files into loadable TEXT files.

See z/OS Language Environment Programming Reference for more information about the syntax for the
callable services.

Creating messages
The following topics explain how to create messages to use in your routines. To create a message, you:

1. Create a message source file
2. Assemble the message source file with the CEEBLDTX utility
3. Create a message module table
4. Assign values to message inserts
5. Use messages in code to get message output

© Copyright IBM Corp. 1991, 2022 255

Creating a message source file
The message source file contains the message text and information associated with each message.
Standard tags and format are used for message text and different types of message information. The tags
and format of the message source files are used by the CEEBLDTX utility to transform the source file into a
loadable TEXT file.

Under TSO/E, if you specify a partially qualified name, TSO/E adds the current prefix (usually userid) as
the leftmost qualifier and TEXT as the rightmost qualifier. The message source file should have a fixed
record format with a record length of 80.

When creating a message file, make sure your sequential numbering attribute is turned off in the editor so
that trailing sequence numbers are not generated. Trailing blanks in columns 1–72 are ignored. At least
one message data set (TSO/E) is required for each national language version of your messages.

All tags used to create the source file begin with a colon (:), followed by a keyword and a period (.). All
tags must begin in column 1, except where noted. Comments in the message source file must begin with a
period asterisk (.*) in the leftmost position of the input line.

Figure 83 on page 256 shows an example of a message source file with a facility ID of XMP.

:facid.XMP
:msgno.10
:msgsubid.0001
:msgname.EXMPLMSG
:msgclass.I
:msg.This is an example of an insert,
:tab.+1
:ins 1.a simple insert
:msg., within a message.
:xpl.This is a simple example of how to put an insert into a message.
:presp.No programmer response required.
:sysact.No system action is taken.

Figure 83. Example of a message source file

The tags used in message source files are:
:facid.

The facility ID is required at the beginning of every message file. It is used as the first three characters
of the message number. All messages within a source file have the same facility ID. For example, all
messages issued by Language Environment have a facility ID of CEE. The facility ID is combined with a
4-digit identification number and the message severity code to form the message number. The facility
ID can contain any alphanumeric (A–Z, a–z, 0–9) characters.

Omitting the facility ID tag, causes an error during the creation of the loadable message file. Errors are
also caused by multiple occurrences of this tag, or by the use of blanks or special characters in the
facility ID.

If your C application is running with POSIX(OFF), Language Environment issues messages with a
facility ID of EDC for compatibility. For more information, see “Runtime messages with POSIX” on
page 269.

Note: The facility ID is also used as the first 3 characters of the condition token.

:msgno.
This tag is required. The message number tag defines the beginning and end of information for a
message. All information up to the next :msgno. tag refers to the current message. The message
number appears as the 4 digits following the message prefix, and is used to identify the message in a
message source file. Multiple messages can use the same message number, but only if a :msgsubid.
tag is used within the message.

256 z/OS: z/OS Language Environment Programming Guide

The message numbers used with the :msgno. tags must be in ascending order. The message numbers
can be from 1 to 4 numeric (0–9) characters. Leading zeros will be added if fewer than 4 characters
are used.

If your application is running with POSIX(ON), message numbers 5201 through 5209 are used
whereas the same messages use message numbers 6000 through 6008 when POSIX(OFF) is in
effect. For more information, see “Runtime messages with POSIX” on page 269.

:msgsubid.
This tag is optional. The message subidentifier tag distinguishes between different messages with
the same message number. If every message has a unique message number, the :msgsubid. tag is
unnecessary.

The numbers associated with the :msgsubid. tags must be unique and in ascending order within
messages that have the same message number. The number associated with the :msgsubid. tag can
be from 1 to 4 numeric (0–9) characters. Leading zeros will be added if fewer than 4 digits are used.

:msgname.
The :msgname. tag is used to give a name to a message. This name becomes the symbolic name
of the condition token associated with the message, and is placed into the COPY file generated by
the CEEBLDTX utility. For example, if EXMPLMSG is used for the :msgname. tag in a message with a
facility ID of XMP, the symbolic feedback code for the condition associated with this message is also
EXMPLMSG.

If a message name is omitted, the facility ID plus the base-32 equivalent of the message number
is used as the symbolic message name. If additionally the :msgsubid. tag is used, the message
subidentifier preceded by an underscore is appended to the message name. For example, if :msgno.
has a value of 10 and the facility ID is XMP, the symbolic feedback code for the condition associated
with a message is XMP00A. If additionally the :msgsubid. tag is used with a value of 0001, the
symbolic feedback code is XMP00A_0001.

:msgclass.
This tag is required. The :msgclass. (or :msgcl.) tag makes up the final part of the message
identification. It requires a case-sensitive character that indicates the severity code of the message.
This character corresponds to the level of severity of the condition token associated with the
message. If the :msgclass. tag differs from the severity level of the condition token, the severity
assigned to the condition token is used. Refer to Table 49 on page 268 for the severity codes, levels of
severity, and condition descriptions.

:msg.
The :msg. tag indicates the beginning of partial or complete text of the message to be displayed. The
message text can appear in any national language known to Language Environment (including DBCS
characters). For a list of the supported national languages, refer to CEE3LNG—Set national language
in z/OS Language Environment Programming Reference. The :msg. tag can be repeated as often as
necessary to construct a message. It is not required if the message consists only of message inserts.
If the message text for a message requires more than one line, all lines are left-aligned with the
beginning of the first line of message text.

The message text ends with the last nonblank character. There is no fixed space reserved for the
message, so there is no requirement to reserve any additional space for message translation.
:hex.

The :hex. tag indicates the beginning of a hexadecimal character string. If used, it must be within
the text of a :msg. tag. It is terminated by an :ehex. tag. The :hex. tag can occur anywhere within
the message text.

:ehex.
The :ehex. tag terminates a string of hexadecimal characters. This tag can occur anywhere within
the message text.

:dbc.
The :dbc. tag defines text of DBCS characters. The string itself cannot contain any SBCS
characters, but it must begin with a shift-out character and end with a shift-in character.

Chapter 19. Using and handling messages 257

:tab.n
The :tab. tag indicates that the next part of the message will be tabbed over a given number of spaces
or tabbed to a given column. If the number is preceded by a plus sign, it indicates the next part of the
message will be moved over the specified number of spaces from the current position. Otherwise, the
number indicates the column where the next message part will begin. The tab value must be between
1 and 255. If necessary, a new line of output is automatically created to accommodate the tab value.
This includes the case where the current position is greater than a specified tab column.

:tbn.
The :tbn. tag is used to force any text written on a subsequent line to start in the current column until
an :etbn. tag is found.

:etbn.
The :etbn. tag turns off the tabs set by a :tbn. tag.

:ins n.[text]
The :ins. tag defines a message insert. The insert is a variable that is assigned a value with the
CEECMI callable service. The insert number (n) can be any number between 1 and 9. The text
following the period describes the insert. This text is optional, and is included only in a message file
when the value assigned to the insert is not known. For example, the text variable name after an insert
tag indicates that a variable name is assigned to the insert.

One value can be assigned to each insert used in a message. Insert tags can be moved around,
interchanged, or omitted, but the insert values cannot be changed. The order of the :ins n. tags, not
the insert number, determines the order of the inserts.

:newline.
The :newline. tag creates a new message line that can be used for multiline messages.

:xpl.
This tag is optional. The :xpl. tag indicates text used to explain the condition. It is not printed as part
of the message, but is included if the message SCRIPT file is formatted and printed.

:presp.
This tag is optional. The :presp. tag indicates text that describes the suggested programmer response.
It is not printed as part of the message, but is included if the message SCRIPT file is formatted and
printed or displayed online.

:sysact.
This tag is optional. The :sysact. tag indicates text that describes the system action. It is not printed as
part of the message, but is included if the message SCRIPT file is formatted and printed or displayed
online.

Using the CEEBLDTX utility

z/OS UNIX interface
The syntax is as follows:

 ceebldtx [-C csect_name] [-I secondary_file_name]
 [-P] [-S] [-c class] [-d delimiter]
 [-l BAL | C | COBOL | FORTRAN | PLI] [-s id]
 in_file out_file

Note: The ceebldtx utility is lowercase in the z/OS UNIX interface and only works with z/OS UNIX files;
MVS data sets are not applicable.

Operands
in_file

Required. The name of the file that contains the message source.

258 z/OS: z/OS Language Environment Programming Guide

out_file
Required. The name of the resulting assembler source file containing the messages, inserts, and
other items, suitable for input into the High Level Assembler. Extension of .s is assumed if none is
present.

Options
-C csect_name

This option is used to explicitly specify the CSECT name. An uppercase version of the CSECT name
will be used. By default, the CSECT name is the output file base name.

A CSECT name greater than 8 characters requires the use of the GOFF option when assembling
the Tout_file.

-I secondary_file_name
The name of the secondary input file that is generated for the language that is specified with the
-l (lowercase L) option. If no suffix is present in the specified secondary_file_name, the extension
is .h for C, .fortran for Fortran, and .copy for all others.

-P
This option is used to save previous prologs, if files being generated exist in the directory and
contain prologs. By default, previous prologs are not reused.

-S
This option is used to indicate sequence numbers should be generated in the files produced. By
default, no sequence numbers are generated.

-c class
This option is used to specify the default value for :msgclass. in cases where the tag is not
coded.

-d APOST | ' | QUOTE | "
This option specifies which COBOL delimiter to use. It is used in combination with the -l
(lowercase L) COBOL option. By default, APOST is used as the delimiter.

Escape quotation marks to prevent them from being treated as shell meta characters.

Examples:

ceebldtx -l COBOL -I secondary_file_name -d \' in_file out_file
ceebldtx -l COBOL -I secondary_file_name -d \" in_file out_file
ceebldtx -l COBOL -I secondary_file_name -d QUOTE in_file out_file

-l BAL | C | COBOL | FORTRAN | PLI
This option specifies the language to be used in generating a secondary input file. It is used
in combination with the -I (uppercase i) secondary_file_name option. The file will contain
declarations for the condition tokens that are associated with each message in the message
source file. The language is accepted in lowercase and uppercase.

C370 is also supported.

-s id
This option is used to specify the default value for :msgsubid. in cases where the tag is not
coded.

Chapter 19. Using and handling messages 259

TSO/E interface
CEEBLDTX in_file out_file

BAL(secondary_file_name)

C(secondary_file_name)

COBOL(secondary_file_name)
APOST

,

QUOTE

"

FORTRAN(secondary_file_name)

PLI(secondary_file_name)

CLASS(class) CSECT(csect_name) MSGID(id)

SEQ

NOSEQ

PROL

NOPROL

in_file
The name of the file containing the message source. The fully qualified data set name must be
enclosed in single quotes if you do not want a TSO/E prefix.

out_file
The name of the resulting assembler source file containing the messages, inserts, and other items,
suitable for input into the High Level Assembler. The fully qualified data set name must be enclosed in
single quotes if you do not want a TSO/E prefix.

options
APOST | ' | QUOTE | "

Specify the delimiter to use, APOST is used by default. This option is used to specify which COBOL
delimiter to use. Honored in combination with COBOL(secondary_file_name) option.

BAL(secondary_file_name) | C(secondary_file_name) | COBOL(secondary_file_name) |
FORTRAN(secondary_file_name) | PLI(secondary_file_name)

secondary_file_name: The name of the secondary input file for the specified language. The file
will contain declarations for the condition tokens associated with each message in the message
source file. The fully qualified data set name must be enclosed in single quotes if you do not want
a TSO/E prefix.

Note:

1. Only the last language (secondary_file_name) will be used.
2. C370(secondary_file_name) is also supported.

CLASS(class)
This option is used to specify the default value for :msgclass. in cases where the tag is not
present.

CSECT(csect_name)

This option is used to explicitly specify the CSECT name. An uppercase version of the CSECT name
will be used. By default, the CSECT name is the output file base name.

A CSECT name greater than 8 characters requires the use of the GOFF option when assembling
the out_file.

260 z/OS: z/OS Language Environment Programming Guide

MSGSID(id)
This option is used to specify the default value for :msgsubid. in cases where the tag is not
present.

PROL | NOPROL
Specify PROL to reuse prolog from the previous file version, if previous version exists. Specify
NOPROL to ignore the previous prolog. PROL is default.

SEQ | NOSEQ
Specify SEQ to generate files with sequence numbers. Specify NOSEQ to generate files without
sequence number. SEQ is default.

Note: The CEEBLDTX utility is a REXX EXEC that resides in SCEECLST data set.

Files created by CEEBLDTX
The CEEBLDTX utility creates several files from the message source file. It creates an assembler source
file, which can be assembled into an object ("TEXT") file and link-edited into a module in an MVS load
library. When the name of the module is placed in a message module table, the Language Environment
message services can dynamically access the messages. See “Creating a message module table” on page
265 for more information about creating a message module table.

The CEEBLDTX utility optionally creates secondary input files (COPY or INCLUDE), which contain the
declarations for the condition tokens associated with each message in the message source file. When a
program uses the secondary input file, the condition tokens can then be used to reference the message
from the message table. The :msgname. tag indicates the symbolic name of the condition token.

To use the CEEBLDTX utility with the sample file shown in Figure 83 on page 256 , issue the environment
corresponding command example below. After the out_file is generated, High Level Assembler can be
used to assemble the out_file into an object and the binder can be used to link-edit the object into a
module in an MVS load library. (A CSECT name greater than 8 characters requires the use of the High
Level Assembler GOFF option for assembling the primary out_file.):

 TSO/E:
 CEEBLDTX example exmplasm pli(exmplcop)

The in_file is EXAMPLE, the out_file is EXMPLASM, and the PL/I secondary input file is EXMPLCOP.

 z/OS UNIX:
 ceebldtx -l PLI -I exmplcop example exmplasm

The in_file is example, the out_file is exmplasm.s, and the PL/I secondary input file is exmplcop.copy.

CEEBLDTX error messages
Language Environment issues these messages for CEEBLDTX errors.

Return
Code=-1

IRX0005I Machine storage
exhausted

Explanation
Rexx terminated execution due to lack of storage. (See
IRX0005I in the z/OS TSO/E Messages.)

Programmer response
Attempt one of the following options:

1. Increase the virtual storage space available on the
system.

2. Split up the script in_file, into two or more
files. Adjust the message module table for the
corresponding split.

Return
Code=0005

Error reading file ssssssss.

Explanation
Error occurred while reading file ssssssss.

Programmer response
Validate file accessibility.

Chapter 19. Using and handling messages 261

Return
Code=0006

Error erasing file ssssssss.

Explanation
Error occurred while erasing file ssssssss.

Programmer response
Validate file accessibility.

Return
Code=0007

Error writing file ssssssss.

Explanation
Error occurred while writing file ssssssss.

Programmer response
Validate file accessibility.

Return
Code=0008

Bad filename ssssssss: forward
slash not allowed at the end of a
filename.

Explanation
Filenames are not allowed to end with forward
slashes.

Programmer response
Modify the filename to not end with a forward slash.

Return
Code=0009

Option x requires an argument.

Explanation
Option specified must be accompanied by an
argument.

Programmer response
Specify an argument with the option.

Return
Code=0010

Invalid option = x. Valid options
are: CIPScdls.

Explanation
Invalid option specified.

Programmer response
Specify zero or more valid options.

Return
Code=0011

Bad data set name ssssssss.

Explanation
The data set name is not correctly specified.

Programmer response
Validate the name of the data set is correct.

Return
Code=0020

CSECT name ssssssss is greater
than 63 characters.

Explanation
The CSECT name ssssssss is greater than 63
characters and will cause an error during assembly.

Programmer response
Make sure the CSECT name is 63 characters or less.

Return
Code=0021

CSECT name ssssssss does not
begin with a letter, $, #, @ or
underscore (_).

Explanation
The CSECT name ssssssss does not begin with a letter,
$, #, @ or underscore (_) and will cause an error
during assembly.

Programmer response
Make sure that the CSECT name ssssssss begins with a
letter, $, #, @ or underscore (_).

Return
Code=0028

ssssssss SCRIPT not found on any
accessed disk.

Explanation
The SCRIPT file with the name ssssssss does not exist.

Programmer response
Make sure the name is given correctly and is
accessible.

Return
Code=0040

Error on line nnn in message
nnnn Insert number greater than
mmmm.

Explanation
An insert number greater than the allowable maximum
was specified. The current maximum allowable insert
number is 9.

Programmer response
Specify an insert number of 9 or less.

262 z/OS: z/OS Language Environment Programming Guide

Return
Code=0044

Error on line nnn Duplicate :FACID.
tags found with the given script
file.

Explanation
Only one facility ID can be specified in the SCRIPT file.

Programmer response
Specify only one facility ID in the SCRIPT file.

Return
Code=0048

No :FACID. tag found within the
given script file.

Explanation
A 3-character facility ID must be specified in the
SCRIPT file with the :facid. tag.

Programmer response
Specify a 3-character facility ID with the :facid. tag.

Return
Code=0052

Error on line nnn Message number
nnnn found out of range mmmm to
mmmm.

Explanation
A message was found with a number outside the valid
range. The current valid range is 0 to 9999.

Programmer response
Correct the invalid message number on the given line
of the SCRIPT file.

Return
Code=0056

Number of hex digits not divisible
by 2 on line nnn in message nnnn.

Explanation
Hexadecimal strings must contain an even number of
digits.

Programmer response
Specify an even number of digits for the hexadecimal
string.

Return
Code=0060

Invalid hexadecimal digits on line
nnn in message nnnn.

Explanation
Valid hexadecimal digits are 0–9 and A–F. Invalid
digits were detected.

Programmer response
Specify only digits 0–9 and A–F within a hexadecimal
string.

Return
Code=0064

Number of DBCS bytes not
divisible by 2 on line nnn in
message nnnn.

Explanation
Doublebyte character strings must contain an even
number of bytes.

Programmer response
Specify an even number of bytes for the doublebyte
character string.

Return
Code=0068

PLAS out_file name must be
longer than the message facility ID
pppp.

Explanation
The ASSEMBLE file name must be greater than 3
characters.

Programmer response
Specify an ASSEMBLE out_file name of greater than 3
characters.

Return
Code=0072

Message facility ID pppp on line
nnn was longer than 4 characters.

Explanation
Facility ID must be exactly 3 characters long, with no
blanks.

Programmer response
Specify a 3-character facility ID.

Return
Code=0076

Message class on line nnn was
not a valid message class type:
IWESCFA.

Explanation
Message class must be one of the valid message
classes.

Programmer response
Specify a valid message class.

Return
Code=0080

Tag not recognized on line nnn.

Chapter 19. Using and handling messages 263

Explanation
A tag that was not recognized was encountered.

Programmer response
Check the tag for proper spelling and use.

Return
Code=0084

The first tag was not a :FACID. tag
on line nnn.

Explanation
The first tag of the SCRIPT file must be the facility ID
tag.

Programmer response
Specify the facility ID tag as the first tag in the SCRIPT
file.

Return
Code=0088

Unexpected tag found on line nnn.

Explanation
A valid tag was found in an unexpected location in the
SCRIPT file; it is likely out of order.

Programmer response
Check the order of the tags in the SCRIPT file.

Return
Code=0092

Duplicate tags ttt found on line
nnn.

Explanation
Duplicate :msgname., :msgclass., or :msgsubid. tags
were found for a single message.

Programmer response
Remove the extra tag from the message script.

Return
Code=0096

No :MSGNO. tags found within the
given SCRIPT file.

Explanation
A message file must have at least one message in it,
and it must be denoted by a :msgno. tag.

Programmer response
Specify at least one message in the message file.

Return
Code=0098

No :MSGCLASS. (or :MSGCL.) tag
found for message nnnn.

Explanation
A :msgclass. (or :msgcl.) tag was not found for
message nnnn.

Programmer response
Specify a :msgclass. tag to indicate the severity code
of the message and verify the tag is located after
the :msgno. tag. Alternatively you can use the -c
(CLASS) option to provide a default value for messages
which have no :msgclass. (or :msgcl.) tag specified.

Return
Code=0100

Insert number was not provided or
was less than 1 on line nnn.

Explanation
A positive insert number must be provided for each
insert.

Programmer response
Specify a positive insert number of 9 or less for the
insert.

Return
Code=0104

Message subid was out of the
range mmmm to mmmm on line
nnn.

Explanation
A message subid was found with a number outside the
valid range. The current valid range is 0 to 9999.

Programmer response
Correct the invalid message subid on the given line of
the SCRIPT file.

Return
Code=0108

Existing secondary file, ssssssss,
found, but not on A-disk.

Explanation
A secondary file with the name ssssssss doe not exist
on A-disk.

Programmer response
Make sure the name is given correctly and is
accessible.

Return
Code=0112

The Current ADDRESS
environment not CMS, TSO/E, or
z/OS UNIX.

264 z/OS: z/OS Language Environment Programming Guide

Explanation
CEEBLDTX utility is not being executed in a supported
environment.

Programmer response
Transport the utility to either CMS, TSO/E, or z/OS
UNIX environment and try executing again.

Return
Code=nnn

Undefined error number nnn
issued.

Explanation
An undefined error was encountered.

Programmer response
Contact your service representative.

Creating a message module table
Language Environment locates the user-created messages using a message module table that you code in
assembler.

The message module table begins with a header that indicates the number of languages in the table. In
Figure 84 on page 265, for example, only English is used, so the first fullword of the header declares the
constant F'1'.

 TITLE 'UXMPMSGT'
UXMPMSGT CSECT
 DC F'1' number of languages
 DC CL8'ENU ' language identifier
 DC A(TABLEENU) pointer to first language table
TABLEENU DC F'01' lowest message number in module
 DC F'100' highest message number in module
 DC CL8'EXMPLASM' message module name
 DC F'-1' flags indicating the last...
 DC F'-1' 16-byte entry (a dummy entry)...
 DC CL8'DUMMY' in the language table
 END UXMPMSGT

Figure 84. Example of a message module table with one language

In the message module table in Figure 85 on page 266, however, English and Japanese are used, so the
first fullword of the header declares the constant F'2'. Following the message module table header are
tables for each language.

Creating a message module table

Chapter 19. Using and handling messages 265

 TITLE 'UZOGMSGT'
UZOGMSGT CSECT
 DC F'2' number of languages
 DC CL8'ENU ' first language identifier
 DC A(TABLEENU) pointer to first language table
 DC CL8'JPN ' second language identifier
 DC A(TABLEJPN) pointer to second language table
TABLEENU DC F'01' lowest message number in first module
 DC F'100' highest message number in first module
 DC CL8'ZOGMSGE1' first message module name
 DC F'101' lowest message number in second module
 DC F'200' highest message number in second module
 DC CL8'ZOGMSGE2' second message module name
 ⋮
 DC F'-1' flags indicating the last...
 DC F'-1' 16-byte entry (a dummy entry)...
 DC CL8'DUMMY' in the language table
TABLEJPN DC F'01' lowest message number in first module
 DC F'100' highest message number in first module
 DC CL8'ZOGMSGJ1' first message module name
 DC F'101' lowest message number in second module
 DC F'200' highest message number in second module
 DC CL8'ZOGMSGJ2' second message module name
 ⋮
 DC F'-1' flags indicating the last...
 DC F'-1' 16-byte entry (a dummy entry)...
 DC CL8'DUMMY' in the language table
 END UZOGMSGT

Figure 85. Example of a message module table with two languages

Each language table has one or more 16-byte entries that indicate the name of a load module and
the range of message numbers the module contains. The first fullword of each 16-byte entry contains
the lowest message number within the corresponding module; the second fullword contains the highest
message number for that module. The last 8 bytes of each 16-byte entry contain the name of the
message module to be loaded. For example, in Figure 85 on page 266, Japanese messages numbered
101–200 are found in module ZOGMSGJ2. Finally, each language table ends with a dummy 16-byte entry
whose first two fullwords contain the flag F'-1' indicating the end of the language table.

Use an 8-character format for the title of the message module table: ‘U’ (to indicate that the table
contains user-created messages), followed by a 3-character facility ID, followed by ‘MSGT’. For example,
the title of the message module table for messages using a facility ID of XMP would be ‘UXMPMSGT’ as
shown in Figure 84 on page 265; the title of the message module table for messages having a facility ID of
ZOG would be ‘UZOGMSGT’ as shown in Figure 85 on page 266.

After you create the message module table:

1. Assemble it into a loadable TEXT file using High Level Assembler.
2. Store the message module table in a library where it can be dynamically accessed while your routine is

running.

Assigning values to message inserts
After you add message insert tags to the message source file, you can use the Language Environment
callable service CEECMI to assign values to the inserts. Values do not need to be assigned to inserts
in sequential order. For example, the value of insert 3 can be assigned before the value for insert 1.
Before invoking the CEECMI callable service, assign values to the callable service parameters. For more
information about CEECMI, see z/OS Language Environment Programming Reference.

Figure 86 on page 267 shows an example of the use of CEECMI to assign value 1234 to insert 1
for :msgname.EXMPLMSG shown in Figure 83 on page 256.

Assigning values to message inserts

266 z/OS: z/OS Language Environment Programming Guide

*PROCESS MACRO;
 TEST: Proc Options(Main);

 /*Module/File Name: IBMMINS */

 %INCLUDE CEEIBMAW;
 %INCLUDE CEEIBMCT;

 %INCLUDE SYSLIB(EXMPLCOP);
 DECLARE INSERT CHAR(255) VARYING AUTO;
 DCL 01 CTOK, /* Feedback token */
 03 MsgSev REAL FIXED BINARY(15,0),
 03 MsgNo REAL FIXED BINARY(15,0),
 03 Flags,
 05 Case BIT(2),
 05 Severity BIT(3),
 05 Control BIT(3),
 03 FacID CHAR(3), /* Facility ID */
 03 ISI /* Instance-Specific Information */
 REAL FIXED BINARY(31,0);
 DCL 01 FBCODE, /* Feedback token */
 03 MsgSev REAL FIXED BINARY(15,0),
 03 MsgNo REAL FIXED BINARY(15,0),
 03 Flags,
 05 Case BIT(2),
 05 Severity BIT(3),
 05 Control BIT(3),
 03 FacID CHAR(3), /* Facility ID */
 03 ISI /* Instance-Specific Information */
 REAL FIXED BINARY(31,0);
 DECLARE MSGFILE FIXED AUTO;

 ctok = EXMPLMSG;
 insert = '1234';
 MSGFILE = 2;

 /* Call CEECMI to create a message insert */
 CALL CEECMI(ctok, 1, insert, fbcode);

 /* Call CEEMSG to issue the message */
 CALL CEEMSG(ctok, MSGFILE, fbcode);

 END TEST;

Figure 86. Example of assigning values to message inserts

Interpreting runtime messages
Runtime messages are designed to provide information about conditions and possible solutions to
errors that occur in your routine. Language Environment common routines and language-specific runtime
routines issue runtime messages. All runtime messages in Language Environment are composed of the
following:

• A 3-character facility ID used by all messages that are generated under Language Environment or a
particular Language Environment-conforming product. This prefix indicates the Language Environment
component that generated the message, and is also the facility ID in the condition token. Language
Environment uses the ID of the condition token to write the message that is associated with the
condition to MSGFILE. For more information about the condition token, see Chapter 18, “Using
condition tokens,” on page 231.

• A message number that identifies the message that is associated with the condition.
• A severity level that indicates the severity of the condition that was raised.

The format of every runtime message is FFFnnnnx
FFF

Represents the facility ID. In z/OS Language Environment, the possible facility IDs assigned by IBM
are:

Interpreting runtime messages

Chapter 19. Using and handling messages 267

CEE
Language Environment common library.

EDC
C language-specific library.

FOR
Fortran language-specific library.

IGZ
COBOL language-specific library.

IBM
PL/I language-specific library

nnnn
Represents the message number.

x
Represents the severity code. This character indicates the level of severity (1, 2, 3, or 4) of the
message.

Table 49 on page 268 lists the severity codes, corresponding severity levels, explanations of the severity
codes, and the default actions that are taken if conditions corresponding to each level of severity are
unhandled.

Table 49. Severity codes for Language Environment runtime messages

Severity
code

Level of
severity

Explanation Default action if condition
unhandled

I 0 An informational message (or, if the
entire token is zero, no information).

No message issued.

W 1 A warning message; service
completed, probably successfully.

No message issued, except in
COBOL. Processing continues for
all languages.

E 2 Error detected, correction attempted,
service completed, perhaps
successfully.

Issues message and terminates
thread.

S 3 Severe error detected, service
incomplete with possible side effects.

Issues message and terminates
thread.

C 4 Critical error detected, service
incomplete with condition signaled.

Issues message and terminates
thread.

Language Environment messages can appear even though you made no explicit calls to Language
Environment services. C, COBOL, and PL/I runtime library routines commonly use the Language
Environment services, so you might receive Language Environment messages even when the application
routine does not directly call Language Environment services.

Some Language Environment conditions have qualifying data that is associated with the instance-specific
information (ISI) for the condition. For more information about qualifying data, see “q_data structure for
abends” on page 242.

Specifying national languages
You can use Language Environment national language support to view runtime messages in mixed- and
uppercase U.S. English and in Japanese. You can also use national language support to select the most
appropriate language variables for your messages, such as language character set, left-to-right text,
single-byte character set (SBCS), and double-byte character set (DBCS).

Specifying national languages

268 z/OS: z/OS Language Environment Programming Guide

Language Environment message services support requirements for national language support machine-
readable information such as message formatting, message delivery, and normalization (removes the
adjacent shift-out, shift-in character in order to make DBCS strings as compatible as possible).

The NATLANG runtime option allows you to set the national language used for messages before you run
your routine. The default national language is mixed and uppercase U.S. English. For more information
about the NATLANG runtime option, see NATLANG in z/OS Language Environment Programming Reference.

The CEE3LNG callable service allows you to set or query the current national language setting while your
routine is running. For more information about CEE3LNG, see CEE3LNG—Set national language in z/OS
Language Environment Programming Reference.

Runtime messages with POSIX
The POSIX(ON) runtime option changes both the facility ID and message number for some messages
you might see with your C application. Messages that had the facility ID of EDC and ranged in number
from 6000 through 6009 before running POSIX(ON) now have a facility ID of CEE and different message
numbers.

Table 50 on page 269 shows the conditions, their facility ID and message number for the different
runtime environments. If your C application is coded to respond to specific facility IDs or specific message
numbers for processing, then you must check for the proper values depending on the environment.

Table 50. Condition tokens with POSIX

Condition token
Facility ID with
POSIX(ON)

Message number
with POSIX(ON)

Facility ID with
POSIX(OFF)

Message number
with POSIX(OFF)

SIGFPE CEE 5201 EDC 6000

SIGILL CEE 5202 EDC 6001

SIGSEGV CEE 5203 EDC 6002

SIGABND CEE 5204 EDC 6003

SIGTERM CEE 5205 EDC 6004

SIGINT CEE 5206 EDC 6005

SIGABRT CEE 5207 EDC 6006

SIGUSR1 CEE 5208 EDC 6007

SIGUSR2 CEE 5209 EDC 6008

SIGHUP CEE 5210 na na

SIGSTOP CEE 5211 na na

SIGKILL CEE 5212 na na

SIGPIPE CEE 5213 na na

SIGALRM CEE 5214 na na

SIGCONT CEE 5215 na na

SIGCHLD CEE 5216 na na

SIGTTIN CEE 5217 na na

SIGTTOU CEE 5218 na na

SIGIO CEE 5219 na na

SIGQUIT CEE 5220 na na

Runtime messages with POSIX

Chapter 19. Using and handling messages 269

Table 50. Condition tokens with POSIX (continued)

Condition token
Facility ID with
POSIX(ON)

Message number
with POSIX(ON)

Facility ID with
POSIX(OFF)

Message number
with POSIX(OFF)

SIGTSTP CEE 5221 na na

SIGTRAP CEE 5222 na na

SIGIOERR CEE 5223 EDC 6009

SIGDCE CEE 5224 na na

SIGPOLL CEE 5225 na na

SIGURG CEE 5226 na na

SIGBUS CEE 5227 na na

SIGSYS CEE 5228 na na

SIGWINCH CEE 5229 na na

SIGXCPU CEE 5230 na na

SIGXFSZ CEE 5231 na na

SIGVTALRM CEE 5232 na na

SIGPROF CEE 5233 na na

SIGDUMP CEE 5234 na na

SIGDANGER CEE 5235 na na

SIGTHSTOP CEE 5236 na na

SIGTHCONT CEE 5237 na na

SIGDSIOER CEE 5239 na na

Handling message output
The following topics provide information about directing message output and displaying messages under
Language Environment, C, C++, COBOL, Fortran, and PL/I.

For information about handling message output in ILC applications, see z/OS Language Environment
Writing Interlanguage Communication Applications.

Using Language Environment MSGFILE
Runtime messages are directed to a common Language Environment message file. You can use the
MSGFILE runtime option to specify the ddname of this file. If a message file ddname is not declared,
messages are written to the IBM-supplied default ddname SYSOUT.

The definitions of MSGFILE(SYSOUT) differ, depending on the operating system you use. Table 51 on page
270 lists the SYSOUT definitions and MSGFILE default attributes for MVS and TSO/E:

Table 51. Operating system, SYSOUT definitions, MSGFILE default attributes

Operating system SYSOUT definition MSGFILE default attributes

MVS SYSOUT=*

The output is routed to the destination
specified in the MSGCLASS option of the
JOB card.

LRECL 121, RECFM FBA

If not a terminal, BLKSIZE 121*100; if
a terminal, BLKSIZE 121.

Handling message output

270 z/OS: z/OS Language Environment Programming Guide

Table 51. Operating system, SYSOUT definitions, MSGFILE default attributes (continued)

Operating system SYSOUT definition MSGFILE default attributes

TSO/E ALLOC DD(SYSOUT) DA(*) LRECL 121, RECFM FBA, BLKSIZE 121

When you direct runtime messages to an I/O device, the method you should use also depends on the
operating system. Table 52 on page 271 lists methods for directing runtime messages to an I/O device
under MVS and TSO/E, and provides references for additional information about this topic.

Table 52. Defining an I/O device for a ddname

Operating system Method to define I/O device For more information, see:

MVS Specify the ddname of a data set in the JCL. "Required DD Statements" in “Writing
JCL for the link-edit process” on page
58

TSO/E The ddname of the data set that you specify
using the ALLOCATE command.

Chapter 6, “Creating and executing
programs under TSO/E,” on page 69

Note:

1. You need to modify existing JCL of pre-Language Environment-conforming applications in order to
define new ddnames for MSGFILE.

2. You can specify the same message file across nested enclaves. Language Environment coordinates the
use of the same ddname across nested enclaves. If you specify different MSGFILE ddnames in each
enclave, Language Environment honors each ddname.

3. The Language Environment MSGFILE can be allocated to a large format sequential data set.
4. Under CICS, the MSGFILE runtime option is ignored. All runtime messages are directed to a transient

data queue named CESE rather than to the ddname specified in the MSGFILE option. For more
information about message handling and runtime message output under CICS, see “Runtime output
under CICS” on page 360.

Using MSGFILE under z/OS UNIX
To direct MSGFILE output to a z/OS UNIX file, use the PATH= keyword in the ddname parameter of
MSGFILE to specify a ddname that nominates a z/OS UNIX file.

If your application is running in an address space created by using the fork() or spawn() functions or
if it is invoked by one of the exec family of functions, the application has access to a DD card only if you
dynamically allocate one. If the application can access a DD card, MSGFILE output is directed to that file.
If the allocated DD card contains the PATH= keyword, Language Environment directs the MSGFILE output
to the specified file in the z/OS UNIX file system.

If your application is running under z/OS UNIX, or under any environment that has file descriptor 2
(FD2) open, MSGFILE output is directed to whatever FD2 points to. Under the shell this is typically your
terminal.

If FD2 does not exist but your application is either running in an address space created by the fork()
or spawn() functions or invoked by one of the exec family of functions, MSGFILE output is directed to
the current working directory; if that directory is the root directory, the output is written to a file in the
directory /tmp. The name of the file is the name you specify with the MSGFILE runtime option, with the
default of SYSOUT.

The resulting file name has the following format:

/path/Fname.Date.Time.Pid

path
The current working directory (unless it is the working directory, in which case it is then /tmp).

Handling message output

Chapter 19. Using and handling messages 271

Fname
The name specified in the FNAME parameter on the call to CEE3DMP (default is CEEDUMP).

Date
The date the dump is taken, appearing in the format YYYYMMDD (such as 19940325 for March 25,
1994).

Time
The time the dump is taken, appearing in the format HHMMSS (such as 175501 for 05:55:01 PM).

Pid
The process ID the application is running in when the dump is taken.

Note: Language Environment cannot direct MSGFILE output to a z/OS UNIX file in a CICS environment.

Using C or C++ I/O functions
C and C++ make a distinction between types of error output, and whether the output is directed to the
MSGFILE destination or to one of the standard stream output devices, stderr or stdout.

Runtime messages and perror() messages are directed to the stderr standard stream output device.
The default destination for stderr output is the MSGFILE ddname; you can change this default.

Message output issued by a call to the printf() function is directed to stdout. For TSO/E, stdout
defaults to the terminal. When running batch (MVS, IMS, or TSO/E) or IMS online, stdout attempts by
default to open one of several ddnames in the following order of precedence, which is made to open
SYSOUT=* as a data set:

1. SYSPRINT
2. SYSTERM
3. SYSERR

You can change the destination of printf() output by redirection. For example, 1>&2 on the command
line at routine invocation redirects stdout to the stderr destination.

Table 53 on page 272 lists the types of C/C++ output, the types of messages associated with them, and
the destination of the message output.

Table 53. C and C++ message output

Type of output Type of message Produced by Default destination

MSGFILE output Language Environment
messages (CEExxxx)

Language Environment
unhandled conditions

MSGFILE ddname

C library messages C/C++ unhandled
conditions (EDCxxxx)

MSGFILE ddname

stderr messages perror() messages
(EDCxxx)

Issued by a call to
perror()

MSGFILE ddname

User output sent
explicitly to stderr

Issued by a call to
fprintf()

MSGFILE ddname

stdout messages User output sent
explicitly to stdout

Issued by a call to
printf()

stdout

You can control the destination of stderr and stdout output by using the Language Environment MSGFILE
runtime option, the C freopen() function, or by invoking redirection services at run time.

Table 54 on page 273 lists the possible destinations of redirected stderr and stdout standard stream
output.

Handling message output

272 z/OS: z/OS Language Environment Programming Guide

Table 54. C/C++ redirected stream output

Action stderr not redirected

stderr redirected to
destination other than
stdout

stderr redirected to
stdout

stdout not redirected stdout to itself stdout to itself Both to stdout

stderr to MSGFILE stderr to its other
destination

n/a

stdout redirected to
destination other than
stderr

stdout to its other
destination

stdout to its other
destination

Both to the other
stdout destination

stderr to MSGFILE stderr to its other
destination

n/a

stdout redirected to
stderr

Both to MSGFILE Both to the other
stderr destination

When stderr and
stdout are redirected
to each other (this is not
recommended), output
from both is directed to
whichever was specified
first.

Using COBOL I/O statements
Language Environment manages all COBOL output directed to the system-logical output device. This
includes output from:

• DISPLAY SYSOUT
• READY TRACE (OS/VS COBOL only)
• EXHIBIT (OS/VS COBOL only)

Note: For OS/VS COBOL programs running under CICS, the DISPLAY, READY TRACE and EXHIBIT
statements are not supported.

Non-CICS considerations
For COBOL programs, the DISPLAY statement sends output to MSGFILE(SYSOUT), the default ddname for
the Language Environment message file. You can use the COBOL OUTDD compiler option to change the
destination of DISPLAY output. The MVS data set to which the runtime messages are written depends on
the combination of ddnames specified in the OUTDD compiler option and the MSGFILE runtime option.

If the ddname in OUTDD matches the ddname specified in the MSGFILE runtime option, the output is
synchronized with the runtime messages and placed in the MVS data set designated by the MSGFILE
runtime option.

If the ddname in OUTDD does not match the ddname specified in the MSGFILE runtime option, the output
from the DISPLAY statement is directed to the OUTDD ddname destination.

If the file designated by MSGFILE has not been defined (associated with an I/O device) when the output
is delivered, Language Environment dynamically allocates the file with ddname and attributes as shown in
Table 51 on page 270.

If the file designated by OUTDD has not been defined when the output is delivered, Language
Environment dynamically allocates the file with ddname and attributes as shown in Table 51 on page
270.

Handling message output

Chapter 19. Using and handling messages 273

For more information about directing COBOL output, see the appropriate version of the COBOL
programming guide in the COBOL library at Enterprise COBOL for z/OS library (www.ibm.com/support/
docview.wss?uid=swg27036733).

CICS considerations
DISPLAY to the system-logical output device is supported under CICS for programs compiled with VS
COBOL II, COBOL for MVS & VM, COBOL for OS/390 & VM, and Enterprise COBOL for z/OS. The DISPLAY
output is written to the Language Environment message file (transient data queue CESE).

Using Fortran I/O statements
Under Language Environment, Fortran I/O statements formerly written to a Fortran error message unit
(either directly or by default) are directed to a Language Environment message file specified by the
MSGFILE runtime option. At program initialization, the Fortran error message unit is connected to the file
specified by the MSGFILE runtime option.

The following types of output from Fortran programs are directed to the message file:

• Error messages that result from unhandled conditions
• Output produced by a sequential WRITE statement with a unit identifier having a value equal to the

Fortran error message unit
• Output produced by a sequential WRITE statement with * as the unit identifier when the Fortran error

message and the standard print unit are the same
• Output produced by a PRINT statement when the Fortran error message and the standard print unit are

the same
• Printed output from the dump services (CDUMP, CPCUMP, DUMP, PDUMP, or SDUMP)

The message file can be either a named or unnamed file. To specify an unnamed file, code the MSGFILE
runtime option as follows:

MSGFILE(FTeeF001)

The ee value is a two-character representation of the error message unit number that is specified in the
ERRUNIT runtime option; the ee value cannot be any other number.

The default ddname of the Language Environment message file is SYSOUT. The ddname can be changed
in a Fortran program by issuing an OPEN statement to connect to the error message unit with a different
ddname in the FILE specifier. You can use a CLOSE statement to close the message file currently
connected to the Fortran error message unit. In this case, the default message file as specified by the
MSGFILE runtime option becomes the current message file. Any subsequent output messages are written
to this message file after the CLOSE statement is issued. No subsequent OPEN statement is required.

For example, when the standard print unit is the same as the error message unit (unit 6 in Figure 87
on page 274), all output from the PRINT statement is directed to the error message unit. When the
MSGFILE(ONE) runtime option is in effect, the message file with ddname ONE is connected to the error
message unit.

PRINT *, 'FILE ONE, RECORD 1'
PRINT *, 'FILE ONE, RECORD 2'
OPEN (6, FILE='TWO')
PRINT *, 'FILE TWO, RECORD 1'
PRINT *, 'FILE TWO, RECORD 2'
CLOSE (6)
PRINT *, 'FILE ONE, NEW RECORD 1'
PRINT *, 'FILE ONE, NEW RECORD 2'

Figure 87. Directing output messages

Handling message output

274 z/OS: z/OS Language Environment Programming Guide

http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733

Figure 87 on page 274 shows the first two records being written to the message file with the ddname
ONE. The first OPEN statement closes file ONE and connects file TWO to the error message unit; two
messages are written to it. The CLOSE statement closes file TWO and makes ONE the current message
file. This occurs because the MSGFILE(ONE) runtime option is specified. The next PRINT statement
connects file ONE to the error message unit, and two records are written to it. The message file is opened
and the error message unit is connected automatically when an output message is issued.

The error message unit is restricted to sequential formatted output operations. Therefore, there are
restrictions on the OPEN statement specifiers that can be used for the error message unit. Table 55 on
page 275 shows the valid OPEN statement specifiers and specifier values.

Table 55. Allowable OPEN statement specifiers

SPECIFIER=spv Default spv value Additional allowable spv values

STATUS=sta UNKNOWN None

ACCESS=acc SEQUENTIAL None

CHAR=chr DBCS NODBCS can also be specified, but is
ignored.

FORM=frm FORMATTED None

ACTION=act WRITE None

BLANK=blk ZERO NULL. BLANK has no meaning because the
error message unit is used only for output.

PAD=pad YES NO. PAD has no meaning because the error
message unit is used only for output.

POSITION=ASIS ASIS None

DELIM=dlm Based on Fortran OPEN and
CLOSE statements that refer to
the error message unit.

APOSTROPHE, QUOTE, or NONE can be
specified.

RECL=rcl Maximum data length of a
message file record.

Any positive value which does not exceed
the maximum allowable length of the data
in a message file record.

Using PL/I I/O statements
Runtime messages in PL/I routines are directed to the file specified by the Language Environment
MSGFILE runtime option, instead of to the PL/I SYSPRINT STREAM PRINT file.

User-specified output is still directed to the PL/I SYSPRINT STREAM PRINT file by default. To direct this
output to the Language Environment MSGFILE file, specify the runtime option MSGFILE(SYSPRINT).

When you use MSGFILE(SYSPRINT):

• Any file constant declaration that includes SYSPRINT STREAM PRINT file attributes is ignored.
• File attributes specified in the SYSPRINT DD card are used.
• If SYSPRINT DD is not present at first file reference, Language Environment dynamically allocates a file

with IBM-supplied attributes. See Table 51 on page 270 for MSGFILE file default attributes.
• Any OPENs and CLOSEs to the PL/I SYSPRINT STREAM PRINT file are ignored.
• Synchronization between the types of output (messages and user-specified output) is not provided, so

the order of the output is unpredictable.

Handling message output

Chapter 19. Using and handling messages 275

MSGFILE considerations when using PL/I
If MSGFILE(SYSPRINT) is in effect, use SYSPRINT only to direct output to the PL/I SYSPRINT STREAM
PRINT file.

Because performance is slower with the MSGFILE(SYSPRINT) option, it is recommended only for
debugging purposes. For production applications, direct user-created output to the PL/I SYSPRINT
STREAM PRINT file.

In a nested enclave environment, you can specify MSGFILE(SYSPRINT) for all enclaves in the application
or only for those enclaves containing PUT statements. For batch, multiple enclaves in a Language
Environment process can use the PL/I SYSPRINT STREAM PRINT. In this instance, you cannot open the
file until it is referenced, and it is closed by Language Environment at process termination.

Under CICS, the MSGFILE runtime option is ignored. Both runtime messages and the SYSPRINT STREAM
PRINT file output are directed to the CESE transient data queue. The CESE transient data queue is a
CICS thread-level resource. See Chapter 25, “Running applications under CICS,” on page 349 for more
information about the CESE transient data queue.

For more information about directing PL/I output, refer to IBM Enterprise PL/I for z/OS library
(www.ibm.com/support/docview.wss?uid=swg27036735).

Examples using multiple message handling callable services
The examples in this topic show how to use the Language Environment message and condition-handling
services to issue a message that relates to a condition token. The same calls are illustrated in C/C++, PL/I,
and COBOL.

Each example illustrates how CEEMOUT dispatches an informational message and uses CEENCOD to
construct a token for the message. The message area is then initialized, CEEMGET retrieves the message,
and CEEDCOD decodes the feedback token from CEEMGET. After all of the message has been retrieved,
CEEMOUT issues the message. If any of the services fail, CEEMSG issues an informational error message.

C/C++ example calls to CEEMOUT, CEENCOD, CEEMGET, CEEDCOD, and
CEEMSG

/*Module/File Name: EDCMSGS */
 /**
 ** *
 **FUNCTION : CEEMOUT - dispatch a message to message file *
 ** : CEENCOD - construct a condition token *
 ** : CEEMGET - retrieve, format and store a message*
 ** : CEEDCOD - decode an existing condition token *
 ** : CEEMSG - retrieve, format, and dispatch a *
 ** : - message to message file *
 ** *
 ** This example illustrates the invocation of the *
 ** Language Environment message and condition handling *
 ** services. *
 ** It contructs a conditon token, retrieves the associated*
 ** message, and outputs the message to the message file. *
 ** *
 ** This example program outputs the Language Environment *
 ** message,"CEE0260S". *
 ** *
 ***/
#include <string.h>
#include <stdio.h>
#include <leawi.h>
#include <stdlib.h>
#include <ceeedcct.h>

int main(void) {

 _VSTRING message;
 _INT4 dest,msgindx;
 _CHAR80 msgarea;
 _FEEDBACK fc,token;

Message examples

276 z/OS: z/OS Language Environment Programming Guide

http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735

 _INT2 c_1,c_2,cond_case,sev,control;
 _CHAR3 facid;
 _INT4 isi;

 printf ("\n**********************************\n");
 printf ("\nCE92MSG C Example is now in motion\n");
 printf ("\n**********************************\n");

 strcpy(message.string,"The following message, CEE0260S, is expected");
 message.length = strlen(message.string);
 dest = 2;

 /***
 * Call CEEMOUT to output informational message. *
 * Call CEEMSG to output error message if CEEMOUT fails. *
 **/

 CEEMOUT(&message,&dest,&fc);

 if (_FBCHECK (fc , CEE000) != 0) {
 /* put the message if CEEMOUT failed */
 dest = 2;
 CEEMSG(&fc,&dest,NULL);
 exit(2999);
 }/**
 * Construct a token for CEE message 0260.*
 **/
 c_1 = 3;
 c_2 = 260;
 cond_case = 1;
 sev = 3;
 control = 1;
 memcpy(facid,"CEE",3);
 isi = 0;

 CEENCOD(&c_1,&c_2,&cond_case,&sev,&control,
 facid,&isi,&token,&fc);
 if (_FBCHECK (fc , CEE000) != 0) {
 printf("CEENCOD failed with message number %d\n",
 fc.tok_msgno);
 exit(2999);
 }

 /**
 * Initialize the message area. *
 **/
 msgindx = 0;
 memset(msgarea,' ',79);
 msgarea[80] = '\0';

 /**
 * Use CEEMGET until all the message has been retrieved. *
 * Msgindx will be zero when all the message has been retrieved.*
 * Call CEEMSG to output error message if CEEMGET fails. *
 **/
 do {
 CEEMGET(&token,msgarea,&msgindx,&fc);

 if (fc.tok_sev > 1) {
 dest = 2;
 CEEMSG(&fc,&dest,NULL);
 exit(2999);
 }
 memcpy(message.string,msgarea,80);
 message.length = 80;
 dest = 2;

 CEEMOUT(&message,&dest,&fc); /* put out the message */

 if (_FBCHECK (fc , CEE000) != 0) {
 dest = 2;
 CEEMSG(&fc,&dest,NULL);
 exit(2999);
 }
 } while (msgindx != 0);
 printf ("\n**********************************\n");
 printf ("\nCE92MSG C Example is now ended \n");
 printf ("\n**********************************\n");
}

Message examples

Chapter 19. Using and handling messages 277

COBOL example calls to CEEMOUT, CEENCOD, CEEMGET, CEEDCOD, and
CEEMSG

CBL LIB,QUOTE
 *Module/File Name: IGZTMSGS

 * *
 * CE92MSG - Program to invoke the following LE services: *
 * *
 * : CEEMOUT - dispatch a message to message file *
 * : CEENCOD - construct a condition token *
 * : CEEMGET - retrieve, format and store a message *
 * : CEEDCOD - decode an existing condition token *
 * : CEEMSG - retrieve, format, and dispatch a *
 * : message to message file *
 * *
 * This example illustrates the invocation of the Language *
 * Environment Message and Condition Handling services. *
 * It contructs a condition token, retrieves the associated *
 * message, and outputs the message to the message file. *
 * *
 * This example program will output the Language Environment *
 * message, "CEE0260S". *
 * *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CE92MSG.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 MSGSTR.
 02 Vstring-length PIC S9(4) BINARY.
 02 Vstring-text.
 03 Vstring-char PIC X
 OCCURS 0 TO 256 TIMES
 DEPENDING ON Vstring-length
 of MSGSTR.
 01 MSGDEST PIC S9(9) BINARY.
 01 SEV PIC S9(4) BINARY.
 01 MSGNO PIC S9(4) BINARY.
 01 CASE PIC S9(4) BINARY.
 01 SEV2 PIC S9(4) BINARY.
 01 CNTRL PIC S9(4) BINARY.
 01 FACID PIC X(3).
 01 ISINFO PIC S9(9) BINARY.
 01 MSGINDX PIC S9(9) BINARY.
 01 CTOK.
 02 Condition-Token-Value.
 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.
 01 FC.
 02 Condition-Token-Value.
 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.
 01 MGETFC.
 02 Condition-Token-Value.
 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.

Message examples

278 z/OS: z/OS Language Environment Programming Guide

 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.
 01 MSGAREA PIC X(80).
 PROCEDURE DIVISION.
 0001-BEGIN-PROCESSING.
 DISPLAY "**************************************".
 DISPLAY "CE92MSG COBOL Example is now in motion. ".
 DISPLAY "**************************************".
 MOVE 80 TO Vstring-length of MSGSTR.
 MOVE "The following error message, CEE0260S, is expected:"
 TO Vstring-text of MSGSTR.
 MOVE 2 TO MSGDEST.
 **
 ** Call CEEMOUT to put out informational message. **
 **
 CALL "CEEMOUT" USING MSGSTR , MSGDEST , FC.
 IF NOT CEE000 of FC THEN
 DISPLAY "Error " Msg-No of FC
 " in issuing header message"
 STOP RUN
 END-IF.
 **
 ** Set up token fields for creation of a condition token **
 **
 MOVE 3 TO SEV.
 MOVE 260 TO MSGNO.
 MOVE 1 TO CASE.
 MOVE 3 TO SEV2.
 MOVE 1 TO CNTRL.
 MOVE "CEE" TO FACID.
 MOVE 0 TO ISINFO.
 **
 ** Call CEENCOD to construct a condition token **
 **
 CALL "CEENCOD" USING SEV, MSGNO, CASE, SEV2, CNTRL,
 FACID, ISINFO, CTOK, FC. IF CEE000 of FC THEN
 MOVE 0 TO MSGINDX
 MOVE SPACES TO MSGAREA
 **
 ** Call CEEMGET to retrieve message 260. Since **
 ** message 260 is longer than the length of MSGAREA, **
 ** a PERFORM statement loop is used to call CEEMGET **
 ** multiple times until the message index is zero. **
 **
 PERFORM TEST AFTER UNTIL(MSGINDX = 0)
 CALL "CEEMGET" USING CTOK, MSGAREA, MSGINDX, MGETFC
 IF (MGETFC NOT = LOW-VALUE) THEN
 **
 * Call CEEDCOD to decode CEEMGET's feedback token **
 **
 CALL "CEEDCOD" USING MGETFC, SEV, MSGNO,
 CASE, SEV2, CNTRL, FACID, ISINFO, FC
 IF NOT CEE000 of FC THEN
 **
 * Call CEEMSG to output LE error message **
 * using feedback code from CEEDCOD call. **
 **
 CALL "CEEMSG" USING MGETFC, MSGDEST, FC
 IF NOT CEE000 of FC THEN
 DISPLAY "Error " Msg-No of FC
 " from CEEMSG after error in CEEDCOD"
 END-IF
 STOP RUN
 END-IF
 **
 * If decoded message number is not 455, **
 * then CEEMGET actually failed with error. **
 **
 IF (Msg-No of MGETFC NOT = 455) THEN
 DISPLAY "Error " Msg-No of MGETFC
 " retrieving message CEE0260S"
 STOP RUN
 END-IF
 END-IF
 **
 * Call CEEMOUT to output earch portion of message 260 **
 **
 MOVE MSGAREA TO Vstring-text of MSGSTR
 CALL "CEEMOUT" USING MSGSTR , MSGDEST , FC

Message examples

Chapter 19. Using and handling messages 279

 IF (MSGINDX = ZERO) THEN
 DISPLAY "**************************************"
 DISPLAY " COBOL message example program ended."
 DISPLAY "**************************************"
 END-IF
 END-PERFORM
 ELSE
 DISPLAY "Error " Msg-No of FC
 " in encoding condition token"
 STOP RUN
 END-IF.

 GOBACK.

PL/I example calls to CEEMOUT, CEENCOD, CEEMGET, CEEDCOD, and
CEEMSG

*PROCESS MACRO;
 /*Module/File Name: IBMMSGS */
 CE92MSG: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW;
 %INCLUDE CEEIBMCT;

 /***/
 /* */
 /* FUNCTION : CEEMOUT - dispatch a message to message file */
 /* : CEENCOD - construct a condition token */
 /* : CEEMGET - retrieve, format and store a message */
 /* : CEEDCOD - decode an existing condition token */
 /* : CEEMSG - retrieve, format, and dispatch a */
 /* message to message file */
 /* */
 /* This example illustrates the invocation of the Language */
 /* Environment message and condition handling services. */
 /* It contructs a conditon token, retrieves the associated */
 /* message, and outputs the message to the message file. */
 /* */
 /* This example program outputs the Language Environment */
 /* message, "CEE0260S" */
 /* */
 /***/
 DCL MSGSTR CHAR(255) VARYING;
 DCL MSGDEST REAL FIXED BINARY(31,0);
 DCL MSGNUM REAL FIXED BINARY(15,0);
 DCL CASE REAL FIXED BINARY(15,0);
 DCL SEV REAL FIXED BINARY(15,0);
 DCL SEV2 REAL FIXED BINARY(15,0);
 DCL CNTRL REAL FIXED BINARY(15,0);
 DCL FACID CHARACTER (3);
 DCL ISINFO REAL FIXED BINARY(31,0);
 DCL MSGINDX REAL FIXED BINARY(31,0);
 DCL 01 CTOK, /* Feedback token */
 03 MsgSev REAL FIXED BINARY(15,0),
 03 MsgNo REAL FIXED BINARY(15,0),
 03 Flags,
 05 Case BIT(2),
 05 Severity BIT(3),
 05 Control BIT(3),
 03 FacID CHAR(3), /* Facility ID */
 03 ISI /* Instance-Specific Information */
 REAL FIXED BINARY(31,0);
 DCL 01 FC, /* Feedback token */
 03 MsgSev REAL FIXED BINARY(15,0),
 03 MsgNo REAL FIXED BINARY(15,0),
 03 Flags,
 05 Case BIT(2),
 05 Severity BIT(3),
 05 Control BIT(3),
 03 FacID CHAR(3), /* Facility ID */
 03 ISI /* Instance-Specific Information */
 REAL FIXED BINARY(31,0); DCL 01 MGETFC,
 /* Feedback token */
 03 MsgSev REAL FIXED BINARY(15,0),
 03 MsgNo REAL FIXED BINARY(15,0),
 03 Flags,
 05 Case BIT(2),
 05 Severity BIT(3),

Message examples

280 z/OS: z/OS Language Environment Programming Guide

 05 Control BIT(3),
 03 FacID CHAR(3), /* Facility ID */
 03 ISI /* Instance-Specific Information */
 REAL FIXED BINARY(31,0);
 DCL MSGAREA CHAR(80);

 PUT SKIP LIST('PL/I message example is now in motion');
 MSGSTR = 'The following message, CEE0260S, is expected';
 MSGDEST = 2;
 /***/
 /* Call CEEMOUT to output informational message. */
 /* Call CEEMSG to output error message if CEEMOUT fails. */
 /***/
 CALL CEEMOUT (MSGSTR, MSGDEST, FC);
 IF ¬ FBCHECK(FC, CEE000) THEN
 CALL CEEMSG(FC, MSGDEST, MGETFC);
 /***/
 /* Set up token fields for creation of a condition token */
 /***/
 SEV = 3;
 MSGNUM = 260;
 CASE = 1;
 SEV2 = 3;
 CNTRL = 1;
 FACID = 'CEE';
 ISINFO = 0;
 /***/
 /* Call CEENCOD to construct a condition token */
 /***/
 CALL CEENCOD (SEV, MSGNUM, CASE, SEV2, CNTRL, FACID,
 ISINFO, CTOK, FC);
 IF FBCHECK(FC, CEE000) THEN DO;
 MSGINDX = 0;
 MSGAREA = ' ';
 /**/
 /* Call CEEMGET to retrieve message 260. Since */
 /* message 260 is longer than the length of MSGAREA, */
 /* a DO UNTIL statement loop is used to call CEEMGET */
 /* multiple times until the message index is zero. */
 /**/
Retrieve_Message:
 DO UNTIL(MSGINDX = 0);
 CALL CEEMGET (CTOK, MSGAREA, MSGINDX, MGETFC);
 IF ¬ FBCHECK(MGETFC, CEE000) THEN DO;
 /**/
 /*Call CEEDCOD to decode CEEMGET's feedback token */
 /**/
 CALL CEEDCOD (MGETFC, SEV, MSGNUM,
 CASE, SEV2, CNTRL, FACID, ISINFO, FC);
 IF ¬ FBCHECK(FC, CEE000) THEN DO;
 /***/
 /* Call CEEMSG to output the error message */
 /* associated with feedback token from CEEMGET. */
 /***/
 CALL CEEMSG (MGETFC, MSGDEST, FC);
 IF ¬ FBCHECK(FC, CEE000) THEN DO;
 PUT SKIP LIST ('Error ' || FC.MsgNo
 || ' from CEEMSG');
 STOP;
 END;
 /***/
 /* If decoded message number is not 455, */
 /* then CEEMGET actually failed with error. */
 /***/
 IF (MGETFC.MsgNo ¬= 455) THEN DO;
 PUT SKIP LIST('Error ' || MGETFC.MsgNo
 || ' retrieving message CEE0260S');
 STOP;
 END;
 END;
 END;
 /***/
 /* Call CEEMOUT to output each portion of message 260 */
 /***/
 MSGSTR = MSGAREA;
 CALL CEEMOUT (MSGSTR, MSGDEST, FC);
 IF (MSGINDX = 0) THEN DO;
 PUT SKIP LIST ('**********************************');
 PUT SKIP LIST ('PL/I message example program ended');
 PUT SKIP LIST ('**********************************');
 END;
 END Retrieve_Message /* END DO UNTIL MSGINDX = 0 */;

Message examples

Chapter 19. Using and handling messages 281

 END /* CEENCOD successful */;
 ELSE DO;
 PUT SKIP LIST ('Error ' || FC.MsgNo
 || ' in encoding condition token');
 END;

 END CE92MSG;

Message examples

282 z/OS: z/OS Language Environment Programming Guide

Chapter 20. Using date and time services

This topic describes Language Environment date and time services and includes examples showing calls
to those services.

The basics of using date and time services
Language Environment includes a complete set of callable services that help HLLs perform date and time
calculations. You can use these services to read, calculate, and write values representing the date and
time. Language Environment offers unique pattern-matching capabilities that let you process almost any
date and time format contained in an input record or produced by operating system services.

You can use date and time services to:

• Format date and time values by country code
• Format date and time values using customized formats
• Parse date values and time values
• Convert between Gregorian, Julian, Asian, and Lilian formats
• Calculate days between dates
• Calculate elapsed time to the nearest millisecond
• Get local time and Greenwich Mean Time (GMT) from the system without a supervisor call (SVC)

overhead
• Properly handle 2-digit years in the year 2000

All Language Environment date and time services are enabled for national language support, including full
DBCS support for the Japanese Emperor era .For more information about national language support, see
Chapter 21, “National language support,” on page 309.

All Language Environment date and time services are based on the Gregorian calendar, with Lilian limits
as described in “Date limits” on page 284.

Related services

Callable services
CEECBLDY

Converts character date value to the COBOL Integer format. Day one is 01 January 1601 and the
value is incremented by one for each subsequent day. This service is similar to CEEDAYS, except that
it provides an answer in COBOL Integer format, so that it is compatible with ANSI COBOL intrinsic
functions. It should not be used with other Language Environment date or time services.

CEEDATE
Converts dates in the Lilian format to character values

CEEDATM
Converts number of seconds to character timestamp

CEEDAYS
Converts character date values to the Lilian format. Day one is 15 October 1582, and the value is
incremented by one for each subsequent day.

CEEDYWK
Provides day of week calculation

CEEGMT
Gets current Greenwich Mean Time (date and time)

Date and time services

© Copyright IBM Corp. 1991, 2022 283

CEEGMTO
Gets difference between Greenwich Mean Time and local time

CEEISEC
Converts binary year, month, day, hour, minute, second, and millisecond to a number representing the
number of seconds since 00:00:00 14 October 1582

CEELOCT
Gets current date and time

CEEQCEN
Queries the century window

CEESCEN
Sets the century window

CEESECI
Converts a number representing the number of seconds since 00:00:00 14 October 1582 to seven
separate binary integers representing year, month, day, hour, minute, second, and millisecond

CEESECS
Converts character timestamps (a date and time) to the number of seconds since 00:00:00 14
October 1582

CEEUTC
Same as CEEGMT

See z/OS Language Environment Programming Reference for syntax and examples of these callable
services.

Working with date and time services
Before you can start working with date and time services, you need to know the various formats for
specifying date and times and any limits that exist.

Date limits
All Language Environment date and time services are based on the Gregorian calendar, which has certain
limits for the date variables. These limits are:
Starting Lilian Date

The beginning of the valid Lilian date range (day one) is Friday, 15 October 1582, the date the
Gregorian calendar was adopted. Lilian dates preceding this date are undefined. In the Lilian date
range:

• Day zero equals 00:00:00 14 October 1582.
• Day one equals 00:00:00 15 October 1582.

All valid Lilian dates must be after 00:00:00 15 October 1582.

Starting COBOL Integer Date (ANSI COBOL Intrinsic Functions)
The beginning of the COBOL Integer date range according to the COBOL standard is 31 December
1600. COBOL Integer dates preceding this date are undefined. In the COBOL Integer date range:

• Day zero equals 00:00:00 31 December 1600.
• Day one equals 00:00:00 01 January 1601.

All valid COBOL Integer dates must be after 00:00:00 01 January 1601.

COBOL has a compiler option, INTDATE, that allows you to get and use Lilian integer dates with
COBOL Intrinsic Functions or to use the ANSI starting dates. Use INTDATE(LILIAN) if you want to pass
integer dates between programs of different languages and use both Intrinsic Functions and Language
Environment callable services to process the integer dates.

Date and time services

284 z/OS: z/OS Language Environment Programming Guide

End Lilian Date (End COBOL Integer Date)
The end of the Lilian date range, as well as the COBOL Integer date range, is set to 31 December
9999. Lilian dates and COBOL Integer dates following this date are undefined.

Limit of Current Era
The maximum future date you can express in an era system must be within the first 999 years of the
current era. Future dates past year 999 of the current era are undefined.

Picture character terms and picture strings
Picture character terms define the format of date and time fields. A picture string is a template that
indicates the format of the input data. For example, the format of the date 06/16/1990 (where 06 is the
month, 16 is the day, and 1990 is the year) corresponds to the picture string MM/DD/YYYY. For the picture
character term and picture string values, see Date and time services table in z/OS Language Environment
Programming Reference.

Notation for eras
Calendars based on eras use unique picture strings to identify the eras. The era picture string begins with
a less than character (<) and ends with the greater than character (>). The characters between the less
than and greater than characters are the era name in DBCS characters.

Japanese Era
The six-character string <JJJJ>. An example of specifying the Japanese Meiji era would be to specify
X'0E45A645840F' where the X'0E' and X'0F' are the less than character (<) and greater than
character (>), respectively. For information about the Japanese eras used by Language Environment
date and time services, see Date and time callable services in z/OS Language Environment
Programming Reference.

Performing calculations on date and time values
Language Environment stores a date as a fullword binary integer and a timestamp as a doubleword
floating-point value. You can use these formats to perform arithmetic calculations on date and time
values, instead of writing special subroutines to do so. Figure 88 on page 285 is an example of how you
can use Language Environment date and time services to convert a date to a different format and perform
a simple calculation on the formatted date.

In this example, the number of years of service for an employee is determined using the original date of
hire in the format YYMMDD to make the calculations. The example calculates the total number of years of
service for an employee by first calling CEEDAYS to convert the days to Lilian and by then calling CEELOCT
(Get Current Local Time) to get the current local time. Then, doh_Lilian is subtracted from today_Lilian
(the number of days from the beginning of the Gregorian calendar to the current local time) to calculate
the employee's total number of days of employment. The final calculation divides that number by 365.25
to get the number of service years.

CALL CEEDAYS (date_of_hire, 'YYMMDD', doh_lilian, fc)
CALL CEELOCT (today_Lilian, today_seconds, today_Gregorian, fc)
service_days = today_Lilian - doh_Lilian
service_years = service_days / 365.25

Figure 88. Performing calculations on dates

The valid Lilian date range is 15 October 1582 to 31 December 9999. However, COBOL intrinsic
functions uses the COBOL Integer date 01 January 1601 as day one. Language Environment provides
the CEECBLDY callable service to allow you to work with the COBOL Integer date format. For more
information about CEECBLDY, see CEECBLDY - Convert date to COBOL integer format in z/OS Language
Environment Programming Guide.

Date and time services

Chapter 20. Using date and time services 285

Century window routines
To process 2-digit years in the year 2000 and beyond, Language Environment employs a sliding scheme
called a century window where all 2-digit years lie within a 100-year interval. The default century window
for Language Environment is set to start 80 years before the current system date. In the following
example, 1993 is the current system date. The century window spans one hundred years from 1913 to
2012 where years 13 through 99 are recognized as 1913-1999 and years 00 through 12 are recognized
as 2000-2012.

Figure 89. Default century window

In 1994, years 14 through 99 are recognized as 1914-1999, and years 00 through 13 are recognized
as 2000-2013. By year 2080, all 2-digit years would be recognized as 20xx. In 2081, 00 would be
recognized as year 2100.

Some applications might need to set up a different 100-year interval. For example, banks often deal
with 30-year bonds, which could be due 01/31/20. You can use the CEESCEN callable service to change
the century window. (For more information about CEESCEN, see CEESCEN — Set the century window
in z/OS Language Environment Programming Reference.) For example, the following statement sets the
default century to the 100-year interval starting 30 years before the system date, instead of the Language
Environment default of 80 years:

Call CEESCEN(30, fc)

Figure 90. Using CEESCEN to change the century window

A companion service, CEEQCEN, queries the current century window. A subroutine can, for example, use
a different interval for date processing than the parent routine. Before returning, the subroutine resets
the interval back to its previous value. For more information about changing the century window, see
“Examples illustrating calls to CEEQCEN and CEESCEN” on page 287.

National Language Support for date and time services
The NATLANG and COUNTRY runtime options provide national language support for date and time
services. The names of the months and days of the week are based on the national language specified
in the NATLANG option. Some date and time services also allow the specification of a blank or null
picture string, a practice that directs Language Environment to use a date and time format based upon the
current value specified in the COUNTRY option. You can locate the default date and time format for any
supported country by using the CEEFMDA, CEEFMDT, or CEEFMTM callable services.

Examples using date and time callable services
The examples in this topic illustrate some of the date conversion and manipulation you can perform by
using the Language Environment date and time services together. There are examples for the following
services:

Date and time services

286 z/OS: z/OS Language Environment Programming Guide

CEEQCEN
Queries the century window. See “Examples illustrating calls to CEEQCEN and CEESCEN” on page
287.

CEESCEN
Sets the century window. See “Examples illustrating calls to CEEQCEN and CEESCEN” on page 287.

CEESECS
Converts timestamp to seconds. See “Examples illustrating calls to CEESECS” on page 289.

CEESECS and CEEDATM
Converts timestamp to seconds and builds a new timestamp. See “Examples illustrating calls to
CEESECS and CEEDATM” on page 292.

CEESECS, CEESECI, CEEISEC, and CEEDATM
Converts timestamp to seconds, convert seconds to date and time components, convert date and
time to seconds, and build new timestamp (see “Examples illustrating calls to CEESECS, CEESECI,
CEEISEC, and CEEDATM” on page 296)

CEEDAYS, CEEDYWK, and CEEDATE
Converts a date to a Lilian date, converts Lilian date to calendar format, and returns day of week for
the derived Lilian date. See “Examples illustrating calls to CEEDAYS, CEEDATE, and CEEDYWK” on
page 301.

CEECBLDY
Converts a date to a COBOL Integer date that is compatible with ANSI COBOL intrinsic functions. See
“Calls to CEECBLDY in COBOL” on page 306.

Examples illustrating calls to CEEQCEN and CEESCEN
The following topicscontain examples to illustrate how to query the current century window and how to
set a new window with a new default of 30 years.

Calls to CEEQCEN and CEESCEN in C or C++
/*Module/File Name: EDCCWIN */
/***/
/* Demonstrates how to use CEEQCEN and CEESCEN to query and */
/* set the century window. */
/***/

#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <leawi.h>
#include <ceeedcct.h>

int main (void) {

_INT4 oldcen, tempcen;
_FEEDBACK qcenfc,scenfc;

/* Call CEEQCEN to retrieve and save current century window */
 CEEQCEN (&oldcen , &qcenfc);
 if (_FBCHECK (qcenfc , CEE000) != 0) {
 printf("CEEQCEN failed with message number %d\n",
 qcenfc.tok_msgno);
 exit(1999);
 }

 /* Call CEESCEN to temporarily change century window to 30 */
 tempcen = 30;
 CEESCEN (&tempcen , &scenfc);
 if (_FBCHECK (scenfc , CEE000) != 0) {
 printf(
 "CEESCEN (1st call) failed with message number %d\n",
 scenfc.tok_msgno);
 exit(2999);
 }

/* Perform date processing with 2-digit years... */⋮
 /* Call CEESCEN again to reset century window */

Date and time services

Chapter 20. Using date and time services 287

 CEESCEN (&oldcen , &scenfc);
 if (_FBCHECK (scenfc , CEE000) != 0) {
 printf(
 "CEESCEN (2nd call) failed with message number %d\n",
 scenfc.tok_msgno);
 exit(3999);
 }
 exit (0);
}

Calls to CEEQCEN and CEESCEN in COBOL
CBL LIB,QUOTE
 *Module/File Name: IGZTCWIN
 **
 * Demonstrates how to use CEEQCEN and CEESCEN to query *
 * and set the century window. *
 **
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CBCENTW.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 77 OLDCEN PIC S9(9) BINARY.
 77 TEMPCEN PIC S9(9) BINARY.
 01 FC.
 02 Condition-Token-Value.
 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.
 PROCEDURE DIVISION.
 **
 ** Call CEEQCEN to retrieve and save current century window **
 **
 CALL "CEEQCEN" USING OLDCEN , FC.
 IF NOT CEE000 of FC THEN
 DISPLAY "CEEQCEN failed with msg "
 Msg-No of FC UPON CONSOLE
 STOP RUN
 END-IF.
 **
 ** Call CEESCEN to temporarily change century window to 30 **
 **
 MOVE 30 TO TEMPCEN.
 CALL "CEESCEN" USING TEMPCEN , FC.
 IF NOT CEE000 of FC THEN
 DISPLAY "First call to CEESCEN failed with msg "
 Msg-No of FC UPON CONSOLE
 STOP RUN
 END-IF.

 ** Perform date processing with 2-digit years...
 ⋮
 ** Call CEESCEN again to reset century window

 CALL "CEESCEN" USING OLDCEN , FC.
 IF NOT CEE000 of FC THEN
 DISPLAY "Second call to CEESCEN failed with msg "
 Msg-No of FC UPON CONSOLE
 STOP RUN
 END-IF.
 GOBACK.

Calls to CEEQCEN and CEESCEN in PL/I
*PROCESS MACRO;
 /*Module/File Name: IBMCWIN */
 /**/
 /* */
 /* Demonstrates how to use CEEQCEN and */

Date and time services

288 z/OS: z/OS Language Environment Programming Guide

 /* CEESCEN to query and set the century window. */
 /* */
 /**/
 PLCENTW: PROC OPTIONS (MAIN);

 %INCLUDE CEEIBMAW;
 %INCLUDE CEEIBMCT;

 DCL OLDCEN REAL FIXED BINARY(31,0);
 DCL TEMPCEN REAL FIXED BINARY(31,0);
 DCL 01 FC, /* Feedback token */
 03 MsgSev REAL FIXED BINARY(15,0),
 03 MsgNo REAL FIXED BINARY(15,0),
 03 Flags,
 05 Case BIT(2),
 05 Severity BIT(3),
 05 Control BIT(3),
 03 FacID CHAR(3), /* Facility ID */
 03 ISI /* Instance-Specific Information */
 REAL FIXED BINARY(31,0);
 /* Call CEEQCEN to retrieve and save current century window */
 CALL CEEQCEN (OLDCEN, FC);
 IF ^ FBCHECK(FC, CEE000) THEN DO;
 DISPLAY('CEEQCEN failed with msg '|| FC.MsgNo);
 STOP;
 END;
 /* Call CEESCEN to temporarily change century window to 30 */
 TEMPCEN = 30;
 CALL CEESCEN (TEMPCEN, FC);
 IF ^ FBCHECK(FC, CEE000) THEN DO;
 DISPLAY('First call to CEESCEN failed with msg '
 || FC.MsgNo);
 STOP;
 END;

 /* Perform date processing with 2-digit years... */
 ⋮
 /* Call CEESCEN again to reset century window */
 CALL CEESCEN (OLDCEN, FC);
 IF ^ FBCHECK(FC, CEE000) THEN DO;
 DISPLAY('Second call to CEESCEN failed with msg '
 || FC.MsgNo);
 STOP;
 END;

 END PLCENTW;

Examples illustrating calls to CEESECS
The following examples illustrate calls to CEESECS to compute the total number of hours between two
timestamps.

Calls to CEESECS in C or C++
/*Module/File Name: EDCDT1 */
 /***/
 /* */
 /*Function : CEESECS - convert timestamp to seconds*/
 /* */
 /*This example calls the LE CEESECS callable service */
 /* to compute the hour number of numbers between the */
 /* timestamps 11/02/92 05:22 and 11/02/92 17:22. The */
 /* program responds that 36 hours has elapsed. */
 /***/
#include <stdio.h>
#include <string.h>
#include <leawi.h>
#include <ceeedcct.h>
main ()
{
 _VSTRING StartTime;
 _VSTRING EndTime;
 _VSTRING picstr;
 _FLOAT8 Start_Secs;
 _FLOAT8 End_Secs;
 _FLOAT8 Elapsed_Time;
 _FEEDBACK FC;

Date and time services

Chapter 20. Using date and time services 289

 _INT4 dest=2;
 /***
 The date picstr must be set to match the timestamp format.
 **/
 strncpy (picstr.string,"MM/DD/YY HH:MI",14);
 picstr.length = 14;

 strncpy(StartTime.string,"11/02/92 05:22",14);
 StartTime.length = 14;
 strncpy(EndTime.string,"11/03/92 17:22",14);
 EndTime.length = 14;

 /**
 CEESECS takes the start time and returns
 a double-precision Lilian seconds tally in Start_Secs.
 **/
 CEESECS (&StartTime, &picstr , &Start_Secs , &FC);
 if (_FBCHECK (FC , CEE000) == 0)
 {
 /**
 CEESECS takes the end time and returns
 a double-precision Lilian seconds tally in End_Secs.
 **/
 CEESECS (&EndTime, &picstr , &End_Secs , &FC);
 if (_FBCHECK (FC , CEE000) == 0)
 {
 Elapsed_Time = (End_Secs - Start_Secs)/3600.0;
 printf("%4.2f hours have elapsed between %s and %s.\n",
 Elapsed_Time, StartTime.string, EndTime.string);
 }
 else
 {
 printf ("Error converting TimeStamp to seconds.\n");
 CEEMSG(&FC, &dest, NULL);
 }
 }
 else
 {
 printf ("Error converting TimeStamp to seconds.\n");
 CEEMSG(&FC, &dest, NULL);
 }
}

Calls to CEESECS in COBOL
CBL LIB,QUOTE
 *Module/File Name: IGZTDT1
 **
 ** **
 ** CEE78DAT - Call CEESECS to convert timestamp to **
 ** seconds **
 ** **
 ** This example calls the LE CEESECS callable **
 ** service to compute the number of hours between **
 ** the timestamps 11/02/92 05:22 and 11/02/92 17:22. **
 ** The program responds that 36 hours has elapsed. **
 ** **
 **
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CE78DAT.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 * Double precision is needed for the seconds results
 01 START-SECS COMP-2.
 01 END-SECS COMP-2.
 01 EOF-SWITCH PIC X VALUE "N".
 88 EOF VALUE "Y".
 01 FC.
 02 Condition-Token-Value.
 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.

Date and time services

290 z/OS: z/OS Language Environment Programming Guide

 02 I-S-Info PIC S9(9) BINARY.
 01 PICSTR.
 02 Vstring-length PIC S9(4) BINARY.
 02 Vstring-text.
 03 Vstring-char PIC X
 OCCURS 0 TO 256 TIMES
 DEPENDING ON Vstring-length
 of PICSTR.
 01 START-TIME.
 02 Vstring-length PIC S9(4) BINARY.
 02 Vstring-text.
 03 Vstring-char PIC X
 OCCURS 0 TO 256 TIMES
 DEPENDING ON Vstring-length
 of START-TIME.
 01 END-TIME.
 02 Vstring-length PIC S9(4) BINARY.
 02 Vstring-text.
 03 Vstring-char PIC X
 OCCURS 0 TO 256 TIMES
 DEPENDING ON Vstring-length
 of END-TIME.
 01 INPUT-VARIABLES.
 05 ELAPSED-TIME PIC S9(5)V99 PACKED-DECIMAL.
 05 ELAPSED-TIME-OUT PIC +Z(4)9.99.

 PROCEDURE DIVISION.

 0001-BEGIN-PROCESSING.
 MOVE 14 TO Vstring-length of PICSTR.
 MOVE "MM/DD/YY HH:MI" TO Vstring-text of PICSTR.
 MOVE 14 TO Vstring-length of START-TIME.
 MOVE "11/02/92 05:22" TO Vstring-text of START-TIME.
 MOVE 14 TO Vstring-length of END-TIME.
 MOVE "11/03/92 17:22" TO Vstring-text of END-TIME.
 * ***
 * * CEESECS takes the timestamp START-TIME and returns a *
 * * double-precision Lilian seconds tally in START-SECS. *
 * ***
 CALL "CEESECS" USING START-TIME, PICSTR, START-SECS, FC
 IF CEE000 of FC THEN
 * ***
 * * CEESECS takes the timestamp END-TIME and returns a *
 * * double-precision Lilian seconds tally in END-SECS. *
 * ***
 CALL "CEESECS" USING END-TIME, PICSTR, END-SECS, FC
 IF CEE000 of FC THEN
 COMPUTE ELAPSED-TIME = (END-SECS - START-SECS) / 3600
 MOVE ELAPSED-TIME TO ELAPSED-TIME-OUT
 DISPLAY ELAPSED-TIME-OUT
 " hours have elapsed between "
 Vstring-text of START-TIME
 " and " Vstring-text of END-TIME
 ELSE
 DISPLAY "Error " Msg-No of FC
 " converting ending date to Lilian date"
 STOP RUN
 END-IF
 ELSE
 DISPLAY "Error " Msg-No of FC
 " converting starting date to Lilian date"
 STOP RUN
 END-IF

 GOBACK.

Calls to CEESECS in PL/I
*PROCESS MACRO;
 /*Module/File Name: IBMDT1 */
 /**/
 /* */
 /* Function: CEESECS - convert timestamp to seconds */
 /* */
 /* This example calls the CEESECS callable */
 /* service to compute the number of hours between */
 /* the timestamps 11/02/92 05:22 and 11/02/92 17:22.*/
 /* The program responds that 36 hours has elapsed. */
 /* */

Date and time services

Chapter 20. Using date and time services 291

 /**/
 CE78DAT : PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW;
 %INCLUDE CEEIBMCT;
 DCL START_TIME CHAR(255) VARYING
 INIT ('11/02/92 05:22');
 DCL END_TIME CHAR(255) VARYING
 INIT ('11/03/92 17:22');
 DCL PICSTR CHAR(255) VARYING
 INIT ('MM/DD/YY HH:MI');
 DCL START_SECS REAL FLOAT DECIMAL(16);
 DCL END_SECS REAL FLOAT DECIMAL(16);
 DCL ELAPSED_TIME FIXED DEC (9,4);
 DCL 01 FC, /* Feedback token */
 03 MsgSev REAL FIXED BINARY(15,0),
 03 MsgNo REAL FIXED BINARY(15,0),
 03 Flags,
 05 Case BIT(2),
 05 Severity BIT(3),
 05 Control BIT(3),
 03 FacID CHAR(3), /* Facility ID */
 03 ISI /* Instance-Specific Information */
 REAL FIXED BINARY(31,0);
 /***/
 /* CEESECS takes the timestamp START_TIME and */
 /* returns a double-precision Lilian seconds */
 /* tally in START_SECS. */
 /***/
 CALL CEESECS (START_TIME, PICSTR, START_SECS, FC);
 IF FBCHECK(FC, CEE000) THEN DO;
 /**/
 /* CEESECS takes the timestamp END_TIME and */
 /* returns a double-precision Lilian seconds */
 /* tally in END_SECS. */
 /**/
 CALL CEESECS (END_TIME, PICSTR, END_SECS, FC);
 IF FBCHECK(FC, CEE000) THEN DO;
 ELAPSED_TIME = (END_SECS - START_SECS) / 3600;
 PUT SKIP EDIT(ELAPSED_TIME,
 ' hours have elapsed between ',
 START_TIME, ' and ', END_TIME)
 (F(7,2), (4) A);
 END;
 ELSE DO;
 PUT SKIP LIST('ERROR ' || FC.MsgNo ||
 ' CONVERTING ENDING TIMESTAMP TO SECONDS');
 STOP;
 END;
 END;
 ELSE DO;
 PUT SKIP LIST('ERROR ' || FC.MsgNo
 || ' CONVERTING STARTING TIMESTAMP TO SECONDS');
 STOP;
 END;

 END CE78DAT ;

Examples illustrating calls to CEESECS and CEEDATM
The following examples illustrate calls to date and time services to convert a timestamp to seconds
(CEESECS), twenty-four hours in seconds is subtracted from the original timestamp value, and a new
timestamp is built (CEEDATM) for the updated number of seconds.

Calls to CEESECS and CEEDATM in C or C++
/*Module/File Name: EDCDT2 */
 /**/
 /* */
 /*Function : CEESECS - convert timestamp to seconds */
 /* : CEEDATM - convert seconds to timestamp */
 /* : */
 /*CEESECS is used to convert a timestamp to seconds. */
 /*24 hours in seconds is subtracted from */
 /*the number of seconds in the original timestamp. */
 /*CEEDATM is then used to build a new timestamp */
 /*representing the new date and time, 11/01/92 05:22. */

Date and time services

292 z/OS: z/OS Language Environment Programming Guide

 /* */
 /**/
#include <stdio.h>
#include <string.h>
#include <leawi.h>
#include <ceeedcct.h>
#define TimeStamp "11/02/92 05:22"
#define displacement 24
main ()
{
 int User_Input();
 _VSTRING Time_Stamp;
 _CHAR80 New_TimeStamp;
 _VSTRING picstr;
 _FLOAT8 Lilian_Seconds;
 _FLOAT8 New_Secs;
 _FEEDBACK FC;
 _INT4 dest=2;
 char New_Time[15];

 /**
 The date picstr must be set to match the timestamp format.
 **/
 strncpy (picstr.string,"MM/DD/YY HH:MI",14);
 picstr.length = 14;

 /***/
 /* In the following loop the timestamp is converted to Lilian*/
 /* seconds. 24 hours in seconds are subtracted from the */
 /* Lilian seconds and a new timestamp is created and */
 /* displayed. */
 /***/
 strncpy(Time_Stamp.string,TimeStamp,14);
 Time_Stamp.length = 14;
 /**
 CEESECS takes the user-entered timestamp Time_Stamp and
 returns a double-precision Lilian seconds tally in
 Lilian_Seconds
 **/
 CEESECS (&Time_Stamp, &picstr , &Lilian_Seconds , &FC);
 if ((_FBCHECK (FC , CEE000)) == 0)
 {
 /**
 The displacement variable is subtracted from the Lilian
 seconds tally in Lilian_Seconds
 **/
 New_Secs = Lilian_Seconds - displacement * 3600.0;
 /***
 CEEDATM is invoked to get a new timestamp value based on the
 new Lilian seconds tally in New_Secs.
 ***/
 CEEDATM (&New_Secs, &picstr , New_TimeStamp , &FC);
 if ((_FBCHECK (FC , CEE000)) == 0)
 {
 New_TimeStamp[14] = '\0';
 sprintf(New_Time,"%s\0",New_TimeStamp);
 printf("%s is the time %i hours before %s\n",
 New_Time, displacement, TimeStamp);
 }
 else
 {
 printf ("Error converting Seconds to TimeStamp.\n");
 CEEMSG(&FC, &dest, NULL);
 }
 }
 else
 {
 printf ("Error converting TimeStamp to seconds.\n");
 CEEMSG(&FC, &dest, NULL);
 }
}

Calls to CEESECS and CEEDATM in COBOL
CBL LIB,QUOTE
 *Module/File Name: IGZTDT2
 **
 ** **
 ** CEE80DAT - Call CEESECS to convert timestamp to seconds**

Date and time services

Chapter 20. Using date and time services 293

 ** and CEEDATM to convert seconds to timestamp **
 ** **
 ** CEESECS is used to convert a timestamp to seconds. **
 ** 24 hours in seconds is subtracted from **
 ** the number of seconds in the original timestamp. **
 ** CEEDATM is then used to build a new timestamp for **
 ** the updated number of seconds. **
 ** **
 **
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CE80DAT.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 * Double precision needed for the seconds results
 01 START-SECS COMP-2.
 01 NEW-TIME COMP-2.
 01 FC.
 02 Condition-Token-Value.
 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.
 01 PICSTR.
 02 Vstring-length PIC S9(4) BINARY.
 02 Vstring-text.
 03 Vstring-char PIC X
 OCCURS 0 TO 256 TIMES
 DEPENDING ON Vstring-length
 of PICSTR.
 01 WS-TIMESTAMP.
 02 Vstring-length PIC S9(4) BINARY.
 02 Vstring-text.
 03 Vstring-char PIC X
 OCCURS 0 TO 256 TIMES
 DEPENDING ON Vstring-length
 of WS-TIMESTAMP.
 01 NEW-TIMESTAMP PIC X(80).
 01 INPUT-VARIABLES.
 05 SECONDS-DISPLACED PIC S9(9) BINARY.
 05 ELAPSED-TIME-OUT PIC +Z(4)9.99.

 PROCEDURE DIVISION.
 0001-BEGIN-PROCESSING.
 MOVE 14 TO Vstring-length of PICSTR.
 MOVE "MM/DD/YY HH:MI" TO Vstring-text of PICSTR.
 MOVE 14 TO Vstring-length of WS-TIMESTAMP.
 MOVE "11/02/92 05:22" TO Vstring-text of WS-TIMESTAMP.
 * **
 * * CEESECS is invoked to obtain the Lilian seconds tally *
 * * corresponding to the timestamp 11/02/92 05:22. *
 * * The Lilian seconds tally is returned in the double- *
 * * precision floating-point field START-SECS. *
 * **
 CALL "CEESECS" USING WS-TIMESTAMP, PICSTR, START-SECS, FC.
 IF CEE000 of FC THEN
 * **
 * * The Lilian seconds tally in START-SECS is *
 * * decremented by 24 hours worth of seconds.. *
 * **
 COMPUTE NEW-TIME = START-SECS - 24 * 3600
 * **
 * * CEEDATM is invoked to obtain a new timestamp *
 * * based on the new Lilian seconds tally. *
 * **
 CALL "CEEDATM" USING NEW-TIME, PICSTR, NEW-TIMESTAMP, FC
 IF CEE000 of FC THEN
 DISPLAY "The time 24 hours before "
 Vstring-text of WS-TIMESTAMP
 " is " NEW-TIMESTAMP
 ELSE
 DISPLAY "Error converting seconds to timestamp."
 STOP RUN
 END-IF
 ELSE
 DISPLAY "Error converting timestamp to seconds."

Date and time services

294 z/OS: z/OS Language Environment Programming Guide

 STOP RUN
 END-IF

 GOBACK.

Calls to CEESECS and CEEDATM in PL/I
*PROCESS MACRO;
 /*Module/File Name: IBMDT2 */
 /**/
 /* */
 /* Function: CEESECS - convert timestamp to seconds */
 /* : CEEDATM - convert seconds to timestamp */
 /* */
 /* CEESECS is used to convert a timestamp to */
 /* seconds. 24 hours in seconds is subtracted from */
 /* the number of seconds in the original timestamp. */
 /* CEEDATM is then used to build a new timestamp */
 /* representing the new date and time. */
 /* */
 /**/
 PLIDS: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW;
 %INCLUDE CEEIBMCT;

 DCL TIMESTAMP CHAR(255) VARYING
 INIT('01/26/67 20:00');
 DCL NEW_TIMESTAMP CHAR(80);
 DCL PICSTR CHAR(255) VARYING
 INIT ('MM/DD/YY HH:MI');
 DCL START_SECS REAL FLOAT DECIMAL(16);
 DCL NEW_TIME REAL FLOAT DECIMAL(16);
 DCL DISPLACEMENT REAL FIXED BINARY(31,0) INIT(24);
 DCL 01 FC, /* Feedback token */
 03 MsgSev REAL FIXED BINARY(15,0),
 03 MsgNo REAL FIXED BINARY(15,0),
 03 Flags,
 05 Case BIT(2),
 05 Severity BIT(3),
 05 Control BIT(3),
 03 FacID CHAR(3), /* Facility ID */
 03 ISI /* Instance-Specific Information */
 REAL FIXED BINARY(31,0);
 /***/
 /* CEESECS is invoked to obtain the Lilian */
 /* seconds tally corresponding to the timestamp */
 /* 01/26/67 20:00. The Lilian seconds tally is */
 /* returned in double-precision variable */
 /* START_SECS. */
 /***/
 CALL CEESECS (TIMESTAMP, PICSTR, START_SECS, FC);
 IF FBCHECK(FC, CEE000) THEN DO;
 /**/
 /* The Lilian seconds tally in START_SECS is */
 /* decremented by 24 hour DISPLACEMENT */
 /* variable times 3600 seconds. */
 /** */
 NEW_TIME = START_SECS - DISPLACEMENT * 3600;
 /**/
 /* CEEDATM is invoked to obtain a new */
 /* TimeStamp based on the new Lilian seconds. */
 /**/
 CALL CEEDATM (NEW_TIME, PICSTR, NEW_TIMESTAMP, FC);
 IF FBCHECK(FC, CEE000) THEN DO;
 PUT SKIP LIST ('The time ' || DISPLACEMENT
 || ' hours before ' || TIMESTAMP
 || ' is ' || NEW_TIMESTAMP);
 END;
 ELSE DO;
 PUT SKIP LIST('ERROR CONVERTING SECONDS TO TIMESTAMP');
 PUT SKIP LIST('CEEDATM failed with msg '|| FC.MsgNo);
 END;
 END;
 ELSE DO;
 PUT SKIP LIST('ERROR CONVERTING TIMESTAMP TO SECONDS');
 PUT SKIP LIST('CEESECS failed with msg '|| FC.MsgNo);
 END;

Date and time services

Chapter 20. Using date and time services 295

 END PLIDS;

Examples illustrating calls to CEESECS, CEESECI, CEEISEC, and CEEDATM
The following examples illustrate calls to date and time services to convert a timestamp into seconds
(CEESECS), convert the seconds to a date and time component (CEESECI), add thirty-two months to the
month component, convert the date and time component back to seconds (CEEISEC), and build a new
timestamp (CEEDATM).

Calls to CEESECS, CEESECI, CEEISEC, and CEEDATM in C or C++
 /*Module/File Name: EDCDT3 */
 /**/
 /* */
 /*Function : CEESECS - convert timestamp to seconds */
 /* : CEESECI - convert seconds to time components */
 /* : CEEISEC - convert time components to seconds */
 /* : CEEDATM - convert seconds to timeStamp */
 /* : */
 /*32 months is added to the timestamp 11/02/92 05:22 giving */
 /*the new timestamp 07/02/95 05:22. */
 /* */
 /*CEESECS is used to convert timestamp 11/02/92 05:22 to seconds. */
 /*CEESECI is used to convert the seconds to date/time components. */
 /*32 months is added to the month component. */
 /*CEEISEC is then used to convert date/time components to seconds. */
 /*CEEDATM is then used to build a new timestamp for the */
 /*new time. */
 /* */
 /**/
#include <stdio.h>
#include <string.h>
#include <leawi.h>
#include <ceeedcct.h>
#define TimeStamp "11/02/92 05:22"
#define displacement 32
void main ()
{
 _VSTRING Time_Stamp;
 _CHAR80 New_TimeStamp;
 _VSTRING picstr;
 _FLOAT8 Lilian_Seconds;
 _FLOAT8 New_Secs;
 _FEEDBACK FC;
 char New_Time[15];
 int Month_in_Century;
 /***
 Date/time components for CEESECI, CEEISEC.
 ***/
 _INT4 year;
 _INT4 month;
 _INT4 days;
 _INT4 hours;
 _INT4 minutes;
 _INT4 seconds;
 _INT4 millsec;
 /***
 The date picstr must be set to match the timestamp format.
 ***/
 strcpy (picstr.string,"MM/DD/YY HH:MI");
 picstr.length = 14;
 strncpy(Time_Stamp.string,TimeStamp,14);
 Time_Stamp.length = 14;
 /***
 CEESECS takes the timestamp "11/02/92 05:22" and returns
 a double-precision Lilian seconds tally in Lilian_Seconds
 ***/
 CEESECS (&Time_Stamp, &picstr , &Lilian_Seconds , &FC);
 if ((_FBCHECK (FC, CEE000)) == 0)
 {
 /***
 CEESECI converts the Lilian seconds tally in Lilian_Seconds and
 returns date/time components.
 ***/
 CEESECI (&Lilian_Seconds, &year, &month, &days, &hours,
 &minutes, &seconds, &millsec, &FC);

Date and time services

296 z/OS: z/OS Language Environment Programming Guide

 if ((_FBCHECK (FC, CEE000)) == 0)
 {
 /***
 The month component of the timestamp is converted to
 month-in-century.
 Then a new month and a new year are computed from the
 new month-in-century number. The month date/time component has a
 range between 1 and 12.
 ***/
 Month_in_Century = year*12 + month + displacement - 1;
 year = Month_in_Century / 12;
 month = (Month_in_Century % 12) + 1;
 /* ***
 The month date/time component has been shifted
 forward 32 months. Our examples gets a new Lilian seconds
 tally based on the new month and year components.
 This is done with a call to function CEEISEC.
 The new Lilian seconds tally is placed in the double-precision
 variable Lilian_Seconds.
 ***/
 CEEISEC (&year,
 &month,
 &days,
 &hours,
 &minutes,
 &seconds,
 &millsec, &Lilian_Seconds, &FC);
 if ((_FBCHECK (FC, CEE000)) == 0)
 {
 /***
 CEEDATM is invoked to get a new timestamp value based on the
 new Lilian seconds tally in Lilian_Seconds.
 ***/
 CEEDATM (&Lilian_Seconds,
 &picstr ,
 New_TimeStamp ,
 &FC);
 if ((_FBCHECK (FC, CEE000)) == 0)
 {
 New_TimeStamp[14] = '\0';
 sprintf(New_Time,"%s\0",New_TimeStamp);
 if (displacement < 0)
 printf("%s is the time %d months before %s.\n",
 New_Time, displacement, TimeStamp);
 else
 printf("%s will be the time %d months after %s.\n",
 New_Time, displacement, TimeStamp);
 }
 else
 printf ("Error converting Seconds to TimeStamp.\n");
 }
 else
 printf ("Error converting Components to seconds.\n");
 }
 else
 printf ("Error converting seconds to components.\n");
 }
 else
 printf ("Error converting TimeStamp to seconds\n");
}

Calls to CEESECS, CEESECI, CEEISEC, and CEEDATM in COBOL
CBL LIB,QUOTE
 *Module/File Name: IGZTDT3
 **
 * CE81DATA - Call the following LE service routines: *
 * : CEESECS - convert timestamp to seconds *
 * : CEESECI - convert seconds to time components *
 * : CEEISEC - convert time components to seconds *
 * : CEEDATM - convert seconds to timestamp *
 * CEESECS is used to convert the timestamp to seconds *
 * CEESECI is used to convert seconds to date/time components.*
 * 32 months is added to the month and year component *
 * of date/time. *
 * CEEISEC is to convert the date/time components with the *
 * new months component back to a Lilian seconds tally. *
 * CEEDATM is then used to build a new timestamp for *
 * the updated number of seconds. *

Date and time services

Chapter 20. Using date and time services 297

 **
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CE81DAT.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 * Double precision needed for the seconds results
 01 START-SECS COMP-2.
 01 NEW-TIME COMP-2.
 01 FC.
 02 Condition-Token-Value.
 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.
 01 PICSTR.
 02 Vstring-length PIC S9(4) BINARY.
 02 Vstring-text.
 03 Vstring-char PIC X
 OCCURS 0 TO 256 TIMES
 DEPENDING ON Vstring-length
 of PICSTR.
 01 WS-TIMESTAMP.
 02 Vstring-length PIC S9(4) BINARY.
 02 Vstring-text.
 03 Vstring-char PIC X
 OCCURS 0 TO 256 TIMES
 DEPENDING ON Vstring-length
 of WS-TIMESTAMP.
 01 NEW-TIMESTAMP PIC X(80).
 * ***
 * * These are the date/time variables used by *
 * * CEEISEC and CEESECI. *
 * ***
 01 DATE-TIME-COMPONENTS BINARY.
 05 YEAR PIC 9(9).
 05 MONTH PIC 9(9).
 05 DAYS PIC 9(9).
 05 HOURS PIC 9(9).
 05 MINUTES PIC 9(9).
 05 SECONDS PIC 9(9).
 05 MILLSEC PIC 9(9).
 01 FILLER PIC X(80).
 01 INPUT-VARIABLES.
 05 MONTHS-TO-DISPLACE PIC S9(4) BINARY VALUE 32.
 05 DISPLACEMENT-COMP PIC S9(4) BINARY.
 05 MONTHNUM PIC 9(9) BINARY.

 PROCEDURE DIVISION.

 0001-BEGIN-PROCESSING.
 MOVE 14 TO Vstring-length of WS-TIMESTAMP.
 MOVE "11/02/92 05:22" TO Vstring-text of WS-TIMESTAMP.
 MOVE 14 TO Vstring-length of PICSTR.
 MOVE "MM/DD/YY HH:MI" TO Vstring-text of PICSTR.
 * ***
 * * The timestamp "11/02/92 05:22" is converted to *
 * * seconds under the control of the mask PICSTR. CEESECS *
 * * will return a Lilian seconds tally in the double- *
 * * precision floating-point variable START-SECS. *
 * ***
 CALL "CEESECS" USING WS-TIMESTAMP, PICSTR, START-SECS, FC.
 IF CEE000 of FC THEN
 * ***
 * * The Lilian seconds tally in field START-SECS is mapped *
 * * into its date/time components using function CEESECI. *
 * ***
 CALL "CEESECI" USING START-SECS, YEAR, MONTH, DAYS,
 HOURS, MINUTES, SECONDS, MILLSEC, FC
 IF CEE000 of FC THEN
 MOVE MONTHS-TO-DISPLACE TO DISPLACEMENT-COMP
 * **
 * * MONTH is converted to month-in-century for the *
 * * displacement arithmetic. Then a new month and *
 * * year are computed from the new month-in-century *
 * * number (in variable MONTHNUM). The months com- *

Date and time services

298 z/OS: z/OS Language Environment Programming Guide

 * * ponent has an allowed range of between 1 and 12.*
 * **
 COMPUTE MONTHNUM =
 YEAR * 12 + MONTH + DISPLACEMENT-COMP - 1
 DIVIDE MONTHNUM BY 12 GIVING YEAR REMAINDER MONTH
 ADD 1 TO MONTH
 * **
 * * Now that the MONTH DateTime component has *
 * * been shifted forward by 32 months, *
 * * we must get a new Lilian seconds tally based *
 * * on the new MONTH and YEAR components. We *
 * * do this with a call to the CEEISEC callable *
 * * service. The new Lilian seconds tally is *
 * * placed in the double-precision field NEW-TIME. *
 * **
 CALL "CEEISEC" USING YEAR, MONTH, DAYS, HOURS,
 MINUTES, SECONDS, MILLSEC, NEW-TIME, FC
 * **
 * * CEEDATM is now used to obtain a new *
 * * timestamp based on the Lilian seconds *
 * * tally in the variable New-time. *
 * **
 IF CEE000 THEN
 CALL "CEEDATM" USING NEW-TIME, PICSTR,
 NEW-TIMESTAMP, FC
 IF CEE000 THEN
 DISPLAY "The time "
 MONTHS-TO-DISPLACE " months after "
 Vstring-text of WS-TIMESTAMP
 " is " NEW-TIMESTAMP
 ELSE
 DISPLAY "Error " Msg-No of FC
 " converting seconds to timestamp."
 END-IF
 ELSE
 DISPLAY "Error " Msg-No of FC
 " converting components to seconds."
 END-IF
 ELSE
 DISPLAY "Error " Msg-No of FC
 " converting seconds to components."
 END-IF
 ELSE
 DISPLAY "Error " Msg-No of FC
 " converting timestamp to seconds."
 END-IF

 GOBACK.

Calls to CEESECS, CEESECI, CEEISEC, and CEEDATM in PL/I
*PROCESS MACRO;
 /*Module/File Name: IBMDT3
 /**/
 /* */
 /* Function : CEESECS - convert timestamp to seconds */
 /* : CEESECI - convert seconds to time components */
 /* : CEEISEC - convert time components to seconds */
 /* : CEEDATM - convert seconds to timestamp */
 /* : */
 /* 32 months is added to the timestamp 11/02/92 05:22 */
 /* giving the new timestamp 07/02/95 05:22. */
 /* */
 /* CEESECS is used to convert the timestamp to seconds */
 /* CEESECI is used to convert seconds to date/time components */
 /* 32 months is added to the month component. */
 /* CEEISEC is used to convert the date components to seconds. */
 /* CEEDATM is then used to build a new timestamp for the */
 /* updated time. */
 /* */
 /**/
 CE81DAT: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW;
 %INCLUDE CEEIBMCT;

 DCL TIMESTAMP CHAR(255) VARYING INIT('11/02/92 05:22');
 DCL NEW_TIMESTAMP CHAR(80);
 DCL PICSTR CHAR(255) VARYING INIT('MM/DD/YY HH:MI');

Date and time services

Chapter 20. Using date and time services 299

 DCL START_SECS REAL FLOAT DECIMAL(16);
 DCL NEW_TIME REAL FLOAT DECIMAL(16);
 DCL DISPLACEMENT FIXED BIN(31,0) INIT(32);
 DCL MONTHNUM FIXED BIN(31,0);
 DCL 01 FC, /* Feedback token */
 03 MsgSev REAL FIXED BINARY(15,0),
 03 MsgNo REAL FIXED BINARY(15,0),
 03 Flags,
 05 Case BIT(2),
 05 Severity BIT(3),
 05 Control BIT(3),
 03 FacID CHAR(3), /* Facility ID */
 03 ISI /* Instance-Specific Information */
 REAL FIXED BINARY(31,0);
 /**/
 /* DATE COMPONENTS FOR CEESECI, CEEISEC */
 /**/
 DCL YEAR REAL FIXED BINARY(31,0);
 DCL MONTH REAL FIXED BINARY(31,0);
 DCL DAYS REAL FIXED BINARY(31,0);
 DCL HOURS REAL FIXED BINARY(31,0);
 DCL MINUTES REAL FIXED BINARY(31,0);
 DCL SECONDS REAL FIXED BINARY(31,0);
 DCL MILLSEC REAL FIXED BINARY(31,0);

 /**/
 /* The timestamp '11/02/92 05:22' is converted to seconds */
 /* under the control of the mask PICSTR. CEESECS will */
 /* return a Lilian seconds tally in the double-precision */
 /* floating-point field START_SECS. */
 /**/
 CALL CEESECS (TIMESTAMP, PICSTR, START_SECS, FC);
 IF FBCHECK(FC, CEE000) THEN DO;
 /***/
 /* The Lilian seconds tally in the field START_SECS is mapped */
 /* into its date/time components using function CEESECI. */
 /***/
 CALL CEESECI(START_SECS, YEAR, MONTH, DAYS, HOURS, MINUTES,
 SECONDS, MILLSEC, FC);
 IF FBCHECK(FC, CEE000) THEN DO;
 /**/
 /* MONTH is converted to month-in-century for the displace- */
 /* ment arithmetic. Then a new month and year are computed */
 /* from the new month-in-century number. The months */
 /* component has an allowed range of between 1 and 12. */
 /**/
 MONTHNUM = YEAR * 12 + MONTH + DISPLACEMENT - 1;
 YEAR = MONTHNUM / 12;
 MONTH = MOD(MONTHNUM, 12) + 1;
 /***/
 /* Now that the MONTH DateTime component has been shifted */
 /* forward by 32 months, we must get a new Lilian */
 /* seconds tally based on the new MONTH and YEAR compo- */
 /* nents. We do this with a call to service CEEISEC. */
 /* The new Lilian seconds tally is placed in the double- */
 /* precision floating- point variable NEW_TIME. */
 /***/
 CALL CEEISEC (YEAR, MONTH, DAYS, HOURS, MINUTES, SECONDS,
 MILLSEC, NEW_TIME, FC);
 IF FBCHECK(FC, CEE000) THEN DO;
 /**/
 /* CEEDATM is now used to obtain a new timestamp based */
 /* on the Lilian seconds tally in variable New_time */
 /**/
 CALL CEEDATM(NEW_TIME, PICSTR, NEW_TIMESTAMP, FC);
 IF FBCHECK(FC, CEE000) THEN DO;
 PUT SKIP EDIT('The time ', DISPLACEMENT,
 ' months after ', TIMESTAMP,
 ' is ', NEW_TIMESTAMP)
 (A, F(4), (3) A);
 END;
 ELSE DO;
 PUT SKIP EDIT('ERROR ', FC.MsgNo,
 ' CONVERTING SECONDS TO TIMESTAMP')
 (A, F(4), A);
 END;
 END;
 ELSE DO;
 PUT SKIP EDIT('ERROR ', FC.MsgNo,
 ' CONVERTING COMPONENTS TO SECONDS')
 (A, F(4), A);
 END;

Date and time services

300 z/OS: z/OS Language Environment Programming Guide

 END;
 ELSE DO;
 PUT SKIP EDIT('ERROR ', FC.MsgNo,
 ' CONVERTING SECONDS TO COMPONENTS')
 (A, F(4), A);
 END;
 END;
 ELSE DO;
 PUT SKIP EDIT('ERROR ', FC.MsgNo,
 ' CONVERTING TIMESTAMP TO SECONDS')
 (A, F(4), A);
 END;
 END CE81DAT;

Examples illustrating calls to CEEDAYS, CEEDATE, and CEEDYWK
The following examples illustrate calls to date and time services to convert a date to a Lilian date
(CEEDAYS). In these examples, a varying number of days are added to the Lilian date, the date is
converted back to a character format (CEEDATE), and the day of the week for that Lilian date is returned
(CEEDYWK).

Calls to CEEDAYS, CEEDATE, and CEEDYWK for C or C++
/*Module/File Name: EDCDT4 */
 /**/
 /* */
 /*Function : CEEDAYS - convert date to Lilian date */
 /* : CEEDATE - convert Lilian date to date */
 /* : CEEDYWK - find day-of-week from Lilian */
 /* : */
 /*CEEDAYS is passed the calander date "11/09/92". The date*/
 /*is originally in YYMMD format and conversion to Lilian */
 /*format takes place. On return, a varying number of days */
 /*is added to or subtracted from the Lilian date. */
 /*CEEDATE is called to convert the Lilian dates to the */
 /*calendar format "MM/DD/YY". */
 /*CEEDYWK is called to return the day of the week for */
 /*each derived Lilian date. */
 /* */
 /*The results are tested for accuracy. */
 /* */
 /**/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <leawi.h>
#include <ceeedcct.h>
 char PastFuture;
 int NumberOfDays[5] = { 80, 20, 10, 5, 4};
 int i;
void main ()
{
 _CHAR80 chrdate;
 _VSTRING picstr;
 _VSTRING CurrentDate;
 _INT4 Current_Lilian;
 _INT4 Displaced_Lilian;
 _INT4 WeekDay;
 _INT4 ChkWeekDay[5] = { 6, 1, 5, 4, 6 };
 _FEEDBACK FC;
 char Entered_Date[8];
 _INT4 dest=2;

 struct tm *timeptr;
 char Current_Date[6];
 time_t current_time;
 char *ChkDates[] = {
 "08/21/92",
 "11/29/92",
 "11/19/92",
 "11/04/92",
 "11/13/92",
 };
 /**/
 /* Set current date to 11/09/92 in YYMMDD format */
 /**/

Date and time services

Chapter 20. Using date and time services 301

 strncpy (CurrentDate.string,"921109",6);
 CurrentDate.length = 6;

 /***/
 /* The date picstr must be adjusted to fit the current date */
 /* format. */
 /***/
 strncpy (picstr.string,"YYMMDD",6);
 picstr.length = 6;
 /**/
 /*Call CEEDAYS to convert the date in Current_Date to its */
 /*corresponding Lilian date format. */
 /**/
 CEEDAYS (&CurrentDate, &picstr , &Current_Lilian , &FC);
 if (_FBCHECK (FC , CEE000) != 0)
 {
 printf ("Error in converting current date.\n");
 CEEMSG(&FC, &dest, NULL);
 exit(99);
 }

 /**/
 /*Modify the date picstr to the familiar MM/DD/YY format. */
 /**/
 strncpy (picstr.string,"MM/DD/YY",8);
 picstr.length = 8;

 /***/
 /* In the following loop, add or subtract the number */
 /* of days in each element of the NumberOfDays array to the */
 /* Lilian date. Determine the day of the week for each */
 /* Lilian date and convert each date back to "MM/DD/YY" */
 /* format. Issue a message if anything goes wrong. */
 /***/
 for (i=0; i < 5; i++)
 {
 if (i == 0 || i == 3)
 Displaced_Lilian = Current_Lilian - NumberOfDays[i];
 else
 Displaced_Lilian = Current_Lilian + NumberOfDays[i];
 /**/
 /*Call CEEDATE to convert the Lilian dates to MM/DD/YY */
 /*format. */
 /**/
 CEEDATE (&Displaced_Lilian, &picstr , chrdate , &FC);
 if (_FBCHECK (FC , CEE000) == 0)
 {
 chrdate[8] = '\0';
 /**/
 /*Compare the dates to an array of expected values. */
 /*Issue an error message if any conversion is incorrect. */
 /**/
 if (memcmp (&chrdate, ChkDates[i] , 8) != 0)
 printf (
 "Error in returned date %8s for displacement %d\n",
 chrdate,NumberOfDays[i]);

 /**/
 /*Call CEEDYWK to return the day-of-the-week value (1 thru 7) */
 /*for each calculated Lilian date. Compare results to an array */
 /*of expected returned values and issue an error message for any*/
 /*incorrect values. */
 /**/
 CEEDYWK (&Displaced_Lilian , &WeekDay , &FC);
 if (_FBCHECK (FC , CEE000) == 0)
 {
 if (WeekDay != ChkWeekDay[i])
 printf ("Error in day of the week for %s\n",
 chrdate);
 }
 else
 {
 printf ("Error finding day of the week\n");
 CEEMSG(&FC, &dest, NULL);
 }
 }
 else
 {
 printf ("Error converting Lilian date to date.\n");
 CEEMSG(&FC, &dest, NULL);
 }

Date and time services

302 z/OS: z/OS Language Environment Programming Guide

 } /* for loop */
}

Calls to CEEDAYS, CEEDATE, and CEEDYWK in COBOL
CBL LIB,QUOTE
 *Module/File Name: IGZTDT4
 **
 ** **
 ** CE77DAT - Call the following LE service routines: **
 ** : CEEDAYS - convert date to Lilian format **
 ** : CEEDATE - convert Lilian date to date **
 ** : CEEDYWK - find day of week from Lilian **
 ** **
 ** CEEDAYS is passed the calendar date "11/09/92". The **
 ** date is originally in YYMMDD format and conversion to **
 ** Lilian format takes place. On return from CEEDAYS, **
 ** a varying number of days is added to or subtracted **
 ** from the Lilian date. **
 ** CEEDATE is then called to convert the Lilian dates to **
 ** the format "MM/DD/YY". **
 ** CEEDYWK is called to return the day of the week for **
 ** each derived Lilian date. **
 ** The results are tested for accuracy. **
 ** **
 **
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CE77DAT.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 WEEKDAY PIC S9(9) BINARY.
 01 LILIAN PIC S9(9) BINARY.
 01 CURRENT-LILIAN PIC S9(9) BINARY.
 01 DISPLACED-LILIAN PIC S9(9) BINARY.
 01 FC.
 02 Condition-Token-Value.
 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.
 01 INDXX PIC S9(9) BINARY.
 01 NUMBER-OF-DAYS.
 05 NUMBERS.
 10 FILLER PIC S9(9) BINARY VALUE 80.
 10 FILLER PIC S9(9) BINARY VALUE 20.
 10 FILLER PIC S9(9) BINARY VALUE 10.
 10 FILLER PIC S9(9) BINARY VALUE 5.
 10 FILLER PIC S9(9) BINARY VALUE 4.
 05 NUMBEROFDAYS REDEFINES NUMBERS
 PIC S9(9) BINARY OCCURS 5 TIMES.
 01 PICSTR.
 02 Vstring-length PIC S9(4) BINARY.
 02 Vstring-text.
 03 Vstring-char PIC X,
 OCCURS 0 TO 256 TIMES
 DEPENDING ON Vstring-length
 of PICSTR.
 01 CHRDATE PIC X(80).
 01 CURRENT-DATE.
 02 Vstring-length PIC S9(4) BINARY.
 02 Vstring-text.
 03 Vstring-char PIC X
 OCCURS 0 TO 256 TIMES
 DEPENDING ON Vstring-length
 of CURRENT-DATE.
 01 INPUT-VARIABLES.
 05 DATE-TABLE.
 10 FILLER PIC X(9) VALUE "08/21/92".
 10 FILLER PIC X(9) VALUE "11/29/92".
 10 FILLER PIC X(9) VALUE "11/19/92".
 10 FILLER PIC X(9) VALUE "11/04/92".
 10 FILLER PIC X(9) VALUE "11/13/92".

Date and time services

Chapter 20. Using date and time services 303

 05 CHKDATES REDEFINES DATE-TABLE PIC X(9)
 OCCURS 5 TIMES.
 01 CHK-WEEKDAYS.
 05 DAY-TABLE.
 10 FILLER PIC S9(9) BINARY VALUE 6.
 10 FILLER PIC S9(9) BINARY VALUE 1.
 10 FILLER PIC S9(9) BINARY VALUE 5.
 10 FILLER PIC S9(9) BINARY VALUE 4.
 10 FILLER PIC S9(9) BINARY VALUE 6.
 05 CHKWEEKDAY REDEFINES DAY-TABLE PIC S9(9) BINARY
 OCCURS 5 TIMES.

 PROCEDURE DIVISION.

 0001-BEGIN-PROCESSING.
 DISPLAY "*** Example CE77DAT in motion"
 * ***
 * * The current date is converted to a Lilian date. *
 * ***
 MOVE 6 TO Vstring-length of PICSTR.
 MOVE "YYMMDD" TO Vstring-text of PICSTR.
 MOVE 6 TO Vstring-length of CURRENT-DATE.
 MOVE "921109" TO Vstring-text of CURRENT-DATE.
 * ***
 * * Call CEEDAYS to return the Lilian days tally for the *
 * * date value in the variable CURRENT-DATE. *
 * ***
 CALL "CEEDAYS" USING CURRENT-DATE, PICSTR,
 CURRENT-LILIAN, FC.
 IF NOT CEE000 THEN
 DISPLAY "Error " Msg-No of FC
 " in converting current date"
 END-IF.
 * ***
 * * The datestamp mask must be changed for the dates *
 * * being entered by the user. *
 * ***
 MOVE 8 TO Vstring-length of PICSTR.
 MOVE "MM/DD/YY" TO Vstring-text of PICSTR.
 * ***
 * * In the following loop, add or subtract the number of *
 * * days in each element of the NumberofDays array to the *
 * * Lilian date. Determine the day of the week for each *
 * * Lilian date and convert each date back to "MM/DD/YY" *
 * * format. Issue a message if anything goes wrong. *
 * ***
 MOVE 1 TO INDXX.
 PERFORM UNTIL INDXX = 6
 IF (INDXX = 1 OR 4) THEN
 COMPUTE DISPLACED-LILIAN =
 CURRENT-LILIAN - NUMBEROFDAYS(INDXX)
 ELSE
 COMPUTE DISPLACED-LILIAN =
 CURRENT-LILIAN + NUMBEROFDAYS(INDXX)
 END-IF
 * **
 * * Call CEEDATE to convert the Lilian dates to *
 * * MM/DD/YY format. *
 * **
 CALL "CEEDATE" USING DISPLACED-LILIAN, PICSTR,
 CHRDATE, FC
 IF CEE000 THEN
 * **
 * * Compare converted date to expected value *
 * **
 IF CHRDATE NOT = CHKDATES(INDXX) THEN
 DISPLAY "Expecting returned date of "
 CHKDATES(INDXX)
 " for displacement of " NUMBEROFDAYS(INDXX)
 ", but got returned date of " CHRDATE
 END-IF
 * ***
 * * Call CEEDYWK to return a day-of-the week value (1 *
 * * thru 7) for each calculated Lilian date. Compare *
 * * results to an array of expected values and issue *
 * * an error message for any incorrect values. *
 * ***
 CALL "CEEDYWK" USING DISPLACED-LILIAN, WEEKDAY, FC
 IF CEE000 THEN
 IF WEEKDAY NOT = CHKWEEKDAY(INDXX) THEN
 DISPLAY "Expecting day of week "
 CHKWEEKDAY(INDXX) ", but got " WEEKDAY

Date and time services

304 z/OS: z/OS Language Environment Programming Guide

 " instead for " CHRDATE
 END-IF
 ELSE
 DISPLAY "Error " Msg-No of FC
 " in finding day-of-week"
 END-IF
 ELSE
 DISPLAY "Error " Msg-No of FC
 " converting date to Lilian date"
 END-IF
 ADD 1 TO INDXX
 END-PERFORM.

 DISPLAY "*** Example CE77DAT complete"

 STOP RUN.

Calls to CEEDAYS, CEEDATE, and CEEDYWK in PL/I
*PROCESS MACRO;
 /*Module/File Name: IBMDT4
 /**/
 /* */
 /* Function : CEEDAYS - convert date to Lilian date */
 /* : CEEDATE - convert Lilian Date to date */
 /* : CEEDYWK - find day-of-week from Lilian */
 /* */
 /* CEEDAYS is passed the calander date "11/09/92". The */
 /* date is originally in YYMMD format and conversion to */
 /* Lilian format takes place. On return, a varying number */
 /* of days is added to or subtracted from the Lilian date. */
 /* CEEDATE is called to convert the Lilian dates to the */
 /* calendar format "MM/DD/YY". CEEDYWK is called to */
 /* return the day of the week for each derived Lilian date. */
 /* */
 /* The results are tested for accuracy. */
 /* */
 /**/
 CE77DAT: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW;
 %INCLUDE CEEIBMCT;

 DCL CHRDATE CHAR(80);
 DCL CURRENT_DATE CHAR(255) VARYING;
 DCL PICSTR CHAR(255) VARYING;
 DCL Lilian REAL FIXED BINARY(31,0);
 DCL ii REAL FIXED BINARY(31,0);
 DCL NumberOfDays (5) REAL FIXED BINARY(31,0)
 INIT(80, 20, 10, 5, 4);
 DCL ChkWeekDay (5) REAL FIXED BINARY(31,0)
 INIT(6, 1, 5, 4, 6);
 DCL CURRENT_LILIAN REAL FIXED BINARY(31,0);
 DCL DISPLACED_LILIAN REAL FIXED BINARY(31,0);
 DCL WEEKDAY REAL FIXED BINARY(31,0);
 DCL 01 FC, /* Feedback token */
 03 MsgSev REAL FIXED BINARY(15,0),
 03 MsgNo REAL FIXED BINARY(15,0),
 03 Flags,
 05 Case BIT(2),
 05 Severity BIT(3),
 05 Control BIT(3),
 03 FacID CHAR(3), /* Facility ID */
 03 ISI /* Instance-Specific Information */
 REAL FIXED BINARY(31,0);
 DCL ChkDates (5) CHAR(8) INIT(
 '08/21/92',
 '11/29/92',
 '11/19/92',
 '11/04/92',
 '11/13/92');
 PUT SKIP LIST('>>> Example CE77DAT in motion');
 /**/
 /* Set current date to 11/09/92 in YYMMDD format */
 /**/
 Picstr = 'YYMMDD';
 Current_Date = '921109';
 /**/
 /* Call CEEDAYS to convert the date in Current_Date to */

Date and time services

Chapter 20. Using date and time services 305

 /* its corresponding Lilian date format. */
 /**/
 Call CEEDAYS (Current_Date, Picstr, Current_Lilian, FC);
 IF ^ FBCHECK(FC, CEE000) THEN DO;
 PUT SKIP LIST('Error in converting Current Date');
 END;
 /***/
 /* The date picstr must be adjusted to fit the current */
 /* date format. */
 /***/
 Picstr = 'MM/DD/YY';
 /***/
 /* In the following loop, add or subtract the number */
 /* of days in each element of the NumberOfDays array to the */
 /* Lilian date. Determine the day of the week for each */
 /* Lilian date and convert each date back to "MM/DD/YY" */
 /* format. Issue a message if anything goes wrong. */
 /***/
 DO ii = 1 TO 5;
 IF (ii= 1 | ii= 4) THEN DO;
 Displaced_Lilian = Current_Lilian - NumberOfDays(ii);
 END;
 ELSE DO;
 Displaced_Lilian = Current_Lilian + NumberOfDays(ii);
 END;
 /**/
 /* Call CEEDATE to convert the Lilian dates to MM/DD/YY */
 /* format. */
 /**/
 Call CEEDATE (Displaced_Lilian, Picstr, ChrDate, FC);
 IF FBCHECK(FC, CEE000) THEN DO;
 /***/
 /* Compare the dates to an array of expected values. */
 /* Issue an error message if any conversion is incorrect. */
 /***/
 IF ChrDate ^= ChkDates(ii) THEN DO;
 PUT SKIP EDIT('Error in returned date ', Chrdate,
 ' for number of days ', NumberOfDays(i))
 ((3) a, f(6));
 END;
 END;
 ELSE DO;
 PUT SKIP LIST('Error ' || FC.MsgNo
 || ' converting Date to Lilian Date');
 END;
 /***/
 /* Call CEEDYWK to return the day-of-the-week value */
 /* (1 thru 7) for each calculated Lilian date. Compare */
 /* results to an array of expected returned values and */
 /* issue an error message for any incorrect values. */
 /***/
 Call CEEDYWK (Displaced_Lilian, WeekDay, FC);
 IF FBCHECK(FC, CEE000) THEN DO;
 IF WeekDay ^= ChkWeekDay(ii) THEN DO;
 PUT SKIP EDIT('Error in day of the week for ', ChrDate)
 (a, a);
 END;
 END;
 ELSE DO;
 PUT SKIP LIST('Error finding Day-of-Week');
 END;
 END;
 PUT SKIP LIST('<<< Example CE77DAT complete');
 END CE77DAT;

Calls to CEECBLDY in COBOL
This example shows converting a 2-digit input date to a COBOL Integer date, adding 90 days to the
Integer date, and converting the Integer format date back to a 4-digit year format using COBOL intrinsic
functions.

 CBL QUOTE

 *Module/File Name: CBLDAYS

 ** **
 ** Function: Invoke CEECBLDY callable service **
 ** to convert date to COBOL Lilian format. **

Date and time services

306 z/OS: z/OS Language Environment Programming Guide

 ** This service is used when using the **
 ** Language Environment Century Window **
 ** mixed with COBOL Intrinsic Functions. **
 ** **

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CBLDAYS.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 CHRDATE.
 05 CHRDATE-LENGTH PIC 9(2) BINARY.
 05 CHRDATE-STRING PIC X(50).
 01 PICSTR.
 05 PICSTR-LENGTH PIC S9(4) BINARY.
 05 PICSTR-STRING PIC X(50).
 01 COBINT PIC S9(9) BINARY.
 01 NEWDATE PIC 9(8).
 01 FC PIC X(12).
 PROCEDURE DIVISION.

 ** Specify input date and length **

 MOVE "1 January 00" to CHRDATE-STRING.
 MOVE 25 TO CHRDATE-LENGTH.

 ** Specify a picture string that describes **
 ** input date, and the picture string"s length.**

 MOVE "ZD Mmmmmmmmmmmmmmz YY"
 TO PICSTR-STRING.
 MOVE 23 TO PICSTR-LENGTH.

 ** Call CEECBLDY to convert input date to a **
 ** COBOL integer date **

 CALL "CEECBLDY" USING CHRDATE, PICSTR,
 COBINT, FC.

 ** If CEECBLDY runs successfully, then compute **
 ** the date of the 90th day after the **
 ** input date using Intrinsic Functions **

 IF (FC = LOW-VALUE) THEN
 COMPUTE COBINT = COBINT + 90
 COMPUTE NEWDATE = FUNCTION
 DATE-OF-INTEGER (COBINT)
 DISPLAY NEWDATE " is COBOL integer day: " COBINT
 ELSE
 CONTINUE
 END-IF.

 GOBACK.

Date and time services

Chapter 20. Using date and time services 307

Date and time services

308 z/OS: z/OS Language Environment Programming Guide

Chapter 21. National language support

This topic introduces the national language support services, which you use to set the national language,
the country code, currency symbols, and decimal separators. It includes examples showing you how to
query the default country code and change it, how to get the default date and time in the new country
code, and how to convert the seconds to a timestamp. It also provides guidance for setting national
language and country codes, including examples that show how national language services work in
conjunction with date and time services.

Customizing Language Environment output for a given country
National language support services allow you to customize Language Environment output (such as
messages, RPTOPTS reports, RPTSTG reports, or dumps) for a given country by specifying the following:

• The language in which runtime messages, days of the week, and months are displayed and printed
• A country code that indicates the default date and time format, currency symbol, decimal separator, and

thousands separator

Related options:
COUNTRY

Sets default country
NATLANG

Sets initial national language

Related callable services:
CEE3CTY

Sets default country
CEE3LNG

Sets national language
CEE3MC2

Gets default and international currency symbols
CEE3MCS

Gets default currency symbol
CEE3MDS

Gets default decimal separator
CEE3MTS

Gets default thousands separator
CEEFMDA

Gets default date format
CEEFMDT

Gets default date and time format
CEEFMTM

Gets default time format

Setting the national language
You can set the national language with the NATLANG runtime option or the CEE3LNG callable service.
CEE3LNG is not supported in PL/I multitasking applications. The national language settings affect the
error messages, month name, and day of the week name. Message translations are provided for the
following languages:

National language support

© Copyright IBM Corp. 1991, 2022 309

ENU
Mixed-case U.S. English

UEN
Uppercase U.S. English

JPN
Japanese

Setting the country code
You can use the COUNTRY runtime option or the CEE3CTY callable service to set the current country code
for your application. The country code determines the default formats used to display and print the date
and timestamps in the reports generated by the RPTSTG runtime option, RPTOPTS runtime option, and
the CEE3DMP (dump) callable service. Default values associated with the country code also describe the
currency symbol, decimal separator, and thousands separator.

Because CEE3LNG and CEE3CTY allow you to maintain multiple national languages and country settings
on separate LIFO stacks, you can easily reset the national language or alternate between different country
settings. For example, if you want to ensure that a routine in your application outputs the date and time
in a Japanese format, use CEE3CTY to query the current default setting and, if necessary, to set it to
Japanese with CEE3CTY if some other country code is in effect. For sample user code, see CEE3CTY—Set
the default country in z/OS Language Environment Programming Reference.

The C/C++ language provides locales, which are UNIX structures that reflect different linguistic, cultural,
and territorial conventions. Locale-sensitive C language functions make use of values and formats in
the currently loaded locale. The Locale callable services exploit a subset of these C library interfaces
for internationalized applications. See Chapter 22, “Locale callable services,” on page 317 for more
information.

However, although the National Language Support callable services have some functional overlap with
the Locale callable services, the two sets of services are completely independent of each other. Locale
settings and the COUNTRY runtime option do not affect each other. Likewise, the Locale callable services
and the National Language Support callable services are mutually exclusive. The National Language
Support callable services derive values and formats only from defaults established by the COUNTRY
runtime option or the CEE3CNTY service.

Language Environment does not currently support certain languages as national languages, so you would
not be able to use CEE3LNG to set the national language to an unsupported language. You can, however,
change the date and time format so that your English or Japanese banking application, for example,
would display the default date and time format for an unsupported language. In general, you must use
CEE3CTY to set the conventions for formatting date and time information.

Euro support
The current country code determines the default currency symbol that will be returned by the CEE3MCS
callable service.

For countries in the European Union that have adopted the Euro as the legal tender, the currency symbol
is represented as a hex string in the default country settings. For specific values, see IBM-supplied
country code defaults in z/OS Language Environment Programming Reference. The value is taken from a
typical code page for the given country, but, of course, the actual graphical representation depends on the
code page in use.

Language Environment supports the Euro as the default currency symbol in the following countries:
Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands,
Portugal, and Spain. As more countries pass the Economic and Monetary Union convergence criteria
and adopt the Euro as the legal currency, the Euro sign will replace the national currency symbol as the
default.

National language support

310 z/OS: z/OS Language Environment Programming Guide

Combining national language support and date and time services
To customize your applications for a particular country, use national language support services to query
the current country code, which you then can use as input to the Language Environment date and time
callable services. For example, you could query the current country code with CEE3CTY and then use the
returned value and CEEFMDT to get the default date and time format. When calling the CEEDATM (convert
seconds to character timestamp) date and time service, you can use the string returned by CEEFMDT to
specify the format of the convert seconds to character timestamp.

Calls to CEE3CTY, CEEFMDT, and CEEDATM in C
This example illustrates how you would query the default country code (CEE3CTY), change it to another
country code (CEE3CTY), get the default date and time in the new country code (CEEFMDT), and convert
the seconds to a timestamp (CEEDATM).

/*Module/File Name: EDCNLS */
/**/
/* FUNCTION */
/* CEE3CTY : query default country. set country to */
/* : Germany. */
/* CEEFMDT : get the German date and time format */
/* CEEDATM : convert seconds to timestamp */
/* */
/* This example shows how to use several of the LE national */
/* language support callable services. The current country is queried */
/* and changed to Germany. The default date and time for Germany is */
/* obtained. CEEDATM is called to convert a large numeric value in */
/* seconds to the timestamp 16.05.1988 19:01:01. */
/**/
#include <stdio.h>
#include <string.h>
#include <leawi.h>
#include <stdlib.h>
#include <ceeedcct.h>

int main(void) {

 _FEEDBACK fc;
 _INT4 function;
 _CHAR2 country, symbol;
 _CHAR80 date_pic;
 _FLOAT8 seconds;
 _VSTRING picstr;
 _CHAR80 timestp;
 #define DE "DE"
 #define BL " "

 printf ("\n**********************************\n");
 printf ("CESCNLS C Example is now in motion");
 printf ("\n**********************************\n");

 /***/
 /* Call CEE3CTY to query the current country setting */
 /***/
 function = 2;
 CEE3CTY(&function,country,&fc);
 if ((_FBCHECK (fc , CEE000)) != 0) {
 printf("CEE3CTY failed with message number %d\n",fc.tok_msgno);
 exit(2999);
 }

 /***/
 /* Call CEE3CTY to set current country to Germany. */
 /***/
 function = 3;
 CEE3CTY(&function,DE,&fc);
 if ((_FBCHECK (fc , CEE000)) != 0) {
 printf("CEE3CTY failed with message number %d\n",fc.tok_msgno);
 exit(2999);
 }
 /**/
 /* Call CEEFMDT retrieve the default date and time format */
 /**/
 CEEFMDT(BL,date_pic,&fc);
 if ((_FBCHECK (fc , CEE000)) != 0) {

National language support

Chapter 21. National language support 311

 printf("CEEFMDT failed with message number %d\n",fc.tok_msgno);
 exit(2999);
 }
 /**/
 /* Call CEEDATM to convert the number of seconds from 12:00AM */
 /* October 14, 1582 to 7:01PM May 16, 1988 to character */
 /* format. The default date and time format matches that of */
 /* the default country, Germany. */
 /**/
 seconds = 12799191661.986;
 strcpy(picstr.string,date_pic);
 picstr.length = strlen(picstr.string);
 CEEDATM (&seconds , &picstr , timestp , &fc);
 if ((_FBCHECK (fc , CEE000)) != 0) {
 printf("CEE3MDS failed with message number %d\n",fc.tok_msgno);
 exit(2999);
 }
 printf("Generated timestamp: %s",timestp);
 printf ("\n*********************\n");
 printf ("CESCNLS example ended.");
 printf ("\n*********************\n");
}

Calls to CEE3CTY, CEEFMDT, and CEEDATM in COBOL
the following example illustrates how you would query the default country code (CEE3CTY), change it to
another country code (CEE3CTY), get the default date and time in the new country code (CEEFMDT), and
convert the seconds to a timestamp (CEEDATM).

CBL LIB,QUOTE,RENT,OPTIMIZE
 *Module/file name: IGZTNLS
 **
 ** **
 ** CESCNLS - Call the following LE services: **
 ** **
 ** CEE3CTY : query default country **
 ** CEEFMDT : obtain the default date and **
 ** time format **
 ** CEEDATM : convert seconds to timestamp **
 ** **
 ** This example shows how to use several of the LE **
 ** national language support callable services in a **
 ** COBOL program. The current country is queried, saved, **
 ** and then changed to Germany. The default date and time **
 ** for Germany is obtained. CEEDATM is called to **
 ** convert a large numeric value in seconds to the **
 ** timestamp 16.05.1988 19:01:01 (May 16, 1988 7:01PM.) **
 ** **
 **
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CESCNLS.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 SECONDS COMP-2.
 01 FUNCTN PIC S9(9) BINARY.
 01 COUNTRY PIC X(2).
 01 GERMANY PIC X(2) VALUE "DE".
 01 PICSTR.
 02 Vstring-length PIC S9(4) BINARY.
 02 Vstring-text.
 03 Vstring-char PIC X
 OCCURS 0 TO 256 TIMES
 DEPENDING ON Vstring-length
 of PICSTR.
 01 TIMESTP PIC X(80).
 01 FC.
 02 Condition-Token-Value.
 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.

National language support

312 z/OS: z/OS Language Environment Programming Guide

 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.
 01 QUERY-COUNTRY-SETTING PIC S9(9) BINARY VALUE 2.
 01 SET-COUNTRY-SETTING PIC S9(9) BINARY VALUE 3.
 01 COUNTRY-PIC-STR PIC X(80).

 PROCEDURE DIVISION.

 0001-BEGIN-PROCESSING.
 DISPLAY "**************************************".
 DISPLAY "CESCNLS COBOL example is now in motion. ".
 DISPLAY "**************************************".

 **
 * Query Country Setting *
 **
 MOVE QUERY-COUNTRY-SETTING TO FUNCTN.
 CALL "CEE3CTY" USING FUNCTN, COUNTRY, FC.
 IF NOT CEE000 of FC THEN
 DISPLAY "Error " Msg-No of FC
 " in query of country setting"
 ELSE
 **
 * Call CEE3CTY to set country to Germany *
 **
 MOVE SET-COUNTRY-SETTING TO FUNCTN
 MOVE GERMANY TO COUNTRY
 CALL "CEE3CTY" USING FUNCTN, COUNTRY, FC
 IF NOT CEE000 of FC THEN
 DISPLAY "Error " Msg-No of FC
 " in setting country"
 ELSE
 **
 * Call CEEFMDT to get default date/time *
 * format for Germany and verify format *
 * against the published value. *
 **
 MOVE SPACE TO COUNTRY
 CALL "CEEFMDT" USING COUNTRY, COUNTRY-PIC-STR, FC
 IF NOT CEE000 of FC THEN
 DISPLAY "Error getting default date/time"
 " format for Germany."
 ELSE
 **
 * Call CEEDATM to convert the number of *
 * seconds from October 14, 1582 12:00AM *
 * to 16 May 1988 7:01PM to character format.*
 * The default date and time matches *
 * that of the default country, Germany. *
 **
 MOVE 12799191661.986 TO SECONDS
 COMPUTE Vstring-length OF PICSTR =
 FUNCTION MIN(LENGTH OF COUNTRY-PIC-STR, 256)
 MOVE COUNTRY-PIC-STR TO Vstring-text of PICSTR
 CALL "CEEDATM" USING SECONDS, PICSTR,
 TIMESTP, FC
 IF CEE000 of FC THEN
 DISPLAY "Generated timestamp is: " TIMESTP
 ELSE
 DISPLAY "Error " Msg-No of FC
 " generating timestamp"
 END-IF
 END-IF
 DISPLAY "***********************"
 DISPLAY "COBOL NLS example ended"
 DISPLAY "***********************"
 END-IF
 END-IF.

 GOBACK.

Example using CEE3CTY, CEEFMDT, and CEEDATM in PL/I
Following is an example of querying and setting the country code and getting the date and time format in
PL/I.

*PROCESS MACRO;
 /*Module/File Name: IBMNLS
 /**/

National language support

Chapter 21. National language support 313

 /* */
 /* Function CEE3CTY : query default country */
 /* CEEFMDT : obtain the default date and */
 /* time format */
 /* CEEDATM : convert seconds to timestamp */
 /* */
 /* This example shows how to use several of the LE */
 /* national language support callable services in a */
 /* PL/I program. The current country is queried, saved, */
 /* and then changed to Germany. The default date and */
 /* time for Germany is obtained. CEEDATM is called to */
 /* convert a large numeric value in seconds to the */
 /* timestamp 16.05.1988 19:01:01 (May 16, 1988 7:01PM). */
 /* */
 /**/
 CESCNLS: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW;
 %INCLUDE CEEIBMCT;

 DCL FUNCTN REAL FIXED BINARY(31,0);
 DCL QUERY_COUNTRY REAL FIXED BINARY(31,0) INIT(2);
 DCL SET_COUNTRY REAL FIXED BINARY(31,0) INIT(3);
 DCL SECONDS REAL FLOAT DECIMAL(16);
 DCL COUNTRY CHARACTER (2);
 DCL GERMANY CHARACTER (2)INIT ('DE');
 DCL 01 FC, /* Feedback token */
 03 MsgSev REAL FIXED BINARY(15,0),
 03 MsgNo REAL FIXED BINARY(15,0),
 03 Flags,
 05 Case BIT(2),
 05 Severity BIT(3),
 05 Control BIT(3),
 03 FacID CHAR(3), /* Facility ID */
 03 ISI /* Instance-Specific Information */
 REAL FIXED BINARY(31,0);
 DCL TIMESTP CHAR(80);
 DCL PICSTR CHAR(80);
 DCL PIC_VSTR CHAR(255) VARYING;

 /**/
 /* Query country setting */
 /**/
 FUNCTN = QUERY_COUNTRY;
 CALL CEE3CTY (FUNCTN, COUNTRY, FC);
 IF FBCHECK(FC, CEE000) THEN DO;
 /**/
 /* Call CEE3CTY to set country to Germany */
 /**/
 FUNCTN = SET_COUNTRY;
 COUNTRY = GERMANY;
 CALL CEE3CTY (FUNCTN, COUNTRY, FC);
 IF ^ FBCHECK(FC, CEE000) THEN DO;
 PUT SKIP LIST('Error ' || FC.MsgNo || ' in setting country');
 END;
 ELSE DO;
 /**/
 /* Call CEEFMDT to get default date/time format for */
 /* Germany and verify format against published value. */
 /**/
 COUNTRY = ' ';
 CALL CEEFMDT (COUNTRY, PICSTR, FC);
 IF ^ FBCHECK(FC, CEE000) THEN DO;
 PUT SKIP LIST('Error ' || FC.MsgNo
 || ' getting default date/time format for Germany.');
 END;
 ELSE DO;
 /***/
 /* Call CEEDATM to convert the number representing */
 /* the number of seconds from October 14, 1582 */
 /* 12:00AM to 16 May 1988 7:01PM to character */
 /* format. The default date and time format */
 /* matches that of the default country, Germany. */
 /***/
 SECONDS = 12799191661.986;
 PIC_VSTR = PICSTR;
 CALL CEEDATM (SECONDS, PIC_VSTR, TIMESTP, FC);
 IF FBCHECK(FC, CEE000) THEN DO;
 PUT SKIP EDIT ('Generated timestamp is ',
 TIMESTP) (A, A);
 END;
 ELSE DO;

National language support

314 z/OS: z/OS Language Environment Programming Guide

 PUT SKIP LIST ('Error ' || FC.MsgNo
 || ' generating timestamp');
 END;
 END;
 END;
 END;
 ELSE DO;
 PUT SKIP LIST('Error ' || FC.MsgNo || ' querying country code');
 END;

 END CESCNLS;

National language support

Chapter 21. National language support 315

National language support

316 z/OS: z/OS Language Environment Programming Guide

Chapter 22. Locale callable services

This topic describes how to use the Language Environment locale callable services to internationalize
your applications, and includes examples that show how locale callable services work in conjunction with
each other. Locale callable services do not affect, nor are they affected by, Language Environment callable
services or the COUNTRY or NATLANG runtime options. Language Environment locale callable services
are not supported in PL/I multitasking applications.

Language Environment locale support adheres to the standards used by C. For detailed information about
these standards, locales, and charmaps, see z/OS XL C/C++ Programming Guide.

Customizing Language Environment locale callable services
Locale callable services allow you to customize culturally-sensitive output for a given national language,
country, and code set by specifying a locale name.

Related callable services:
CEEFMON

Formats monetary string
CEEFTDS

Formats date and time into a character string
CEELCNV

Query locale numeric conventions
CEEQDTC

Queries locale, date, and time conventions
CEEQRYL

Queries the active locale environment
CEESCOL

Compares the collation weights of two strings
CEESETL

Sets the locale operating environment
CEESTXF

Transforms string characters into collation weights
See z/OS Language Environment Programming Reference for syntax information.

Although C or C++ routines can use the locale callable services, it is recommended that they use the
equivalent native C library services instead for portability across platforms. Table 56 on page 317 shows
the Language Environment locale callable services and the equivalent C library routines.

Table 56. Language Environment locale callable services and equivalent C library routines

Language Environment locale callable service C library routine

CEEFMON strfmon()

CEEFTDS strftime()

CEELCNV localeconv()

CEEQDTC localdtconv()

CEEQRYL setlocale()

CEESCOL strcoll()

CEESETL setlocale()

Locale callable services

© Copyright IBM Corp. 1991, 2022 317

Table 56. Language Environment locale callable services and equivalent C library routines (continued)

Language Environment locale callable service C library routine

CEESTXF strxfrm()

Developing internationalized applications
Locale callable services define environment control variables that you can set to establish language-
specific information and preferences for an application. Locale callable services also provide a means
for establishing global preferences, such as setlocale(), locale management services, and locale-
dependent interfaces to the application.

Locale callable services allow you to develop applications that can be used in multiple countries, because
they can function with specific language and cultural conventions. Such applications are referred to
as internationalized applications. These applications have no built-in assumptions with respect to the
language, culture, or conventions of their users or the data they process. Instead, language and cultural
information is set at run time, a process called localization. Thus, the application processes data provided
specifically for a certain locale. In Language Environment, localization occurs at the enclave level.

Examples of using locale callable services
The following topics demonstrate how to use locale callable services in your applications.

Example calls to CEEFMON
The following examples illustrate calls to CEEFMON to convert a numeric value to a monetary string using
a specified format.

Calls to CEEFMON in COBOL
 CBL LIB,QUOTE
 *Module/File Name: IGZTFMON

 * Example for callable service CEEFMON *
 * Function: Convert a numeric value to a *
 * monetary string using specified *
 * format passed as parameter. *
 * Valid only for COBOL for MVS & VM Release 2 *
 * or later. *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. COBFMON.
 DATA DIVISION. WORKING-STORAGE SECTION.
 01 Monetary COMP-2.
 01 Max-Size PIC S9(9) BINARY.
 01 Format-Mon.
 02 FM-Length PIC S9(4) BINARY.
 02 FM-String PIC X(256).
 01 Output-Mon.
 02 OM-Length PIC S9(4) BINARY.
 02 OM-String PIC X(60).
 01 Length-Mon PIC S9(9) BINARY.
 01 Locale-Name.
 02 LN-Length PIC S9(4) BINARY.
 02 LN-String PIC X(256).
 ** Use Locale category constants
 COPY CEEIGZLC.
 01 FC.
 02 Condition-Token-Value.
 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.

Locale callable services

318 z/OS: z/OS Language Environment Programming Guide

 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.
 **
 PROCEDURE DIVISION.
 ** Set up locale name for United States
 MOVE 14 TO LN-Length.
 MOVE "En_US.IBM-1047"
 TO LN-String (1:LN-Length).
 ** Set all locale categories to United States.
 ** Use LC-ALL category constant from CEEIGZLC.
 CALL "CEESETL" USING Locale-Name, LC-ALL, FC.
 ** Check feedback code
 IF Severity > 0
 DISPLAY "Call to CEESETL failed. " Msg-No
 STOP RUN
 END-IF.
 ** Set up numeric value
 MOVE 12345.62 TO Monetary.
 MOVE 60 TO Max-Size.
 MOVE 2 TO FM-Length.
 MOVE "%i" TO FM-String (1:FM-Length).
 ** Call CEEFMON to convert numeric value
 CALL "CEEFMON" USING OMITTED, Monetary,
 Max-Size, Format-Mon
 Output-Mon, Length-Mon,
 FC.
 ** Check feedback code and display result
 IF Severity > 0
 DISPLAY "Call to CEEFMON failed. " Msg-No
 ELSE
 DISPLAY "International format is "
 OM-String(1:OM-Length)
 END-IF.

 STOP RUN.
 END PROGRAM COBFMON.

Calls to CEEFMON in PL/I
*PROCESS MACRO;
 /*Module/File Name: IBMFMON */
 /**/
 /* Example for callable service CEEFMON */
 /* Function: Convert a numeric value to a monetary */
 /* string using specified format passed as parm */
 /**/

 PLIFMON: PROC OPTIONS(MAIN);
 %INCLUDE CEEIBMAW; /* ENTRY defs, macro defs */
 %INCLUDE CEEIBMCT; /* FBCHECK macro, FB constants */
 %INCLUDE CEEIBMLC; /* Locale category constants */
 /* CEESETL service call arguments */
 DCL LOCALE_NAME CHAR(14) VARYING;
 /* CEEFMON service call arguments */
 DCL MONETARY REAL FLOAT DEC(16); /* input value */
 DCL MAXSIZE_FMON BIN FIXED(31); /* output size */
 DCL FORMAT_FMON CHAR(256) VARYING; /* format spec */
 DCL RESULT_FMON BIN FIXED(31); /* result status */
 DCL OUTPUT_FMON CHAR(60) VARYING; /* output string */
 DCL 01 FC, /* Feedback token */
 03 MsgSev REAL FIXED BINARY(15,0),
 03 MsgNo REAL FIXED BINARY(15,0),
 03 Flags,
 05 Case BIT(2),
 05 Severity BIT(3),
 05 Control BIT(3),
 03 FacID CHAR(3), /* Facility ID */
 03 ISI /* Instance-Specific Information */
 REAL FIXED BINARY(31,0);
 /* init locale name to United States */
 LOCALE_NAME = 'En_US.IBM-1047';
 /* use LC_ALL category constant from CEEIBMLC */
 CALL CEESETL (LOCALE_NAME, LC_ALL, FC);
 /* FBCHECK macro used (defined in CEEIBMCT) */
 IF FBCHECK (FC, CEE2KE) THEN
 DO; /* invalid locale name */
 DISPLAY ('Locale LC_ALL Call '||FC.MsgNo);
 STOP;
 END;

Locale callable services

Chapter 22. Locale callable services 319

 MONETARY = 12345.62; /* monetary numeric value */
 MAXSIZE_FMON = 60; /* max char length returned */
 FORMAT_FMON = '%i'; /* international currency */
 CALL CEEFMON (*, /* optional argument */
 MONETARY , /* input, 8 byte floating point */
 MAXSIZE_FMON, /* maximum size of output string*/
 FORMAT_FMON, /* conversion request */
 OUTPUT_FMON, /* string returned by CEEFMON */
 RESULT_FMON, /* no. of chars in OUTPUT_FMON */
 FC); /* feedback code structure */
 IF RESULT_FMON = -1 THEN
 DO;
 /* FBCHECK macro used (defined in CEEIBMCT) */
 IF FBCHECK(FC, CEE3VM) THEN
 DISPLAY ('Invalid input '||MONETARY);
 ELSE
 DISPLAY ('CEEFMON not completed '||FC.MsgNo);
 STOP;
 END;
 ELSE
 DO;
 PUT SKIP LIST(
 'International Format '||OUTPUT_FMON);
 END;
 END PLIFMON;

Example calls to CEEFTDS
The following examples illustrate calls to CEEFTDS to convert a numeric time and date to a string using a
specified format.

Calls to CEEFTDS in COBOL
 CBL LIB,QUOTE
 *Module/File Name: IGZTFTDS

 * Example for callable service CEEFTDS *
 * Function: Convert numeric time and date *
 * values to a string using specified *
 * format string and locale format *
 * conversions. *
 * Valid only for COBOL for MVS & VM Release 2 *
 * or later. *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. MAINFTDS.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 * Use TD-Struct for CEEFTDS calls
 COPY CEEIGZTD.
 *

 PROCEDURE DIVISION.
 * Subroutine needed for pointer addressing
 CALL "COBFTDS" USING TD-Struct.

 STOP RUN.
 *
 IDENTIFICATION DIVISION.
 PROGRAM-ID. COBFTDS.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 * Use Locale category constants
 COPY CEEIGZLC.
 *
 01 Ptr-FTDS POINTER.
 01 Output-FTDS.
 02 O-Length PIC S9(4) BINARY.
 02 O-String PIC X(72). 01 Format-FTDS.
 02 F-Length PIC S9(4) BINARY.
 02 F-String PIC X(64).
 01 Max-Size PIC S9(9) BINARY.
 01 FC.
 02 Condition-Token-Value.
 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.

Locale callable services

320 z/OS: z/OS Language Environment Programming Guide

 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.
 LINKAGE SECTION.
 * Use TD-Struct for calls to CEEFTDS
 COPY CEEIGZTD.
 *
 PROCEDURE DIVISION USING TD-Struct.
 * Set up time and date values
 MOVE 1 TO TM-Sec.
 MOVE 2 TO TM-Min.
 MOVE 3 TO TM-Hour.
 MOVE 9 TO TM-Day.
 MOVE 11 TO TM-Mon.
 MOVE 94 TO TM-Year.
 MOVE 5 TO TM-Wday.
 MOVE 344 TO TM-Yday.
 MOVE 1 TO TM-Is-DLST.

 * Set up format string for CEEFTDS call
 MOVE 72 TO Max-Size.
 MOVE 36 TO F-Length.
 MOVE "Today is %A, %b %d Time: %I:%M %p"
 TO F-String (1:F-Length).

 * Set up pointer to structure for CEEFTDS call
 SET Ptr-FTDS TO ADDRESS OF TD-Struct.

 * Call CEEFTDS to convert numeric values
 CALL "CEEFTDS" USING OMITTED, Ptr-FTDS,
 Max-Size, Format-FTDS,
 Output-FTDS, FC.

 * Check feedback code and display result
 IF Severity = 0
 DISPLAY "Format " F-String (1:F-Length)
 DISPLAY "Result " O-String (1:O-Length)
 ELSE
 DISPLAY "Call to CEEFTDS failed. " Msg-No
 END-IF.

 EXIT PROGRAM.
 END PROGRAM COBFTDS.
 *
 END PROGRAM MAINFTDS.

Calls to CEEFTDS in PL/I
*PROCESS MACRO;
 /*Module/File Name: IBMFTDS */
 /**/
 /* Example for callable service CEEFTDS */
 /* Function: Convert numeric time and date values */
 /* to a string based on a format specification */
 /* string parameter and locale format conversions */
 /**/

 PLIFTDS: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW; /* ENTRY defs, macro defs */
 %INCLUDE CEEIBMCT; /* FBCHECK macro, FB constants */
 %INCLUDE CEEIBMLC; /* Locale category constants */
 %INCLUDE CEEIBMTD; /* TD_STRUCT for CEEFTDS calls */

 /* use explicit pointer to local TD_STRUCT structure*/
 DCL TIME_AND_DATE POINTER INIT(ADDR(TD_STRUCT));

 /* CEEFTDS service call arguments */
 DCL MAXSIZE_FTDS BIN FIXED(31); /* OUTPUT_FTDS size */
 DCL FORMAT_FTDS CHAR(64) VARYING; /* format string */
 DCL OUTPUT_FTDS CHAR(72) VARYING; /* output string */
 DCL 01 FC, /* Feedback token */
 03 MsgSev REAL FIXED BINARY(15,0),
 03 MsgNo REAL FIXED BINARY(15,0),

Locale callable services

Chapter 22. Locale callable services 321

 03 Flags,
 05 Case BIT(2),
 05 Severity BIT(3),
 05 Control BIT(3),
 03 FacID CHAR(3), /* Facility ID */
 03 ISI /* Instance-Specific Information */
 REAL FIXED BINARY(31,0);

 /* specify numeric input fields for conversion */
 TD_STRUCT.TM_SEC=1; /* seconds after min (0-61) */
 TD_STRUCT.TM_MIN=2; /* minutes after hour (0-59)*/
 TD_STRUCT.TM_HOUR=3; /* hours since midnight(0-23)*/
 TD_STRUCT.TM_MDAY=9; /* day of the month (1-31) */
 TD_STRUCT.TM_MON=11; /* months since Jan(0-11) */
 TD_STRUCT.TM_YEAR=94; /* years since 1900 */
 TD_STRUCT.TM_WDAY=5; /* days since Sunday (0-6) */
 TD_STRUCT.TM_YDAY=344;/* days since Jan 1 (0-365) */
 TD_STRUCT.TM_ISDST=1; /* Daylight Saving Time flag*/

 /* specify format string for CEEFTDS call */
 FORMAT_FTDS = 'Today is %A, %b %d Time: %I:%M %p';

 MAXSIZE_FTDS = 72; /* specify output string size */
 CALL CEEFTDS (*, TIME_AND_DATE, MAXSIZE_FTDS,
 FORMAT_FTDS, OUTPUT_FTDS, FC);

 /* FBCHECK macro used (defined in CEEIBMCT) */
 IF FBCHECK(FC, CEE000) THEN
 DO; /* CEEFTDS call is successful */
 PUT SKIP LIST('Format '||FORMAT_FTDS);
 PUT SKIP LIST('Results in '||OUTPUT_FTDS);
 END;
 ELSE
 DISPLAY ('Format '||FORMAT_FTDS||
 ' Results in '||FC.MsgNo);

 END PLIFTDS;

Example calls to CEELCNV and CEESETL
The following examples illustrate calls to CEELCNV to retrieve the numeric and monetary format for the
default locale, and to CEESETL to set the locale. These examples also indicate how to access the ISO/IEC
9899:1999 (C99) compliant version of the NM-Struct (COBOL) or NM_Struct (PL/I) copy of the localeconv
structure in the C library. For more information, see further details, see CEELCNV - Query locale numeric
conventions in z/OS Language Environment Programming Reference.

Calls to CEELCNV and CEESETL in COBOL
 CBL LIB,QUOTE
 *Module/File Name: IGZTLCNV

 ** Example for callable service CEELCNV **
 ** Function: Retrieve numeric and monetary **
 ** format for default locale and **
 ** print an item. **
 ** Set locale to France, retrieve **
 ** structure, and print an item. **
 ** Valid only for COBOL for MVS & VM Release 2 **
 ** or later. **

 IDENTIFICATION DIVISION.
 PROGRAM-ID. MAINLCNV.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 ** Use Locale NM-Struct for CEELCNV calls **

 COPY CEEIGZN2.
 *
 PROCEDURE DIVISION.

 ** Subroutine needed for addressing **

 CALL "COBLCNV" USING NM-Struct.

 STOP RUN.

Locale callable services

322 z/OS: z/OS Language Environment Programming Guide

 *
 IDENTIFICATION DIVISION.
 PROGRAM-ID. COBLCNV.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 PTR1 Pointer.
 01 Locale-Name.
 02 LN-Length PIC S9(5) BINARY.
 02 LN-String PIC X(256).

 ** Use Locale category constants **

 COPY CEEIGZLC.
 *
 01 FC.
 02 Condition-Token-Value.
 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.

 LINKAGE SECTION.

 ** Use Locale NM-Struct for CEELCNV calls **

 COPY CEEIGZN2.
 *
 PROCEDURE DIVISION USING NM-Struct.

 ** Call CEELCNV to retrieve values for locale**

 CALL "CEELCNV" USING OMITTED,
 ADDRESS OF NM-Struct, FC.

 ** Check feedback code and display result **

 IF Severity = 0 THEN
 DISPLAY "Default decimal point is "
 DECIMAL-PT-String(1:DECIMAL-PT-Length)
 ELSE
 DISPLAY "Call to CEELCNV failed. " Msg-No
 END-IF.

 ** Set up locale for France **

 MOVE 5 TO LN-Length.
 MOVE "Fr_FR" TO LN-String (1:LN-Length).

 ** Call CEESETL to set monetary locale **

 CALL "CEESETL" USING Locale-Name,
 LC-MONETARY, FC.

 ** Call CEESETL to set numeric locale **

 CALL "CEESETL" USING Locale-Name,
 LC-NUMERIC, FC.

 ** Check feedback code and call CEELCNV again **
 ** using version 2 to get at C99 mapping.**

 IF Severity = 0
 MOVE 2 TO Version
 set PTR1 to address of Version-Info
 CALL "CEELCNV" USING PTR1,
 ADDRESS OF NM-Struct, FC
 IF Severity > 0
 DISPLAY "Call to CEELCNV failed. "
 Msg-No
 ELSE
 DISPLAY "French decimal point is "
 DECIMAL-PT-String(1:DECIMAL-PT-Length)

Locale callable services

Chapter 22. Locale callable services 323

 END-IF
 ELSE
 DISPLAY "Call to CEESETL failed. " Msg-No
 END-IF.

 EXIT PROGRAM.
 END PROGRAM COBLCNV.
 *
 END PROGRAM MAINLCNV.

Calls to CEELCNV and CEESETL in PL/I
*PROCESS MACRO;
 /*Module/File Name: IBMLCNV */
 /**/
 /* Example for callable service CEELCNV */
 /* Function: Retrieve numeric and monetary format */
 /* structure for default locale and print an item. */
 /* Set locale to France, retrieve structure and */
 /* print an item. */
 /**/

 PLILCNV: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW; /* ENTRY defs, macro defs */
 %INCLUDE CEEIBMCT; /* FBCHECK macro, FB constants */
 %INCLUDE CEEIBMLC; /* Locale category constants */
 %INCLUDE CEEIBMN2; /* NM_STRUCT for CEELCNV calls */

 /* use explicit pointer for local NM_STRUCT struct */
 DCL NUM_AND_MON POINTER INIT(ADDR(NM_STRUCT));

/* Point to local version_info struct and initialize*/
/* VERSION TO 2 TO USE C99 MAPPING OF NM_STRUCT */
DCL VERSN POINTER INIT(ADDR(version_info));
VERSION_INFO.VERSION = 2;

 /* CEESETL service call arguments */
 DCL LOCALE_NAME CHAR(256) VARYING;

 DCL 01 FC, /* Feedback token */
 03 MsgSev REAL FIXED BINARY(15,0),
 03 MsgNo REAL FIXED BINARY(15,0),
 03 Flags,
 05 Case BIT(2),
 05 Severity BIT(3),
 05 Control BIT(3),
 03 FacID CHAR(3), /* Facility ID */
 03 ISI /* Instance-Specific Information */
 REAL FIXED BINARY(31,0);

 /* retrieve structure for default locale */
 CALL CEELCNV (*, NUM_AND_MON, FC);

 PUT SKIP LIST('Default DECIMAL_POINT is ',
 NM_STRUCT.DECIMAL_POINT);

 /* set locale for France */
 LOCALE_NAME = 'Fr_FR';

 /* use LC_NUMERIC category const from CEEIBMLC */
 CALL CEESETL (LOCALE_NAME, LC_NUMERIC, FC);

 /* use LC_MONETARY category const from CEEIBMLC */
 CALL CEESETL (LOCALE_NAME, LC_MONETARY, FC);

 /* FBCHECK macro used (defined in CEEIBMCT) */
 IF FBCHECK(FC, CEE000) THEN
 DO;
 /* retrieve active NM_STRUCT, France Locale */
 CALL CEELCNV (VERSN, NUM_AND_MON, FC);

 PUT SKIP LIST('French DECIMAL_POINT is ',
 NM_STRUCT.DECIMAL_POINT);
 END;

 END PLILCNV;

Locale callable services

324 z/OS: z/OS Language Environment Programming Guide

Example calls to CEEQDTC and CEESETL
The following examples illustrate calls to CEEQDTC to retrieve the date and time conventions, and to
CEESETL to set the locale. To see how to access ISO/IEC 9899:1999 (C99) extensions, refer to the
CEELCNV examples. For specific details regarding parameter and copy file usage, see the CEEQDTC
callable service in CEEQDTC - Query locale date and time conventions in z/OS Language Environment
Programming Reference.

Calls to CEEQDTC and CEESETL in COBOL
 CBL LIB,QUOTE
 *Module/File Name: IGZTQDTC
 **
 * Example for callable service CEEQDTC *
 * MAINQDTC - Retrieve date and time convention *
 * structures for two countries and *
 * compare an item. *
 * Valid only for COBOL for MVS & VM Release 2 *
 * or later. *
 **
 IDENTIFICATION DIVISION.
 PROGRAM-ID. MAINQDTC.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 * Use DTCONV structure for CEEQDTC calls
 COPY CEEIGZDT.
 *
 PROCEDURE DIVISION.
 * Subroutine needed for addressing
 CALL "COBQDTC" USING DTCONV.
 STOP RUN.
 *
 IDENTIFICATION DIVISION.
 PROGRAM-ID. COBQDTC.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 Locale-Name.
 02 LN-Length PIC S9(4) BINARY.
 02 LN-String PIC X(256).
 * Use Locale category constants
 COPY CEEIGZLC.
 *
 01 Test-Length1 PIC S9(4) BINARY.
 01 Test-String1 PIC X(80).
 01 Test-Length2 PIC S9(4) BINARY.
 01 Test-String2 PIC X(80).
 01 FC.
 02 Condition-Token-Value.
 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.
 *
 LINKAGE SECTION.
 * Use Locale structure DTCONV for CEEQDTC calls
 COPY CEEIGZDT.
 *
 PROCEDURE DIVISION USING DTCONV.
 * Set up locale for France
 MOVE 4 TO LN-Length.
 MOVE "FFEY" TO LN-String (1:LN-Length).
 * Call CEESETL to set all locale categories
 CALL "CEESETL" USING Locale-Name, LC-ALL,
 FC.

 * Check feedback code
 IF Severity > 0
 DISPLAY "Call to CEESETL failed. " Msg-No
 EXIT PROGRAM

Locale callable services

Chapter 22. Locale callable services 325

 END-IF.

 * Call CEEQDTC for French values
 CALL "CEEQDTC" USING OMITTED,
 ADDRESS OF DTCONV, FC.
 * Check feedback code
 IF Severity > 0
 DISPLAY "Call to CEEQDTC failed. " Msg-No
 EXIT PROGRAM
 END-IF.

 * Save date and time format for FFEY locale
 MOVE D-T-FMT-Length IN DTCONV TO Test-Length1
 MOVE D-T-FMT-String IN DTCONV TO Test-String1

 * Set up locale for French Canadian
 MOVE 4 TO LN-Length.
 MOVE "FCEY" TO LN-String (1:LN-Length).

 * Call CEESETL to set locale for all categories
 CALL "CEESETL" USING Locale-Name, LC-ALL,
 FC.

 * Check feedback code
 IF Severity > 0
 DISPLAY "Call to CEESETL failed. " Msg-No
 EXIT PROGRAM
 END-IF.

 * Call CEEQDTC again for French Canadian values
 CALL "CEEQDTC" USING OMITTED,
 ADDRESS OF DTCONV, FC.

 * Check feedback code and display results
 IF Severity = 0
 * Save date and time format for FCEY locale
 MOVE D-T-FMT-Length IN DTCONV
 TO Test-Length2
 MOVE D-T-FMT-String IN DTCONV
 TO Test-String2
 IF Test-String1(1:Test-Length1) =
 Test-String2(1:Test-Length2)
 DISPLAY "Same date and time format."
 ELSE
 DISPLAY "Different formats."
 DISPLAY Test-String1(1:Test-Length1)
 DISPLAY Test-String2(1:Test-Length2)
 END-IF
 ELSE
 DISPLAY "Call to CEEQDTC failed. " Msg-No
 END-IF.

 EXIT PROGRAM.
 END PROGRAM COBQDTC.
 *
 END PROGRAM MAINQDTC.

Calls to CEEQTDC and CEESETL in PL/I
*PROCESS MACRO;
 /*Module/File Name: IBMQDTC */
 /**/
 /* Example for callable service CEEQDTC */
 /* Function: Retrieve date and time convention */
 /* structures for two countries, compare an item. */
 /**/

 PLIQDTC: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW; /* ENTRY defs, macro defs */
 %INCLUDE CEEIBMCT; /* FBCHECK macro, FB constants */
 %INCLUDE CEEIBMLC; /* Locale category constants */
 %INCLUDE CEEIBMDT; /* DTCONV for CEEQDTC calls */

 /* use explicit pointer to local DTCONV structure */
 DCL LOCALDT POINTER INIT(ADDR(DTCONV));

 /* CEESETL service call arguments */
 DCL LOCALE_NAME CHAR(256) VARYING;

Locale callable services

326 z/OS: z/OS Language Environment Programming Guide

 DCL 1 DTCONVC LIKE DTCONV; /* Def Second Structure */

 DCL 1 FC, /* Feedback token */
 3 MsgSev REAL FIXED BINARY(15,0),
 3 MsgNo REAL FIXED BINARY(15,0),
 3 Flags,
 5 Case BIT(2),
 5 Severity BIT(3),
 5 Control BIT(3),
 3 FacID CHAR(3), /* Facility ID */
 3 ISI /* Instance-Specific Information */
 REAL FIXED BINARY(31,0);
 /* set locale with IBM default for France */
 LOCALE_NAME = 'FFEY'; /* or Fr_FR.IBM-1047 */

 /* use LC_ALL category constant from CEEIBMLC */
 CALL CEESETL (LOCALE_NAME, LC_ALL, FC);

 /* retrieve date and time structure, France Locale*/
 CALL CEEQDTC (*, LOCALDT, FC);

 /* set locale with French Canadian(FCEY) defaults */
 /* literal constant -1 used to set all categories */
 CALL CEESETL ('FCEY', -1, FC);

 /* retrieve date and time tables for French Canada*/
 /* example of temp pointer used for service call */
 CALL CEEQDTC (*, ADDR(DTCONVC), FC);
 /* compare date and time formats for two countries*/
 IF DTCONVC.D_T_FMT = DTCONV.D_T_FMT THEN
 DO;
 PUT SKIP LIST('Countries have same D_T_FMT');
 END;
 ELSE
 DO;
 PUT SKIP LIST('Date and Time Format ',
 DTCONVC.D_T_FMT||' vs '||
 DTCONV.D_T_FMT);
 END;

 END PLIQDTC;

Example calls to CEESCOL
The following examples illustrate calls to CEESCOL to compare the collation of two character strings.

Calls to CEESCOL in COBOL
 CBL LIB,QUOTE
 *Module/File Name: IGZTSCOL

 * Example for callable service CEESCOL *
 * COBSCOL - Compare two character strings *
 * and print the result. *
 * Valid only for COBOL for MVS & VM Release 2 *
 * or later. *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. COBSCOL.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 String1.
 02 Str1-Length PIC S9(4) BINARY.
 02 Str1-String.
 03 Str1-Char PIC X
 OCCURS 0 TO 256 TIMES
 DEPENDING ON Str1-Length.
 01 String2.
 02 Str2-Length PIC S9(4) BINARY.
 02 Str2-String.
 03 Str2-Char PIC X
 OCCURS 0 TO 256 TIMES
 DEPENDING ON Str2-Length.
 01 Result PIC S9(9) BINARY.
 01 FC.
 02 Condition-Token-Value.

Locale callable services

Chapter 22. Locale callable services 327

 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.
 *
 PROCEDURE DIVISION.

 * Set up two strings for comparison

 MOVE 9 TO Str1-Length.
 MOVE "12345a789"
 TO Str1-String (1:Str1-Length)
 MOVE 9 TO Str2-Length.
 MOVE "12346$789"
 TO Str2-String (1:Str2-Length)

 * Call CEESCOL to compare the strings

 CALL "CEESCOL" USING OMITTED, String1,
 String2, Result, FC.

 * Check feedback code

 IF Severity > 0
 DISPLAY "Call to CEESCOL failed. " Msg-No
 STOP RUN
 END-IF.

 * Check result of compare

 EVALUATE TRUE
 WHEN Result < 0
 DISPLAY "1st string < 2nd string."
 WHEN Result > 0
 DISPLAY "1st string > 2nd string."
 WHEN OTHER
 DISPLAY "Strings are identical."
 END-EVALUATE.

 STOP RUN.
 END PROGRAM COBSCOL.

Calls to CEESCOL in PL/I
*PROCESS MACRO;
 /*Module/File Name: IBMSCOL */
 /**/
 /* Example for callable service CEESCOL */
 /* Function: Compare two character strings and */
 /* print the result. */
 /**/

 PLISCOL: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW; /* ENTRY defs, macro defs for LE */
 %INCLUDE CEEIBMCT; /* FBCHECK macro, FB constants */
 %INCLUDE CEEIBMLC; /* Locale category constants */

 /* CEESCOL service call arguments */
 DCL STRING1 CHAR(256) VARYING;/* first string */
 DCL STRING2 CHAR(256) VARYING;/* second string */
 DCL RESULT_SCOL BIN FIXED(31);/* result of compare */

 DCL 01 FC, /* Feedback token */
 03 MsgSev REAL FIXED BINARY(15,0),
 03 MsgNo REAL FIXED BINARY(15,0),
 03 Flags,
 05 Case BIT(2),
 05 Severity BIT(3),
 05 Control BIT(3),
 03 FacID CHAR(3), /* Facility ID */

Locale callable services

328 z/OS: z/OS Language Environment Programming Guide

 03 ISI /* Instance-Specific Information */
 REAL FIXED BINARY(31,0);

 STRING1 = '12345a789';
 STRING2 = '12346$789';
 CALL CEESCOL(*, STRING1, STRING2, RESULT_SCOL,FC);

 /* FBCHECK macro used (defined in CEEIBMCT) */
 IF FBCHECK(FC, CEE3T1) THEN
 DO;
 DISPLAY ('CEESCOL not completed '||FC.MsgNo);
 STOP;
 END;

 SELECT;
 WHEN(RESULT_SCOL < 0)
 PUT SKIP LIST(
 '"firststring" is less than "secondstring" ');
 WHEN(RESULT_SCOL > 0)
 PUT SKIP LIST(
 '"firststring" is greater than "secondstring" ');
 OTHERWISE
 PUT SKIP LIST('Strings are identical');
 END; /* END SELECT */

 END PLISCOL;

Example calls to CEESETL and CEEQRYL
The following examples illustrate calls to CEESETL to set the locale, and to CEEQRYL to retrieve locale
time information.

Calls to CEESETL and CEEQRYL in COBOL
 CBL LIB,QUOTE
 *Module/File Name: IGZTSETL

 * Example for callable service CEESETL *
 * COBSETL - Set all global locale environment *
 * categories to country Sweden. *
 * Query one category. *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. COBSETL.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 Locale-Name.
 02 LN-Length PIC S9(4) BINARY.
 02 LN-String PIC X(256).
 01 Locale-Time.
 02 LT-Length PIC S9(4) BINARY.
 02 LT-String PIC X(256).
 * Use Locale category constants
 COPY CEEIGZLC.
 *
 01 FC.
 02 Condition-Token-Value.
 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.
 *
 PROCEDURE DIVISION.

 * Set up locale name for Sweden

 MOVE 14 TO LN-Length.
 MOVE 'Sv_SE.IBM-1047'
 TO LN-String (1:LN-Length).

Locale callable services

Chapter 22. Locale callable services 329

 * Set all locale categories to Sweden
 * Use LC-ALL category constant from CEEIGZLC

 CALL 'CEESETL' USING Locale-Name, LC-ALL,
 FC.

 * Check feedback code

 IF Severity > 0
 DISPLAY 'Call to CEESETL failed. ' Msg-No
 STOP RUN
 END-IF.

 * Retrieve active locale for LC-TIME category

 CALL 'CEEQRYL' USING LC-TIME, Locale-Time,
 FC.

 * Check feedback code and correct locale

 IF Severity = 0
 IF LT-String(1:LT-Length) =
 LN-String(1:LN-Length)
 DISPLAY 'Successful query.'
 ELSE
 DISPLAY 'Unsuccessful query.'
 END-IF
 ELSE
 DISPLAY 'Call to CEEQRYL failed. ' Msg-No
 END-IF.

 STOP RUN.
 END PROGRAM COBSETL.

Calls to CEESETL and CEEQRYL in PL/I
*PROCESS MACRO;
 /*Module/File Name: IBMSETL */
 /**/
 /* Example for callable service CEESETL */
 /* Function: Set all global locale environment */
 /* categories to country. Query one category. */
 /**/

 PLISETL: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW; /* ENTRY defs, macro defs */
 %INCLUDE CEEIBMCT; /* FBCHECK macro, FB constants */
 %INCLUDE CEEIBMLC; /* Locale category constants */

 /* CEESETL service call arguments */
 DCL LOCALE_NAME CHAR(14) VARYING;

 /* CEEQRYL service call arguments */
 DCL LOCALE_NAME_TIME CHAR(256) VARYING;
 DCL 01 FC, /* Feedback token */
 03 MsgSev REAL FIXED BINARY(15,0),
 03 MsgNo REAL FIXED BINARY(15,0),
 03 Flags,
 05 Case BIT(2),
 05 Severity BIT(3),
 05 Control BIT(3),
 03 FacID CHAR(3), /* Facility ID */
 03 ISI /* Instance-Specific Information */
 REAL FIXED BINARY(31,0);
 /* init locale name with IBM default for Sweden */
 LOCALE_NAME = 'Sv_SE.IBM-1047';

 /* use LC_ALL category const from CEEIBMLC */
 CALL CEESETL (LOCALE_NAME, LC_ALL, FC);

 /* FBCHECK macro used (defined in CEEIBMCT) */
 IF FBCHECK(FC, CEE2KE) THEN
 DO; /* invalid locale name */
 DISPLAY ('Locale LC_ALL Call '||FC.MsgNo);
 STOP;

Locale callable services

330 z/OS: z/OS Language Environment Programming Guide

 END;
 /* retrieve active locale for LC_TIME category */
 /* use LC_TIME category const from CEEIBMLC */
 CALL CEEQRYL (LC_TIME, LOCALE_NAME_TIME, FC);

 IF FBCHECK(FC, CEE000) THEN
 DO; /* successful query, check category name */
 IF LOCALE_NAME_TIME ^= LOCALE_NAME THEN
 DO;
 DISPLAY ('Invalid LOCALE_NAME_TIME ');
 STOP;
 END;
 ELSE
 DO;
 PUT SKIP LIST('Successful query LC_TIME',
 LOCALE_NAME_TIME);
 END;
 END;
 ELSE
 DO;
 DISPLAY ('LC_TIME Category Call '||FC.MsgNo);
 STOP;
 END;
 END PLISETL;

Example calls to CEEQRYL and CEESTXF
The following examples illustrate calls to CEEQRYL to retrieve the locale name, and to CEESTXF to
translate a string into its collation weights.

Calls to CEEQRYL and CEESTXF in COBOL
 CBL LIB,QUOTE
 *Module/File Name: IGZTSTXF

 * Example for callable service CEESTXF *
 * COBSTXF - Query current collate category and *
 * build input string as function of *
 * locale name. *
 * Translate string as function of *
 * locale. *
 * Valid only for COBOL for MVS & VM Release 2 *
 * or later. *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. COBSTXF.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 MBS.
 02 MBS-Length PIC S9(4) BINARY.
 02 MBS-String PIC X(10).
 01 TXF.
 02 TXF-Length PIC S9(4) BINARY.
 02 TXF-String PIC X(256).
 01 Locale-Name.
 02 LN-Length PIC S9(4) BINARY.
 02 LN-String PIC X(256).
 * Use Locale category constants
 COPY CEEIGZLC.
 *
 01 MBS-Size PIC S9(9) BINARY VALUE 0.
 01 TXF-Size PIC S9(9) BINARY VALUE 0.
 01 FC.
 02 Condition-Token-Value.
 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.
 *
 PROCEDURE DIVISION.

Locale callable services

Chapter 22. Locale callable services 331

 * Call CEEQRYL to retrieve locale name

 CALL "CEEQRYL" USING LC-COLLATE,
 Locale-Name, FC.

 * Check feedback code and set input string

 IF Severity = 0
 IF LN-String (1:LN-Length) =
 "Sv-SE.IBM-1047"
 MOVE 10 TO MBS-Length
 MOVE 10 TO MBS-Size
 MOVE "7,123,456."
 TO MBS-String (1:MBS-Length)
 ELSE
 MOVE 7 TO MBS-Length
 MOVE 7 TO MBS-Size
 MOVE "8765432"
 TO MBS-String (1:MBS-Length)
 END-IF
 ELSE
 DISPLAY "Call to CEEQRYL failed. " Msg-No
 STOP RUN
 END-IF.
 MOVE SPACES TO TXF-String.
 MOVE 0 to TXF-Length.

 * Call CEESTXF to translate the string

 CALL "CEESTXF" USING OMITTED, MBS, MBS-Size,
 TXF, TXF-Size, FC.

 * Check feedback code and return length

 IF Severity = 0
 IF TXF-Length > 0
 DISPLAY "Translated string is "
 TXF-String
 ELSE
 DISPLAY "String not translated."
 END-IF
 ELSE
 DISPLAY "Call to CEESTXF failed. " Msg-No
 END-IF.

 STOP RUN.
 END PROGRAM COBSTXF.

Calls to CEEQRYL and CEESTXF in PL/I
*PROCESS MACRO;
 /*Module/File Name: IBMSTXF */
 /**/
 /* Example for callable service CEESTXF */
 /* Function: Query current collate category and */
 /* build input string as function of locale name. */
 /* Translate string as function of locale. */
 /**/

 PLISTXF: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW; /* ENTRY defs, macro defs */
 %INCLUDE CEEIBMCT; /* FBCHECK macro, FB constants */
 %INCLUDE CEEIBMLC; /* Locale category constants */
 /* CEESTXF service call arguments */
 DCL MBSTRING CHAR(10) VARYING; /* input string */
 DCL MBNUMBER BIN FIXED(31); /* input length */
 DCL TXFSTRING CHAR(256) VARYING; /* output string */
 DCL TXFLENGTH BIN FIXED(31); /* output length */

 /* CEEQRYL service call arguments */
 DCL LOCALE_NAME_COLLATE CHAR(256) VARYING;

 DCL 01 FC, /* Feedback token */
 03 MsgSev REAL FIXED BINARY(15,0),
 03 MsgNo REAL FIXED BINARY(15,0),

Locale callable services

332 z/OS: z/OS Language Environment Programming Guide

 03 Flags,
 05 Case BIT(2),
 05 Severity BIT(3),
 05 Control BIT(3),
 03 FacID CHAR(3), /* Facility ID */
 03 ISI /* Instance-Specific Information */
 REAL FIXED BINARY(31,0);
 /* retrieve active locale for collate category */
 /* Use LC_COLLATE category const from CEEIBMLC */
 CALL CEEQRYL (LC_COLLATE, LOCALE_NAME_COLLATE, FC);

 /* FBCHECK macro used (defined in CEEIBMCT) */
 IF FBCHECK(FC, CEE000) THEN
 DO; /* successful query, set string for CEESTXF */
 IF LOCALE_NAME_COLLATE = 'Sv_SE.IBM-1047' THEN
 MBSTRING = '7,123,456.';
 ELSE
 MBSTRING = '8765432';

 MBNUMBER = LENGTH(MBSTRING);
 END;
 ELSE
 DO;
 DISPLAY ('Locale LC_COLLATE '||FC.MsgNo);
 STOP;
 END;

 TXFSTRING = ';
 CALL CEESTXF (*, MBSTRING, MBNUMBER,
 TXFSTRING, TXFLENGTH, FC);

 IF FBCHECK(FC, CEE000) THEN
 DO; /* successful call, use transformed length */
 IF TXFLENGTH >0 THEN
 DO;
 PUT SKIP LIST('Transformed string is '||
 SUBSTR(TXFSTRING,1, TXFLENGTH));
 END;
 END;
 ELSE
 DO;
 IF FBCHECK(FC, CEE3TF) THEN
 DO;
 DISPLAY ('Zero length input string');
 END;
 END;

 END PLISTXF;

Locale callable services

Chapter 22. Locale callable services 333

Locale callable services

334 z/OS: z/OS Language Environment Programming Guide

Chapter 23. General callable services

This topic describes the set of Language Environment callable services that provide general services.

List of general callable services
The general callable services are a set of callable services that are not directly related to a specific
Language Environment function.

Related callable services:
CEE3DLY

Suspends processing of an active enclave for a specified number of seconds up to a maximum of 1
hour.

CEE3DMP
Generates a dump of the Language Environment runtime environment and member language libraries.

CEE3INF
Returns information about the current enclave to the calling routine.

CEE3USR
Sets or queries one of two 4-byte fields known as the user area fields.

CEEDLYM
Suspends processing of an active enclave for a specified number of milliseconds up to a maximum of
1 hour.

CEEENV
CEEENV is a language-neutral callable service to get, set, clear, and unset Language Environment
variables.

CEEGPID
Retrieves Language Environment version and platform ID

CEEGTJS
Retrieves the value of an exported JCL symbol.

CEEMICT
Allows high-level language programs to manage the interoperability state of the current task.

CEERAN0
Generates a sequence of uniform pseudorandom numbers between 0.0 and 1.0.

CEETEST
Invokes a debug tool, such as the IBM z/OS Debugger.

CEEUSGD
Allows high-level languages to call the IFAUSAGE service for data collection.

For syntax information for the callable services, see z/OS Language Environment Programming Reference.

CEE3DLY callable service
CEE3DLY suspends processing of an active enclave for a specified number of seconds up to a maximum of
1 hour.

CEE3DMP callable service
CEE3DMP generates a dump of Language Environment and the member language libraries. Sections of
the dump are selectively included, depending on options specified with the options parameter. Output
from CEE3DMP is written to the default ddname CEEDUMP, unless you specify the ddname of another
file by using the FNAME option of CEE3DMP. The call to CEE3DMP does not cause your application to

General callable services

© Copyright IBM Corp. 1991, 2022 335

terminate. For an example of a dump and a description of the Language Environment dump service, see
CEE3DMP—Generate dump in z/OS Language Environment Programming Reference.

CEE3DMP can be called by your application when you want:

• A trace of calls so you can see the order in which applications were called.
• A dump of storage and control blocks.
• The status of files to determine if a file is open or closed and to see the buffer contents of the file.

If your application runs in a non-fork() address space, the CEEDUMP DD statement specifies the name
of the dump file. If your application runs in the z/OS UNIX environment, CEEDUMP DD can contain the
PATH= keyword, which specifies the fully qualified z/OS UNIX path and file name.

Specifying a target directory for CEEDUMPs
If your application runs in an address space for which you issued a fork() and the CEEDUMP DD data set
has not been dynamically allocated, the dump is directed according to the following order:

1. The directory found in environment variable _CEE_DMPTARG
2. Your current working directory, if it is not the root directory (/), and if this directory is writable, and

if the CEEDUMP path name (made up of the cwd path name plus the CEEDUMP file name) does not
exceed 1024 characters

3. The directory found in environment variable TMPDIR (which specifies the location of a temporary
directory other than /tmp)

4. The /tmp directory

The name of the dump is now CEEDUMP (or the name specified in the FNAME option of CEE3DMP)
suffixed with: date.time.process ID.

CEE3USR callable service
CEE3USR sets or queries one of two 4-byte fields known as the user area fields. The user area fields are
associated with an enclave and are maintained on an enclave basis. A user area might be used by vendor
or application programs to store a pointer to a global data area or to keep a recursion counter.

The Language Environment user area fields should not be confused with the PL/I user area. The PL/I user
area is a 4-byte field in the PL/I TCA and can only be accessed through assembler language. The PL/I user
area continues to be supported for compatibility.

CEEDLYM callable service
CEEDLYM suspends processing of an active enclave for a specified number of milliseconds up to a
maximum of 1 hour.

CEEENV callable service
CEEENV is a language-neutral callable service to get, set, clear, and unset environment variables.

CEEENV processes environment variables depending upon the input function code as follows:

• Obtain the value for an existing environment variable.
• Create a new environment variable with a value.
• Clear all environment variables.
• Delete an existing environment variable.
• Overwrite the value for an existing environment variable.

General callable services

336 z/OS: z/OS Language Environment Programming Guide

CEEGPID callable service
CEEGPID retrieves the Language Environment version ID and the platform ID. The version ID returned
by CEEGPID can be tested to determine if you can use new or extended functions that are available in
a particular release of Language Environment. For example, POSIX, ENVAR, and CEE3CIB are functions
available in Release 3. Before using any of these functions, you can test the Language Environment
version to make sure you are running on the release of Language Environment that supports them.

CEEGTJS callable service
CEEGTJS retrieves the value of an exported JCL symbol.

CEEMICT callable service
CEEMICT is a callable service that allows high-level language programs to manage the interoperability
state of the current task.

CEERAN0 callable service
CEERAN0 generates a sequence of uniform pseudo-random numbers between 0.0 and 1.0 using
the multiplicative congruential method with a user-specified seed. The numbers generated are
pseudorandom in that the same numbers are generated if the same seed key is used.

CEETEST callable service
CEETEST invokes a debug tool, such as the IBM z/OS Debugger. You can use a debug tool to monitor,
trace, and interact with your application while it runs. The invocation is dynamic; the debug tool starts
when errors are encountered, so you do not have to run your application under an active debug tool.

The z/OS UNIX dbx Debugging Feature, as well as the IBM z/OS Debugger, can be used to debug z/OS XL
C/C++ applications that run with POSIX(ON).

CEEUSGD callable service
CEEUSGD is a callable service that allows high-level languages to call the IFAUSAGE service for usage
data collection.

Using basic callable services
If you plan to use a Language Environment callable service, you must code a call to the service in your
source code, then recompile your source under the latest Language Environment-conforming version of
the language you are writing in. The standard call to a Language Environment service is different in each
language, but does not differ across operating systems.

The following examples illustrate how the CEEFMDT callable service is called in C, C++, PL/I, and COBOL.
CEEFMDT sets the default date and time formats for a specified country. In the examples, country is a
2-character fixed-length string representing a Language Environment-defined country code. Picture string
(pic_str or PICSTR) is a character string, containing the default date and time for the country, that is
returned by CEEFMDT. A feedback code (fc) returned from the service is checked to determine if the
service completed correctly.

General callable services

Chapter 23. General callable services 337

/*Module/File Name: EDCSTRT */
/**/
/* */
/* Function: CEEFMDT - Obtain default date and time format */
/* */
/**/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>

int main(void) {

 _FEEDBACK fc;
 _CHAR2 country;
 _CHAR80 date_pic;

 /* get the default date and time format for Canada */
 memcpy(country,"CA",2);
 CEEFMDT(country,date_pic,&fc);
 if (_FBCHECK (fc , CEE000) != 0) {
 printf("CEEFMDT failed with message number %d\n",
 fc.tok_msgno);
 exit(2999);
 }
 /* print out the default date and time format */
 printf("%.80s\n",date_pic);
}

Figure 91. z/OS XL C/C++ routine with a call to CEEFMDT

The following example shows how the CEEFMDT callable service is called in COBOL.

General callable services

338 z/OS: z/OS Language Environment Programming Guide

CBL LIB,QUOTE
 *Module/File Name: IGZTSTRT

 ** **
 ** CBLFMDT - Call CEEFMDT to obtain default **
 ** date & time format **
 ** **

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CBLFMDT.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 COUNTRY PIC X(2).
 01 PICSTR PIC X(80).
 01 FC.
 02 Condition-Token-Value.
 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.

 PROCEDURE DIVISION.
 PARA-CBLFMDT.
 **
 ** Specify country code for the US **
 **
 MOVE "US" TO COUNTRY.
 **
 ** Call CEEFMDT to return the default date and **
 ** time format for the US **
 **
 CALL "CEEFMDT" USING COUNTRY, PICSTR, FC.

 **
 ** If CEEFMDT runs successfully, display result.**
 **
 IF CEE000 of FC THEN
 DISPLAY "The default date and time "
 "format for the US is: " PICSTR
 ELSE
 DISPLAY "CEEFMDT failed with msg "
 Msg-No of FC UPON CONSOLE
 STOP RUN
 END-IF.

 GOBACK.

Figure 92. COBOL program with a call to CEEFMDT

The following example shows how the CEEFMDT callable service is called in PL/I.

General callable services

Chapter 23. General callable services 339

*PROCESS MACRO;
 /*Module/File Name: IBMSTRT
 /**/
 /** **/
 /** Function: CEEFMDT - obtain default **/
 /** date & time format **/
 /** **/
 /**/

 PLIFMDT: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW;
 %INCLUDE CEEIBMCT;

 DCL COUNTRY CHARACTER (2);
 DCL PICSTR CHAR(80);
 DCL 01 FC, /* Feedback token */
 03 MsgSev REAL FIXED BINARY(15,0),
 03 MsgNo REAL FIXED BINARY(15,0),
 03 Flags,
 05 Case BIT(2),
 05 Severity BIT(3),
 05 Control BIT(3),
 03 FacID CHAR(3), /* Facility ID */
 03 ISI /* Instance-Specific Information */
 REAL FIXED BINARY(31,0);

 COUNTRY = 'US'; /* Specify country code for */
 /* the United States */

 /* Call CEEFMDT to get default date format */
 /* for the US */
 CALL CEEFMDT (COUNTRY , PICSTR , FC);

 /* Print default date format for the US */
 IF FBCHECK(FC, CEE000) THEN DO;
 PUT SKIP LIST('The default date and time '
 || 'format for the US is ' || PICSTR);
 END;
 ELSE DO;
 DISPLAY('CEEFMDT failed with msg '
 || FC.MsgNo);
 STOP;
 END;

 END PLIFMDT;

Figure 93. PL/I routine with a call to CEEFMDT

See z/OS Language Environment Programming Reference for detailed instructions on how to call Language
Environment services and for more information about the CEEFMDT callable service.

General callable services

340 z/OS: z/OS Language Environment Programming Guide

Chapter 24. Math services

This topic introduces Language Environment math services and describes the call interface to the math
services.

What Language Environment math services does
Language Environment math services provide standard math computations and can be called from
Language Environment-conforming languages or from Language Environment-conforming assembler
routines.

You can invoke Language Environment math services by using the call interface or by using the C, COBOL,
Fortran, or PL/I built-in math functions specific to the HLL used in your application. For example, your
COBOL program can continue to use the built-in SIN function without having to be recoded to use the
CEESxSIN call interface.

Language Environment provides several bit manipulation routines to support existing Fortran functions.
The scalar versions of Language Environment bit manipulation routines can be called from programs
written in any language. For more information about using bit manipulation routines, see Bit manipulation
routines in z/OS Language Environment Programming Reference.

Related services
Math services:
CEESxABS

Absolute value
CEESxACS

Arccosine
CEESxASN

Arcsine
CEESxATH

Hyperbolic arctangent
CEESxATN

Arctangent
CEESxAT2

Arctangent of two arguments
CEESxCJG

Conjugate complex
CEESxCOS

Cosine
CEESxCSH

Hyperbolic cosine
CEESxCTN

Cotangent
CEESxDIM

Positive difference
CEESxDVD

Division
CEESxERC

Error function complement

Math services

© Copyright IBM Corp. 1991, 2022 341

CEESxERF
Error function

CEESxEXP
Exponential (base e)

CEESxGMA
Gamma function

CEESxIMG
Imaginary part of a complex

CEESxINT
Truncation

CEESxLGM
Log gamma function

CEESxLG1
Logarithm base 10

CEESxLG2
Logarithm base 2

CEESxLOG
Logarithm base e

CEESxMLT
Floating-point complex multiplication

CEESxMOD
Modular arithmetic

CEESxNIN
Nearest integer

CEESxNWN
Nearest whole number

CEESxSGN
Transfer of sign

CEESxSIN
Sine

CEESxSNH
Hyperbolic sine

CEESxSQT
Square root

CEESxTAN
Tangent

CEESxTNH
Hyperbolic tangent

CEESxXPx
Exponential (**)

Bit manipulation routines:
CEESICLR

Bit clear
CEESISET

Bit set
CEESISHF

Bit shift
CEESITST

Bit test

Math services

342 z/OS: z/OS Language Environment Programming Guide

See z/OS Language Environment Programming Reference for syntax and examples of the math services
and bit manipulation routines.

Call interface to math services
The syntax for math services has two forms, depending on how many input parameters the routine
requires. The first four letters of the math services are always CEES. The fifth character is x, which you
replace according to the parameter types listed in “Parameter types: parm1 type and parm2 type” on
page 343. The last three letters indicate the math function performed. In these examples, the function
performed is the absolute value (ABS).

For one parameter:

CEESxABS (parm1 , fc , result)

For two parameters:

CEESxDIM (parm1 , parm2 , fc , result)

Parameter types: parm1 type and parm2 type
The first parameter (parm1) is mandatory. The second parameter (parm2) is used only when you use a
math service with two parameters. The x in the fifth space of CEESx must be replaced by a parameter type
for input and output. Substitute I, S, D, Q, T, E, or R for x:
I

32-bit binary integer
S

32-bit single floating-point number
D

64-bit double floating-point number
Q

128-bit extended floating-point number
T

32-bit single floating-complex number (comprised of a 32-bit real part and a 32-bit imaginary part)
E

64-bit double floating-complex number (comprised of a 64-bit real part and a 64-bit imaginary part)
R

128-bit extended floating-complex number (comprised of a 128-bit real part and a 128-bit imaginary
part)

Language Environment math services expect normalized input. Unless otherwise noted, the result has the
same parameter type as the input argument. (For functions of complex variables, the image of the input
is generally a nonrectangular shape. For this reason, the output range is not provided.) In the routines
described in this topic, the output range for complex-valued functions can be determined from the input
range.

C, C++, COBOL, Fortran, and PL/I offer built-in math functions that you can also use under Language
Environment.

Simulation of extended-precision floating-point arithmetic is not supported in PL/I routines under CICS.

Examples of calling math services
The following examples illustrate calls to the CEESSLOG math service to calculate the logarithm base e of
an argument.

Math services

Chapter 24. Math services 343

Calling CEESSLOG in C and C++

/*Module/File Name: EDCMATH */
/**/
/* */
/* This routine demonstrates calling the math service */
/* CEESSLOG in C/370 */
/**/

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <leawi.h>
#include <ceeedcct.h>

int main (void) {

 float int1, intr;

 _FEEDBACK fc;

 int1 = 39;
 CEESSLOG(&int1,&fc,&intr);
 if (_FBCHECK (fc , CEE000) != 0)
 {
 printf("CEESSLOG failed with message number %d\n",
 fc.tok_msgno);
 exit(2999);
 }

 printf("Log base e of %f is %f\n",int1,intr);
}

Figure 94. C/C++ call to CEESSLOG — Logarithm base e

Math services

344 z/OS: z/OS Language Environment Programming Guide

Calling CEESSLOG in COBOL

CBL LIB,QUOTE

 *Module/File Name: IGZTMATH
 **
 ** **
 ** Demonstrates the CEESSLOG math service in COBOL. **
 ** **
 **
 IDENTIFICATION DIVISION.
 PROGRAM-ID. MTHSLOG.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 ARG1RS COMP-1.
 01 RESLTRS COMP-1.
 01 FC.
 02 Condition-Token-Value.
 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID
 REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.

 PROCEDURE DIVISION.

 PARA-MTHSLOG.

 MOVE 5.65 TO ARG1RS.
 CALL "CEESSLOG" USING ARG1RS, FC, RESLTRS.

 ** If CEESSLOG runs successfully, display result.**

 IF CEE000 of FC THEN
 DISPLAY "SLOG OF " ARG1RS " = " RESLTRS
 ELSE
 DISPLAY "CEESSLOG failed with msg "
 Msg-No of FC UPON CONSOLE
 STOP RUN
 END-IF.

 GOBACK.

Figure 95. Call to CEESSLOG — Logarithm base e in COBOL

Math services

Chapter 24. Math services 345

Calling CEESSLOG in PL/I

*PROCESS MACRO;
 /*Module/File Name: IBMMATH */
 /**/
 /* */
 /* Demonstrates the CEESSLOG math service in PL/I. */
 /* */
 /**/

 MTHSLOG: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW;
 %INCLUDE CEEIBMCT;

 DCL 01 FC, /* Feedback token */
 03 MsgSev REAL FIXED BINARY(15,0),
 03 MsgNo REAL FIXED BINARY(15,0),
 03 Flags,
 05 Case BIT(2),
 05 Severity BIT(3),
 05 Control BIT(3),
 03 FacID CHAR(3), /* Facility ID */
 03 ISI /* Instance-Specific Information */
 REAL FIXED BINARY(31,0);
 DCL ARG1 REAL FLOAT DECIMAL(6) INIT(5.65);
 DCL RESULT REAL FLOAT DECIMAL(6);

 CALL CEESSLOG (ARG1, FC, RESULT);
 IF FBCHECK(FC, CEE000) THEN
 PUT SKIP LIST('SLOG OF ' || ARG1 || ' is ' || RESULT);
 ELSE
 PUT SKIP LIST('CEESLOG failed with msg '|| FC.MsgNo);

 END MTHSLOG;

Figure 96. Call to CEESSLOG — Logarithm base e in PL/I

Math services

346 z/OS: z/OS Language Environment Programming Guide

Part 4. Using interfaces to other products

Language Environment can be used with applications that run under CICS, Db2, and IMS.

© Copyright IBM Corp. 1991, 2022 347

348 z/OS: z/OS Language Environment Programming Guide

Chapter 25. Running applications under CICS

Language Environment provides support that, when used in conjunction with facilities provided by the
Customer Information Control System (CICS) product, permits you to write applications in high-level
languages and run them in a CICS environment. Some of the Language Environment-conforming HLLs
might require a later version of CICS. Check the required software list for each language you plan to use.

You can code an application that runs in a CICS environment in Language Environment-conforming
assembler, C, C++, COBOL, or PL/I. There is no support for any Fortran routines under CICS. Also,
Language Environment-conforming assembler main routines are supported back to z/OS V1R4 when
running with CICS transaction Server for z/OS Version 3.1 or later. There is no such restriction on the use
of assembler subroutines.

This topic describes special features and considerations that apply to Language Environment-conforming
applications running in a CICS environment.

Applications running with POSIX(ON) are only supported in a CICS OTE environment. If you try running
an application with POSIX(ON) under non-OTE CICS, it will be overridden with POSIX(OFF) and execution
continues. For more information about XPLINK under CICS, go to CICS Transaction Server for z/OS
(www.ibm.com/docs/en/cics-ts).

Applications compiled with the XPLINK compiler option are not supported under CICS on releases earlier
than CICS TS 3.1. The XPLINK runtime option is ignored under CICS.

CICS does not support PL/I MTF applications.

Terminology used in the Language Environment program model
Before discussing how to develop and run Language Environment-conforming applications in a CICS
environment, it is important to map familiar CICS terminology to the terminology used in the Language
Environment program model described in Chapter 13, “Program management model,” on page 137.

CICS region
A CICS region is a fixed-size subdivision of main storage allocated to a job step or system task. For
example, a CICS region is established during CICS initialization (start-up job). Initialization of a region
creates a common environment for all CICS transactions running in that environment. There are no unique
Language Environment services that can be applied at a region level.

CICS transaction
A CICS transaction is initiated by a single request, usually from a terminal. A CICS transaction is
equivalent to a Language Environment process. A Language Environment process consists of one or more
enclaves that carry out the needed processing when they are run. When a CICS transaction is initiated,
the first Language Environment thread is triggered within the first enclave in the Language Environment
process.

For example, the insertion of a bank card into an ATM machine might trigger a Language Environment
process (CICS transaction) consisting of one or more enclaves (CICS run units) to read the information
on the card. After an ATM machine reads a bank card, the validation of the information on the card might
be performed by one enclave, processing the user's personal ID number might be performed by another
enclave, processing a user request by another, and dispensing the cash by a final enclave.

CICS run unit
A CICS run unit consists of a bound set of one or more load modules that can be loaded by the CICS
program loader. Run units are equivalent to Language Environment enclaves. Any link-edited load module
is an enclave in CICS; each enclave has its own entry in the CICS PPT. Under CICS, it is possible for a

Running applications under CICS

© Copyright IBM Corp. 1991, 2022 349

https://www.ibm.com/docs/en/cics-ts
https://www.ibm.com/docs/en/cics-ts

single enclave to have multiple load modules link-edited with separate entries in the PPT. Each enclave
has its own heap storage and other Language Environment resources associated with it.

An enclave is invoked when a Language Environment process (CICS transaction) is triggered or when it
is passed control from another enclave using the EXEC CICS LINK or EXEC CICS XCTL commands. For
details on using EXEC CICS LINK or EXEC CICS XCTL commands, see “Creating child enclaves with EXEC
CICS LINK or EXEC CICS XCTL” on page 470.

Running Language Environment applications under CICS
The following steps describe basic application execution under CICS:

1. An event, generally the receipt of an input message containing a transaction ID code, triggers a
Language Environment process (CICS transaction).

2. CICS looks up the transaction ID code in the program control table (PCT) and gets the name of the
enclave (or the first enclave) to execute the process.

3. CICS defines the process (transaction) as a work item that is dispatched by the CICS task dispatcher.
4. After the process is defined, CICS looks up the identity of the enclave that is required to perform the

task in the processing program table (PPT). The PPT contains information about the enclave such as its
language, whether it is in storage, and if in storage, its use count and entry point address.

5. CICS calls the Language Environment-CICS runtime level interface to initialize the process-related
portions of the runtime environment.

6. If the enclave does not perform all the processing associated with the process, the enclave might pass
control to another enclave through a language call or through the EXEC CICS LINK or EXEC CICS XCTL
commands.

7. When the process is complete, CICS calls the Language Environment-CICS runtime level interface to
terminate the process-related portions of the runtime environment.

Developing an application under CICS
Certain coding restrictions apply when you develop an application to run under CICS. Examples are:

• Input/output restrictions — CICS provides its own I/O facilities using various EXEC CICS commands.
• Multitasking — CICS has its own multitasking capability.

After you code your application, you must run it through a CICS translator. The translator accepts as
input an application containing EXEC CICS commands and produces as output an equivalent application
in which each CICS command has been translated into the language of the source. The CICS translator
runs in a separate job step. The job step sequence for preparing and running an application under CICS is:

1. Code
2. Translate
3. Compile
4. Prelink
5. Link-edit
6. Run

For more information about developing an application under CICS, go to CICS Transaction Server for z/OS
(www.ibm.com/docs/en/cics-ts).

PL/I coding considerations under CICS
CICS imposes some coding restrictions on PL/I routines.
MTF routines

CICS does not support PL/I MTF applications.

Running applications under CICS

350 z/OS: z/OS Language Environment Programming Guide

https://www.ibm.com/docs/en/cics-ts
https://www.ibm.com/docs/en/cics-ts

Built-in subroutines
There are some restrictions on the use of the built-in subroutines of PL/I.

• You cannot use the PLISRTx interfaces, PLICKPT or PLICANC.
• You can use PLIRETC and PLIRETV to communicate between user-written routines that are link-

edited together, but not to communicate with CICS. See “Managing return codes in Language
Environment” on page 130 for details.

Debugging facilities
CICS transactions can be debugged by using the IBM z/OS Debugger. To prepare your program to use
the debug tool, you must compile with the TEST option. For more information about debugging under
Language Environment, see z/OS Language Environment Debugging Guide. For more information about
debugging CICS transactions using the debug tool, go to the IBM z/OS Debugger (developer.ibm.com/
mainframe/products/ibm-zos-debugger).

Language I/O facilities
You can use only a subset of PL/I I/O facilities under CICS.

• OPEN/CLOSE can be used, but only for the SYSPRINT file
• You can use stream output only to the SYSPRINT file. For performance reasons, you should use

stream output under CICS only when debugging your applications.

Those PL/I I/O facilities that you cannot use under CICS are:

• Record I/O statements
• Stream input
• DISPLAY statement
• DELAY statement
• STOP statement
• WAIT statement
• PL/I I/O-related conditions such as RECORD, TRANSMIT, ENDFILE, and KEY are not raised under

CICS, because I/O is not performed using PL/I files (except SYSPRINT) and I/O statements. CICS
file-handling facilities are used instead. If CICS detects an I/O condition during the processing of
your commands, CICS deals with the condition in the way defined in the CICS information.

Assembler considerations
When running with a release of CICS TS earlier than CICS TS 3.1, Language Environment-conforming
assembler main routines are not supported under CICS.

Link-edit considerations under CICS
You can link-edit Language Environment-conforming applications that are to be executed under CICS as if
they were MVS batch applications. If your C, C++, COBOL, or PL/I application uses EXEC CICS commands,
however, you must also link-edit the EXEC CICS interface stub, DFHELII, with your application. To be link-
edited with your application, DFHELII must be available in the link-edit SYSLIB concatenation; DFHELII
is in the SDFHLOAD library. For more information, go to CICS Transaction Server for z/OS (www.ibm.com/
docs/en/cics-ts).

C and C++ considerations
C and C++ applications must be link-edited AMODE(31), RMODE(ANY), as shown in “C/C++ AMODE/
RMODE considerations” on page 10.

COBOL considerations
DFHELII is compatible with the DFHECI stub provided for COBOL programs. Although DFHECI is still
supported under Language Environment, DFHELII offers some advantages. Whereas the old COBOL stub

Running applications under CICS

Chapter 25. Running applications under CICS 351

http://developer.ibm.com/mainframe/products/ibm-zos-debugger
http://developer.ibm.com/mainframe/products/ibm-zos-debugger
https://www.ibm.com/docs/en/cics-ts
https://www.ibm.com/docs/en/cics-ts

had to be link-edited at the top of your application, DFHELII can be linked anywhere in the application.
You also have the capability of linking ILC applications with a single stub rather than with multiple stubs.

PL/I considerations
CEESTART is the only entry point for Enterprise PL/I for z/OS and PL/I for MVS & VM applications. To relink
OS PL/I object modules with z/OS Language Environment, you must use the following linkage-editor
statements:

INCLUDE SYSLIB(CEESTART)
INCLUDE SYSLIB(CEESG010)
INCLUDE SYSLIB(DFHELII)
REPLACE PLISTART
CHANGE PLIMAIN(CEEMAIN)
INCLUDE objlib(objmod)
⋮
ORDER CEESTART
ENTRY CEESTART
NAME loadmod(R)

where:
objlib

Represents the PDS that contains the object code
objmod

Represents the name of the object module
loadmod

Represents the name of the resultant load module

The INCLUDE statement for the object module must occur immediately after the CHANGE statement. The
object module of the main procedure must be included before the object modules of subroutines, if any;
this was not required for OS PL/I applications.

CICS processing program table (PPT) considerations
All of the routines that you dynamically call or fetch in your application must be defined in the CICS PPT.
Previously, you had the following choices for the LANG option of the PPT entry: ASM, C, COBOL, and PLI.

Now, however, you can specify 'Language Environment' (Language Environment) as the language of any
Language Environment-conforming routine. This can save you time when you replace a routine with one
written in a different language, because you do not need to redefine the routine in the PPT. C++ programs
and all Enterprise PL/I for z/OS CICS programs must specify LANG (Language Environment) for the PPT
entry.

Specifying runtime options under CICS
Under CICS, you cannot pass runtime options as parameters when the application is invoked. However,
you can specify runtime options for your application using one of the following methods:

• As system-level default options in a CEEPRMxx parmlib member.
• As CICS region-level default options established in CEEROPT.
• In C++ programs, as static ILC to C modules that have a #pragma runopts statement
• As application defaults established in CEEUOPT. See “Creating application-specific runtime option

defaults with CEEXOPT” on page 103 for details.
• In the user exit. For more information, see “CEEBXITA assembler user exit interface” on page 376.
• In C applications, as options specified using #pragma runopts. See the description in “Methods

available for specifying runtime options” on page 99 for information about #pragma runopts.
• In PL/I applications, as options specified using the PLIXOPT string. See the description in “Methods

available for specifying runtime options” on page 99 for information about the PLIXOPT string.

Running applications under CICS

352 z/OS: z/OS Language Environment Programming Guide

Some runtime options have different defaults and exhibit slightly different behavior while executing under
CICS. The options are listed in Table 57 on page 353.

Table 57. Runtime option behavior under CICS

Option Description

ABPERC ABPERC is ignored.

ABTERMENC ABTERMENC(ABEND) is the IBM-supplied default under CICS.

AIXBLD AIXBLD is ignored.

ALL31 ALL31(ON) is the IBM-supplied default under CICS.

ANYHEAP ANYHEAP(4K,4080,ANY,FREE) is the IBM-supplied default under CICS. Both the initial
size and the increment size are rounded to the nearest multiple of 8 bytes. In addition,
if ANYHEAP(0) is specified, the initial HEAP is obtained on the first use and will be
based on the increment size. The maximum initial and increment size for ANYHEAP is 1
gigabyte (1024M).

ARGPARSE ARGPARSE is ignored.

AUTOTASK AUTOTASK is ignored.

BELOWHEAP BELOWHEAP(4K,4080,FREE) is the IBM-supplied default under CICS. Both the initial
size and the increment size are rounded to the nearest multiple of 8 bytes. In addition, if
BELOWHEAP(0) is specified, then the initial HEAP is obtained on the first use and will be
based on the increment size.

CBLOPTS CBLOPTS is ignored.

CBLPSHPOP ON is the IBM-supplied default under CICS.

CBLQDA CBLQDA is ignored.

CHECK ON is the IBM-supplied default under CICS.

COUNTRY The value specified is user-defined.

DEBUG DEBUG is ignored.

DEPTHCONDLMT For C, COBOL, FORTRAN, and applications with multiple languages, the recommended
value is 10. For PL/I, the recommended value is 0.

ENV ENV is ignored.

ENVAR ENVAR sets the initial value for environment variables. With ENVAR, you can pass
switches or tagged information into the application using standard z/OS UNIX functions
getenv(), setenv(), and clearenv().

ERRCOUNT ERRCOUNT(0) is the IBM-supplied default under CICS.

ERRUNIT ERRUNIT is ignored.

EXECOPS EXECOPS is ignored.

FILEHIST FILEHIST is ignored.

FILETAG FILETAG is ignored.

FLOW NOFLOW is the IBM-supplied default under CICS.

HEAP HEAP(4K,4080,ANY,KEEP,4K,4080) is the IBM-supplied default under CICS. Both the
initial size and the increment size are rounded to the next multiple of 8 bytes. In
addition, if HEAP(0) is specified, then the initial HEAP is obtained on the first use and will
be based on the increment size. The maximum initial and increment size for HEAP is 1
gigabyte (1024M).

Running applications under CICS

Chapter 25. Running applications under CICS 353

Table 57. Runtime option behavior under CICS (continued)

Option Description

HEAPCHK HEAPCHK(OFF,1,0,0,0,1024,0,1024,0) is the IBM-supplied default under CICS.

HEAPPOOLS HEAPPOOLS(OFF,8,10,32,10,128,10,256,10,1024,10,2048,10,0,10,0,10,0,10,0,10,0,1
0,0,10) is the IBM-supplied default under CICS.

HEAPZONES HEAPZONES(0,ABEND,0,ABEND) is the IBM-supplied default under CICS

INQPCOPN INQPCOPN is ignored.

INTERRUPT INTERRUPT is ignored.

LIBSTACK LIBSTACK(32,4080,FREE) is the IBM-supplied default under CICS. Both the initial size
and the increment size are rounded to the nearest multiple of 8 bytes. The minimum
initial size is 32 bytes; the minimum increment size is 4080 bytes. When ALL31 is ON,
LIBSTACK is not allocated below the 16M line.

MSGFILE MSGFILE is ignored. All messages and output (dumps and reports, for example) are sent
to a transient data queue called CESE (for more information, see “Runtime output under
CICS” on page 360).

MSGQ 15 is the IBM-supplied default under CICS.

NATLANG ENU is the IBM-supplied default under CICS.

NONIPTSTACK NONIPTSTACK is ignored.

OCSTATUS OCSTATUS is ignored.

PAGEFRAMESIZE PAGEFRAMESIZE is ignored. Note the statement of direction associated with this
runtime option.

PC PC is ignored.

PLIST PLIST is ignored.

PLITASKCOUNT PLITASKCOUNT is ignored.

POSIX POSIX is ignored.

PROFILE PROFILE(OFF) is the IBM-supplied default under CICS.

PRTUNIT PRTUNIT is ignored.

PUNUNIT PUNUNIT is ignored.

RDRUNIT RDRUNIT is ignored.

RECPAD RECPAD is ignored.

REDIR REDIR is ignored.

RTEREUS RTEREUS is ignored.

SIMVRD SIMVRD is ignored.

STACK STACK(4K,4080,ANY,KEEP,,) is the IBM-supplied default under CICS.

STORAGE STORAGE(NONE,NONE,NONE,0K) is the IBM-supplied default under CICS. Your
application could require a different setting. For example, to initialize memory to zeros,
use STORAGE(00,00,00).

TERMTHDACT All TERMTHDACT output (including that from dumps) is written to a transient data queue
named CESE.

TEST NOTEST(ALL,*,PROMPT,INSPPREF) is the IBM-supplied default under CICS.

Running applications under CICS

354 z/OS: z/OS Language Environment Programming Guide

Table 57. Runtime option behavior under CICS (continued)

Option Description

THREADHEAP THREADHEAP is ignored.

THREADSTACK THREADSTACK is ignored.

TRACE TRACE(OFF,4K,DUMP,LE=0) is the IBM-supplied default under CICS.

TRAP TRAP(ON,SPIE) is the IBM-supplied default under CICS.

UPSI UPSI(00000000) is the IBM-supplied default under CICS.

USERHDLR The specified value is user-defined.

VCTRSAVE VCTRSAVE(OFF) is the IBM-supplied default under CICS.

XPLINK XPLINK is ignored.

XUFLOW XUFLOW(AUTO) is the IBM-supplied default under CICS.

Accessing DLI databases from CICS
Various user interfaces to DLI databases on IMS are available under CICS. See Appendix B, “EXEC DLI
and CALL IMS Interfaces,” on page 501 for details.

Using callable services under CICS
All Language Environment callable services are available to applications executing as CICS transactions.
However, the CEEMOUT (dispatch a message) and CEE3DMP (generate dump) services differ, in that the
messages and dumps are sent to a transient data queue called CESE rather than to the ddname specified
in the MSGFILE runtime option.

See z/OS Language Environment Writing Interlanguage Communication Applications for ILC examples that
make a call to CEEMOUT.

OS/VS COBOL compatibility considerations under CICS
OS/VS COBOL programs, which had runtime support in CICS® Transaction Server for z/OS®, Version 2,
cannot run under CICS TS for z/OS, Version 3 or later.

Using math services in PL/I under CICS
Simulation of extended-precision floating-point arithmetic is not supported in PL/I routines under CICS.

PL/I saves and restores floating-point registers where necessary. PLIDUMP can print these registers
(for more information about PLIDUMP, see PLIDUMP syntax and options in z/OS Language Environment
Debugging Guide).

Floating-point overflow and underflow can be handled in OVERFLOW and UNDERFLOW ON-units. The
program mask is set appropriately for the levels of CICS and PL/I used.

Coding program termination in PL/I under CICS
You can terminate a PL/I routine running under CICS by using PL/I constructs or CICS statements such as
EXEC CICS RETURN, EXEC CICS SEND PAGE RELEASE, EXEC CICS XCTL, or EXEC CICS ABEND. When the
routine terminates, the following occurs:

1. If you requested a storage report using the RPTSTG runtime option, the report is written to the CESE
transient data queue (described in “Runtime output under CICS” on page 360).

2. If CESE is still open, it is closed.
3. All storage acquired by PL/I is freed before control returns to CICS, except for the stack.

Running applications under CICS

Chapter 25. Running applications under CICS 355

Storage management under CICS
Applications can allocate and free storage explicitly through language facilities, CICS facilities or the
Language Environment storage management callable services. For more information about the EXEC CICS
GETMAIN and FREEMAN commands, go to CICS Transaction Server for z/OS (www.ibm.com/docs/en/
cics-ts).

If you do not explicitly free storage that was allocated through language facilities or Language
Environment callable services, the storage is freed at enclave termination.

CICS short-on-storage condition
The CICS short-on-storage condition might be raised under Language Environment if functions in your
application attempt to acquire storage by using language facilities and not enough storage is available to
satisfy the request. CICS places the transaction on a queue until the storage request can be satisfied.
If CICS cannot get enough storage in a reasonable amount of time to satisfy the request, then the
transaction that issued the storage request is terminated by CICS with abend code AKCP.

CICS storage protect facility
The CICS Storage Protect Facility allows you to isolate user applications from CICS storage.
For information about the CICS Storage Protect Facility, go to CICS Transaction Server for z/OS
(www.ibm.com/docs/en/cics-ts).

All storage that Language Environment acquires on behalf of the user, such as working storage, heap, and
stack, it acquires in the default key specified on the transaction. All storage that Language Environment
acquires for its own use, such as control blocks, it acquires using USERDATAKEY storage. Applications
running with Language Environment can obtain CICSDATAKEY storage by using the EXEC CICS interface.

PL/I storage considerations under CICS
Special storage considerations for running PL/I applications under CICS are described in the following
topics

Initializing static external data
You must initialize static external data under CICS because CICS cannot handle common CSECTs.

PL/I object program size
The load module resulting from a PL/I application must not occupy more than 524,152 bytes of main
storage. An exception is that an RMODE=ANY program can occupy 16 megabytes, although this is not
recommended.

Using CICS storage constructs instead of PL/I language statements
In the case when a PL/I routine (routine A, for example) issues an EXEC CICS LINK to another PL/I routine
(routine B, for example), you might want to use EXEC CICS GETMAIN and FREEMAIN commands to get
and free storage. This is because the scope of EXEC CICS GETMAIN is the scope of the entire task, not just
a single routine. Either routine A or routine B can explicitly free the storage. Alternatively, you can choose
to not explicitly free the storage in either routine, but allow the storage to be freed automatically when the
task is terminated. Another advantage to using EXEC CICS GETMAIN is that if routine A terminates, the
storage is still available to routine B.

When you use PL/I language statements to get and free storage, the scope of PL/I storage statements
is the routine, not the task. Although routine B can alter the storage allocated by routine A by using a
pointer, routine B cannot free the storage. In addition, if routine A terminates, the storage is automatically
freed. Routine B can no longer access the storage.

Running applications under CICS

356 z/OS: z/OS Language Environment Programming Guide

https://www.ibm.com/docs/en/cics-ts
https://www.ibm.com/docs/en/cics-ts
https://www.ibm.com/docs/en/cics-ts
https://www.ibm.com/docs/en/cics-ts

PL/I storage classes
When using CICS, you should avoid altering STATIC storage. Doing so violates reentrancy and can yield
unpredictable results. Instead of altering STATIC storage, you should make most or all user variables that
are changed while the routine is running AUTOMATIC. Those user variables with initial values that never
change should be declared STATIC INITIAL.

Although AUTOMATIC storage provides reentrancy and should suffice for most purposes, you can also
allocate and free storage with the ALLOCATE and FREE statements, which you can use to allocate and free
BASED and CONTROLLED variables. References you make to BASED storage are handled with the pointer
set by the ALLOCATE statement. The pointer itself can be AUTOMATIC.

You can use CONTROLLED storage under CICS, because it is consistent with reentrancy.

Using PUT DATA with BASED storage
BASED storage is used extensively in CICS transactions. You therefore need to be aware of the following
restriction on PUT DATA.

In PL/I, you cannot code:

PUT DATA (P -> VAR);

If, however, VAR was declared as BASED (P), the value of the generation of VAR to which P points can be
coded as:

PUT DATA (VAR);

Using STORAGE built-in functions
The STORAGE and CURRENTSTORAGE built-in functions return the length of an item to your PL/I routine.
This is useful in CICS, where functions often require the length of an argument as well as its address.
In particular, you can use these functions to get lengths of PL/I aggregates without having to count or
compute such lengths or specify length fields in the CICS commands.

For more information about the STORAGE and CURRENTSTORAGE built-in functions, see the IBM
Enterprise PL/I for z/OS library (www.ibm.com/support/docview.wss?uid=swg27036735).

Condition handling under CICS
The Language Environment condition handling services described in Chapter 15, “Introduction to
Language Environment condition handling ,” on page 165 and in other topics are supported under CICS,
but additional considerations apply when running an application under CICS; these considerations are
described in the following topics

Condition handling in nested enclaves created by EXEC CICS LINK or EXEC CICS XCTL is discussed in
“How conditions arising in child enclaves are handled” on page 470.

PL/I considerations for using the CICS HANDLE ABEND command
The EXEC CICS HANDLE facility resembles a PL/I ON-unit with this syntax:

ON condition GO TO label;

You can code the HANDLE command wherever you would code the ON...GO TO...statement. The label to
be branched to can be located in any other active block, and the condition can arise in an even later block.
HANDLE terminates intervening PL/I blocks by invoking PL/I's out-of-block GO TO facilities.

Note: Because PL/I internal procedures are not active at all times, you should not use internal procedures
as exit routines in HANDLE commands.

Running applications under CICS

Chapter 25. Running applications under CICS 357

http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735

HANDLE is not semantically identical to the ON condition GO TO label; statement. A PL/I ON-unit
disappears when the block containing it terminates; a CICS HANDLE disappears permanently when it is
explicitly overridden by another one at the same logical LINK level.

A HANDLE command could specify a branch to a label in a block no longer active. Because HANDLE is
implemented by forcing a PL/I out-of-block GO TO, this is equivalent to assigning a label constant to a
PL/I label variable after the block containing the label constant has terminated, which is invalid. The PL/I
out-of-block GO TO mechanism attempts to detect this error and raises the ERROR condition. If PL/I
out-of-block GO TO fails to detect such an invalid GO TO, however, the GO TO becomes a wild branch
that causes some unpredictable failure. Thus, upon return from a PL/I block that established HANDLE
for a particular condition, your program should issue a resetting HANDLE for that condition (provided, of
course, that there is still some possibility of the condition arising). A PL/I ON-unit does not have to be
reset.

Effect of the CICS HANDLE ABEND command
When an application is running under CICS with Language Environment, condition handling differs
depending on whether a CICS HANDLE ABEND is active or not active.

When a CICS HANDLE ABEND is active, Language Environment condition handling does not gain control
for any abends or program interrupts. Any abends or program interrupts that occur while a CICS HANDLE
ABEND is active cause the action defined in the CICS HANDLE ABEND to take place. The user-written
condition handlers established by CEEHDLR are ignored.

When a CICS HANDLE ABEND is not active, Language Environment condition handling does gain control
for abends and program interrupts if the TRAP(ON) option is specified. Normal Language Environment
condition handling is then performed.

Effect of the CICS HANDLE CONDITION and CICS HANDLE AID
Language Environment condition handling does not alter the behavior of applications that use CICS
HANDLE CONDITION or CICS HANDLE AID. The CICS CONDITION and AID conditions are raised by CICS
and are handled only by CICS; Language Environment is not involved in the handling of CICS conditions.

Restrictions on user-written condition handlers under CICS
The following EXEC CICS commands cannot be used within a user-written condition handler established
using CEEHDLR, or within any routine called by the user-written condition handler:

• EXEC CICS ABEND
• EXEC CICS HANDLE AID
• EXEC CICS HANDLE ABEND
• EXEC CICS HANDLE CONDITION
• EXEC CICS IGNORE CONDITION
• EXEC CICS POP HANDLE
• EXEC CICS PUSH HANDLE

All other EXEC CICS commands are allowed within a user-written condition handler. However, they must
be coded using the NOHANDLE option, the RESP option, or the RESP2 option. This prevents additional
conditions being raised due to a CICS service failure.

COBOL considerations
A user-written condition handler registered for a routine using the CEEHDLR service cannot be translated
using the CICS translator and therefore cannot contain any EXEC CICS commands. This is because the
CICS translator inserts (onto the PROCEDURE DIVISION header of the COBOL program) the arguments
EXEC Interface Block (EIB) and COMMAREA, which do not match arguments passed by Language
Environment.

Running applications under CICS

358 z/OS: z/OS Language Environment Programming Guide

However, a user-written condition handler can call a subroutine to perform EXEC CICS commands. If
arguments need to be passed to this subroutine, they should be preceded by two dummy arguments in
the caller. The called subroutine must issue EXEC CICS ADDRESS EIB before executing any other EXEC
CICS commands.

CICS transaction abend codes
The same Language Environment reserved abend codes (4000 through 4095) are used for applications
running under CICS. In addition, there are special reason codes returned to CICS for severe Language
Environment conditions. These severe conditions are CICS-specific. For a detailed explanation of these
reason codes, see Return codes to CICS in z/OS Language Environment Runtime Messages.

Using the CBLPSHPOP runtime option under CICS
This topic applies to Enterprise COBOL for z/OS, COBOL for OS/390 & VM, COBOL for MVS & VM, COBOL/
370, and VS COBOL II programs only

The CBLPSHPOP runtime option controls whether the Language Environment environment automatically
issues an EXEC CICS PUSH HANDLE command during initialization and an EXEC CICS POP HANDLE
command during termination whenever a COBOL subroutine is called.

If your application calls COBOL subroutines under CICS, your application performance is better with
CBLPSHPOP(OFF) than with CBLPSHPOP(ON). You can set CBLPSHPOP on a transaction-by-transaction
basis by using CEEUOPT.

For more information about CBLPSHPOP, see CBLPSHPOP (COBOL only) in z/OS Language Environment
Programming Reference.

Restrictions on assembler user exits under CICS
The following EXEC CICS commands cannot be used within the assembler user exit or any routines called
by the assembler user exit:

• EXEC CICS ABEND
• EXEC CICS HANDLE AID
• EXEC CICS HANDLE ABEND
• EXEC CICS HANDLE CONDITION
• EXEC CICS PUSH HANDLE
• EXEC CICS POP HANDLE
• EXEC CICS IGNORE CONDITION

All other EXEC CICS commands are allowed within the assembler user exit. However, they must be coded
using the NOHANDLE option, the RESP option, or the RESP2 option. This prevents additional conditions
being raised due to a CICS service failure.

See Chapter 28, “Using runtime user exits,” on page 371 for a discussion of the assembler user exits
available under Language Environment.

PL/I considerations
You can use PLIRETC to communicate with the Language Environment assembler user exit. For more
information about PLIRETC, see “For PL/I” on page 132. For more information about the assembler user
exit, see Chapter 28, “Using runtime user exits,” on page 371.

The CICS user exit for PL/I, IBMFXITA, is supported for compatibility by Language Environment. For
migration information, see IBM Enterprise PL/I for z/OS library (www.ibm.com/support/docview.wss?
uid=swg27036735).

Running applications under CICS

Chapter 25. Running applications under CICS 359

http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735

Ensuring transaction rollback under CICS
Conditions that occur while an application is executing under CICS can potentially contaminate any
database currently being used by the application. It is essential that a rollback (the backing out of any
updates made by the failing application) be performed before further damage to the database can occur.

There are two ways to ensure that a transaction rollback occurs when an unhandled condition of severity
2 or greater is detected:

• Use the ABTERMENC(ABEND) runtime option, or
• Make sure the assembler user exit requests an abend for unhandled conditions of severity 2 or greater.

See ABTERMENC in z/OS Language Environment Programming Reference for an explanation of the
ABTERMENC runtime option. For more information about using assembler user exits, see Chapter 28,
“Using runtime user exits,” on page 371.

Runtime output under CICS
Language Environment provides the same message handling and dump services for CICS as it does for
non-CICS systems. Any exceptions to this support under CICS are noted in the following topics.

Message handling under CICS
The MSGFILE runtime option is ignored under CICS, because messages for a run unit are directed instead
to the CICS transient data queue named CESE.

Messages are prefixed by a terminal ID, a transaction ID, a date, and a timestamp before their
transmission. Figure 97 on page 360 illustrates this format.

ASA

1 1 14 4 14 132

sp spTerminal
ID

Transaction
ID

MessageTime Stamp
YYYYMMDDHHMMSS

Figure 97. Format of messages sent to CESE

ASA
The American National Standard Code for Information Interchange (ASCII) carriage-control character
(optional character).

Terminal ID
A 4-character terminal identifier.

Transaction ID
A 4-character transaction identifier.

sp
A space.

Timestamp
The date and time displayed in the same format as that returned by the CEELOCT service.

Message
The message identifier and message text.

The entire message record is preceded by an ASCII control character to determine the format of the
printing.

Message records are V-format.

See Chapter 19, “Using and handling messages,” on page 255 for a complete description of Language
Environment message handling.

Running applications under CICS

360 z/OS: z/OS Language Environment Programming Guide

PL/I SYSPRINT
PL/I SYSPRINT also uses the CESE transient data queue. For information on how to declare SYSPRINT,
see the IBM Enterprise PL/I for z/OS library (www.ibm.com/support/docview.wss?uid=swg27036735).

CICS XPLINK SYSPRINT
CICS XPLINK applications use SYSPRINT as the destination when writing to the COUT, CEEOUT. or
STDOUT data streams.

Dump services under CICS
Under CICS, the FNAME parameter of the CEE3DMP callable service is ignored. Instead of being written
to a ddname specified in FNAME, dumps are instead transmitted to the CICS transient data queue named
CESE.

The dump is prefixed with the same information shown in Figure 97 on page 360.

PL/I considerations
The PLIDUMP subroutine has two additional options under CICS and some special considerations. For
more information about PLIDUMP, see z/OS Language Environment Debugging Guide.

Support for calls within the same HLL under CICS
For ILC information while running under CICS, see z/OS Language Environment Writing Interlanguage
Communication Applications.

C
EXEC CICS LINK, EXEC CICS XCTL, and calls via fetch() and DLL are supported under CICS. The fetched
program or DLL must be defined in the CSD and installed in the PPT. For more information, see Defining
and running the CICS program in z/OS XL C/C++ Programming Guide.

C++
EXEC CICS LINK, EXEC CICS XCTL, and dynamic calls via DLL are supported under CICS. The DLL must be
defined in the CSD and installed in the PPT.

COBOL
The following topics describe support for calls compiled under different versions of COBOL compilers.

Language Environment-conforming COBOL
Static and dynamic calls between Enterprise COBOL for z/OS, COBOL for OS/390 & VM, COBOL for MVS &
VM, COBOL/370, and VS COBOL II programs are supported as follows:

• Called programs can contain any command or facility supported by CICS for COBOL.
• If the called program has been translated by the CICS translator, calling programs must pass the EIB

and COMMAREA as the first two parameters on the CALL statement.

Enterprise COBOL for z/OS, COBOL for OS/390 & VM, COBOL for MVS & VM and COBOL/370 programs can
invoke or be invoked by VS COBOL II programs only through CICS facilities such as EXEC CICS LINK, EXEC
CICS XCTL, and EXEC CICS RETURN.

Running applications under CICS

Chapter 25. Running applications under CICS 361

http://www.ibm.com/support/docview.wss?uid=swg27036735

VS COBOL II
Static and dynamic calls to or from Enterprise COBOL for z/OS, COBOL for OS/390 & VM, COBOL for MVS
& VM, COBOL/370, and VS COBOL II programs are supported with the same considerations that were
previously listed.

VS COBOL II programs can communicate with OS/VS COBOL programs only through CICS facilities such
as EXEC CICS LINK, EXEC CICS XCTL, and EXEC CICS RETURN.

OS/VS COBOL
OS/VS COBOL programs cannot directly call or be called from Enterprise COBOL for z/OS, COBOL for
OS/390 & VM, COBOL for MVS & VM, COBOL/370, or VS COBOL II programs. The only programs that can
be called from OS/VS COBOL are other OS/VS COBOL programs, and with the following restrictions:

• The call must be a static CALL
• The subprogram cannot contain EXEC CICS statements.

PL/I
Static calls are supported from any version of PL/I. Called subroutines can invoke CICS services if the
address of the EIB is passed to the subroutine properly. You can do call the subroutines by setting up the
address of the EIB yourself and passing it to the subroutine, or by coding the following command in the
subroutine before you issue any other CICS commands.

EXEC CICS ADDRESS EIB(DFHEIPTR)

PL/I FETCH is supported under CICS in a PL/I transaction that is compiled with Enterprise PL/I for z/OS
and PL/I for MVS & VM. CICS does not support PL/I MTF applications.

Running applications under CICS

362 z/OS: z/OS Language Environment Programming Guide

Chapter 26. Running applications under Db2

Language Environment supports Db2 applications.

An application program requests Db2 services by using SQL statements imbedded in the program. The
imbedded SQL is translated by the SQL precompiler into host language statements that typically perform
assignments and then call a Db2 language interface module. The same entry point of the module is called
by all Language Environment-conforming languages. Db2 processes the request and then returns to the
application.

Language Environment support for Db2 applications
You are not required to modify anything in your code to run a Language Environment-conforming
application with Db2. Language Environment also supports ILC applications that use Db2 services.

Language Environment supports XPLINK applications that use Db2 services, but does not support stored
Db2 procedures compiled with XPLINK.

Condition handling under Db2
Any errors occurring in Db2 are trapped by Db2 and handled properly. If a task terminates, Db2 takes
appropriate action depending on the nature of termination.

The Language Environment runtime user exits can be used by the installation to effect abnormal
termination, and therefore database rollbacks, of applications.

For information about additional HLL restrictions under Db2, see the Application Programming Guide for
your HLL. For more information about using Db2 services, see Database 2 Application Programming and
SQL Guide.

PL/I consideration for Db2 applications
PL/I multitasking applications are not supported under Db2. PL/I multitasking applications support Db2
SQL statements from multiple tasks only in non-CICS and non-IMS environments.

Running applications under Db2

© Copyright IBM Corp. 1991, 2022 363

Running applications under Db2

364 z/OS: z/OS Language Environment Programming Guide

Chapter 27. Running applications under IMS

This topic describes Language Environment support for applications running under IMS/ESA Version 3
Release 1 and later.

You do not need to change any of the code in your application in order to run under IMS/ESA, but there are
a number of restrictions and recommendations that you should consider. Two of these concerns include
ensuring proper condition handling under IMS and running your application in an IMS/ESA environment.
These topics, together with an overview of how Language Environment interacts with IMS, are discussed
in detail.

For a detailed description of how to write IMS batch and online applications, see the IMS Application
Programming Guide appropriate to your version of IMS.

Using the interface between Language Environment and IMS
Language Environment provides a callable service, CEETDLI, that you can use to invoke IMS (Version 4
or later) facilities. In assembler, COBOL, PL/I, C and C++, you can also invoke IMS by using the following
interfaces:

• In assembler, the ASMTDLI interface
• In COBOL, the CBLTDLI interface
• In PL/I, the PLITDLI interface
• In C or C++, the CTDLI interface (a ctdli() function call)
• In C or C++ (including XPLINK-compiled functions), the CTDLI interface (a ctdli() function call)

Under Language Environment, each of these interfaces continues to function in its current capacity.
CEETDLI performs essentially the same functions, but it offers some advantages, particularly if you
plan to run an ILC application in IMS. For example, if you use CEETDLI, you get coordinated condition
handling between Language Environment and IMS condition handling facilities. For more information, see
“Coordinated condition handling under IMS” on page 367.

CEETDLI supports calls that use an application interface block (AIB) or a program communication block
(PCB).

For more information about AIB and a complete description of all available IMS functions and argument
parameters you can specify in CEETDLI, see an IMS Application Programming Guide.

Appendix B, “EXEC DLI and CALL IMS Interfaces,” on page 501 lists various DL/I interfaces and the
support for them under CICS and IMS. For information about CEETDLI, including its syntax and examples,
see CEETDLI - Invoke IMS in z/OS Language Environment Programming Reference.

z/OS XL C/C++ considerations under IMS
To interface with IMS from z/OS XL C/C++, you must do the following:

• Specify the PLIST(OS), ENV(IMS), and NOEXECOPS runtime options of #pragma runopts in your
source code. The PLIST(OS) option establishes the correct parameter list format when invoked under
IMS. The ENV(IMS) option establishes the correct operating environment. The NOEXECOPS option
specifies that runtime options cannot be specified for IMS.

• When you use the PLIST(OS) option in #pragma runopts, argc contains 1 (one) and argv[0] contains
NULL.

For more information about using the #pragma runopts preprocessor directive, see Chapter 9, “Using
runtime options,” on page 99.

Applications that use the POSIX(ON) runtime option are supported under IMS only if they consist of a
single thread. Calls to z/OS UNIX threading functions are restricted under IMS. For a list of restrictions

Running Applications under IMS

© Copyright IBM Corp. 1991, 2022 365

on running z/OS XL C/C++ programs under IMS with z/OS UNIX, see Using the Information Management
System (IMS) in z/OS XL C/C++ Programming Guide.

The IMS environment supports 31-bit XPLINK applications . However, applications that make many calls
to the Language Environment callable service CEETDLI or the C ctdli() function might not be suitable for
XPLINK because of the overhead for these XPLINK to nonXPLINK calls. See “When XPLINK should not be
used” on page 30 for more information.

C++ considerations under IMS
To interface with IMS from C++, you must do the following:

• For any C++ program that runs under IMS, you must specify the TARGET(IMS) compiler option.
• For any C++ program that is the initial main() called under IMS, you must specify the PLIST(OS)

compiler option.
• For any C++ programs in nested enclaves, you need only specify the TARGET(IMS) compiler option.

PL/I considerations under IMS
With IMS/ESA Version 4, PL/I supports PSBs with LANG=PLI and all others (including LANG=blank),
except LANG=Pascal. With IMS/ESA Version 3 Release 1, PL/I supports PSBs with LANG=PLI only.

The SYSTEM(IMS) compiler option must be specified for PL/I applications running under IMS. When
SYSTEM(IMS) is specified, the OPTIONS(BYVALUE) attribute is implied for any external PROCEDURE that
also has OPTIONS(MAIN). Further, the parameters to such a MAIN procedure must be POINTERs.

With IMS/ESA Version 3 Release 1 and Version 4, the parameters passed to language-IMS CALL interfaces
such as PLITDLI are no longer required to be below the 16M line.

If an assembler program is driving a transaction program written in Enterprise PL/I for z/OS or PL/I for
MVS & VM, the main procedure of the transaction must be compiled with SYSTEM(MVS) option; the main
procedure receives the parameter list passed from the assembler program in MVS style. IMS does not
support PL/I MTF applications.

IMS communication with your application
When you run your application under IMS, IMS loads the application and passes it the invocation
parameter list. A PSB is automatically scheduled for every application you run under IMS. IMS/ESA
Version 4 always constructs the parameter list in the same format, regardless of the setting of the LANG=
option in the PSB. The LANG= option has no effect on the format of the parameter list that IMS constructs.
Thus, any PSB can be used with any HLL application in Language Environment.

Beginning with IMS/ESA Version 4, the LANG= option in the PSB statement is not required.

Before your application is loaded, it is link-edited with an IMS language interface module, DFSLI000. Any
calls that your application makes with CEETDLI for IMS services end up in this module. DFSLI000, in turn,
invokes the services and returns IMS replies to your application.

Link-edit considerations under IMS
Unless your application communicates with IMS exclusively via dynamic calls to the CEETDLI callable
service, DFSLI000 must be link-edited with your application code. Therefore, under MVS, ensure that
DFSLI000 appears in a partitioned data set that is specified in the SYSLIB DD statement in the JCL used
to link-edit the application.

You must be using IMS Version 4 or later if you want to use the CEETDLI callable service. Errors occur if
you attempt to use the CEETDLI callable service and you are not running IMS Version 4.

Running Applications under IMS

366 z/OS: z/OS Language Environment Programming Guide

Making your IMS application reentrant
For many IMS users, the storage required at run time for any given IMS transaction can be fairly large.
Therefore, the most efficient method of coding an application is to make it reentrant. This method can
eliminate application loading time, speed up IMS initialization and restart, and provide the additional
integrity that results from having your routines in protected storage.

Methods for making your application reentrant differ across HLLs. For more information, see Chapter 11,
“Making your application reentrant,” on page 119.

Condition handling under IMS
The IMS environment is sensitive to errors or conditions. A failing IMS transaction or application can
potentially contaminate an IMS database. For this reason, IMS must know about the failure of a
transaction or application that has been updating a database so that it can perform database rollback
(the backing out of any updates made by the failing application).

Coordinated condition handling under IMS
Language Environment and IMS condition handling is coordinated, meaning that if a program interrupt
or abend occurs when your application is running in an IMS environment, the Language Environment
condition manager can determine whether the problem occurred in your application or in IMS. If the
program interrupt or abend occurs in IMS, Language Environment, as well as any invoked HLL-specific
condition handler, percolates the condition back to IMS.

If a program interrupt or abend occurs in the application outside of IMS, or if a software condition of
severity 2 or greater is raised outside of IMS, the Language Environment condition manager takes normal
condition handling actions as described in Chapter 15, “Introduction to Language Environment condition
handling ,” on page 165. If the condition manager remains in control, however, you must do one of the
following:

• Resolve the error so that the application can continue.
• Issue a rollback call to IMS, and then terminate the application.
• Ensure that the application terminates abnormally by using the ABTERMENC(ABEND) runtime option to

transform all abnormal terminations into operating system abends in order to cause IMS rollbacks.
• Ensure that the application terminates abnormally by coding and providing a modified runtime

assembler user exit (CEEBXITA) that transforms all abnormal terminations into operating system
abends in order to cause IMS rollbacks.

The assembler user exit you provide should check the return code and reason code or the
CEEAUE_ABTERM bit, and request an abend by setting the CEEAUE_ABND flag to ON, if appropriate.
See “CEEBXITA assembler user exit interface” on page 376 for more details about the CEEBXITA user
exit.

Diagnosing abends with the IMS dump
If an interrupt or abend occurs in IMS, you can use the IMS dump (which contains the information that
is available at the time of the program interrupt or abend) for diagnosis. You can also use the Language
Environment dump (CEEDUMP) for diagnosis.

If the interrupt or abend occurs in your application (outside of IMS), the IMS dump shows the state of the
system after Language Environment gained control, did some cleanup of the environment, and requested
the abend. In this case, you can use only the Language Environment dump (CEEDUMP) for diagnosis.

Running Applications under IMS

Chapter 27. Running applications under IMS 367

Running Applications under IMS

368 z/OS: z/OS Language Environment Programming Guide

Part 5. Specialized programming tasks

This section describes advanced or specialized tasks that you can perform in Language Environment.

© Copyright IBM Corp. 1991, 2022 369

370 z/OS: z/OS Language Environment Programming Guide

Chapter 28. Using runtime user exits

Language Environment provides user exits that you can use for functions at your installation. You can use
the assembler user exit (CEEBXITA) or the HLL user exit (CEEBINT). This Using nested enclaves provide
information about using these runtime user exits.

User exits are invoked under Language Environment to perform enclave initialization functions and both
normal and abnormal termination functions. User exits offer you a chance to perform certain functions at
a point where you would not otherwise have a chance to do so. In an assembler initialization user exit, for
example, you can specify a list of runtime options that establish characteristics of the environment. This is
done before the actual execution of any of your application code.

In most cases, you do not need to modify any user exit in order to run your application. Instead, you can
accept the IBM-supplied default versions of the exits, or the defaults as defined by your installation. To
do so, run your application in the normal manner and the default versions of the exits are invoked. You
might also want to read “User exits supported under Language Environment” on page 371 and “When
user exits are invoked” on page 373, which provide an overview of the user exits and describe when they
are invoked.

If you plan to modify either of the user exits to perform some specific function, you must link the modified
exit to your application before running. In addition, “Using the assembler user exit CEEBXITA” on page
372 and “CEEBINT high-level language user exit interface” on page 384 describe the respective user exit
interfaces to which you must adhere in order to change an assembler or HLL user exit.

User exits supported under Language Environment
Language Environment provides two user exit routines, one written in assembler (CEEBXITA), and the
other in a Language Environment-conforming language or Fortran (CEEBINT). You can find sample jobs
containing these user exits in the SCEESAMP sample library.

The user exits supported by Language Environment are shown in Table 58 on page 371.

Table 58. User exits supported under Language Environment

Name Type of user exit When invoked

CEEBXITA Assembler user exit Enclave initialization
Enclave termination
Process termination

CEEBINT HLL user exit. CEEBINT can be written in C, C++
(with C linkage), Fortran, PL/I or Language Environment-
conforming assembler.

Enclave initialization

When CEEBXITA or CEEBINT is linked with the Language Environment initialization/termination library
routines during installation, it functions as an installation-wide user exit. The sample CEEWCXIT or
CEEWDXIT in CEE.SCEESAMP can be used to create and bind(link) your exit with Language Environment
initialization/termination routines. When CEEBXITA is linked in your load module, it functions as an
application-specific user exit. The application-specific exit is used only when you run that application. The
installation-wide assembler user exit is not executed. CEEWUXIT in CEE.SCEESAMP can be used to assist
with creating an application-specific user exit.

When your version of CEEBINT is linked with the Language Environment library routines during
installation, this version is automatically used at link-edit time for newly built or relinked applications.
A new version of CEEBINT will require you to relink your application.

To use an application-specific user exit, you must explicitly include it at link-edit time in the application
load module using an MVS INCLUDE link-edit control statement (see “Using the INCLUDE statement” on

Runtime user exits

© Copyright IBM Corp. 1991, 2022 371

page 62 for more information). Any time that the application-specific exit is modified, it must be relinked
with the application.

The assembler user exit interface is described in “CEEBXITA assembler user exit interface” on page 376.
The HLL user exit interface is described in “CEEBINT high-level language user exit interface” on page 384.

Using the assembler user exit CEEBXITA
CEEBXITA tailors the characteristics of the enclave before its establishment. It must be written in
assembler language because an HLL environment is not yet established when the exit is invoked. You
cannot code CEEBXITA as an XPLINK application. However, since CEEBXITA is called directly by Language
Environment and not by the application, a non-XPLINK CEEBXITA can be statically bound in the same
program object with an XPLINK application. CEEBXITA is driven for enclave initialization and enclave
termination regardless of whether the enclave is the first enclave in the process or a nested enclave.
CEEBXITA can differentiate easily between first and nested enclaves. For more information about nested
enclaves, see Chapter 31, “Using nested enclaves,” on page 469.

CEEBXITA is invoked very early during the initialization process, before enclave initialization is complete.
The enclave initialization code recognizes runtime options contained in CEEBXITA.

The assembler user exit is supported with POSIX(ON) and in a threaded environment. Within a given
Language Environment process, the following functions are driven on the initial thread:

• Initialization of the first enclave within a process
• Termination of the first enclave within a process
• Termination of the process

For nested enclaves, the following functions are driven:

• Nested enclave initialization
• Nested enclave termination

The abend percolation list is applied to all threads in the enclave as specified in the assembler user exit.

Using the HLL initialization exit CEEBINT
CEEBINT is invoked just before the invocation of the application code. Under Language Environment, this
exit can be written in C, C++, Fortran, PL/I, or in Language Environment-conforming assembler. When
CEEBINT is written in C++, it must be declared as extern "C" in the C++ source. CEEBINT cannot
be written in COBOL, even though COBOL applications can use this HLL user exit. You cannot code
CEEBINT as an XPLINK application. However, since CEEBINT is called directly by Language Environment
and not the application, a non-XPLINK CEEBINT can be statically bound in the same program object with
an XPLINK application. When CEEBINT is invoked, the runtime environment is fully operational and all
Language Environment-conforming HLLs are supported.

PL/I and C compatibility
The following OS PL/I Version 2 Release 3 user exits are supported for compatibility under Language
Environment:

• IBMBXITA (z/OS batch version)
• IBMFXITA (CICS version)

Restriction: Enterprise PL/I for z/OS does not support the IBMBXITA, IBMFXITA and IBMBINT user exits.

For information about IBMBXITA and IBMBINT, see the appropriate migration guide in IBM Enterprise
PL/I for z/OS library (www.ibm.com/support/docview.wss?uid=swg27036735) or refer to PL/I and C/370
compatibility in z/OS XL C/C++ Programming Guide.

Default versions of these user exits are not supplied under Language Environment. Instead, Language
Environment supplies a default version of CEEBXITA.

Runtime user exits

372 z/OS: z/OS Language Environment Programming Guide

http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735

Table 59 on page 373 describes the order of precedence if the IBMBXITA and IBMFXITA user exits are
found in the same root load module with CEEBXITA.

Table 59. Interaction of assembler user exits

CEEBXITA
present

IBMBXITA present under z/OS batch, IBMFXITA
present under CICS

Exit driven

No No Default version of CEEBXITA

Yes No CEEBXITA

No Yes IBMBXITA under z/OS batch;
IBMFXITA under CICS

Yes Yes CEEBXITA

Using sample assembler user exits
You can use the sample assembler user exit programs distributed with Language Environment to modify
the code for the requirements of your application. Choose a sample program appropriate for your
application. The following assembler user exit programs are delivered with Language Environment:

Table 60. Sample assembler user exits for Language Environment

Example user exit Operating system Where found Language (if language-specific)

CEEBXITA MVS (default) SCEESAMP

CEEBXITC TSO SCEESAMP

CEECXITA CICS (default) SCEESAMP

CEEBX05A MVS SCEESAMP VS COBOL II compatibility

If you install Language Environment at your site without modifying it, your system defaults are CEEBXITA
and CEECXITA for MVS and CICS. You can find the source code for CEEBXITA, CEEBXITC, CEECXITA, and
CEEBX05A on MVS in the sample library SCEESAMP.

The assembler user exit CEEBXITA performs functions for enclave initialization, normal and abnormal
enclave termination, and process termination. CEEBXITA must be written in assembler language, because
an HLL environment might not be established when the exit is invoked.

You can set up user exits for tasks such as:

• Installation accounting and charge back
• Installation audit controls
• Programming standard enforcement
• Common application runtime support

When user exits are invoked
Figure 98 on page 374 shows the timing of the invocations of the user exits at initialization and
termination processing.

Runtime user exits

Chapter 28. Using runtime user exits 373

Figure 98. Location of user exits

In Figure 98 on page 374, runtime user exits are invoked in the following sequence:

1. Assembler user exit is invoked for enclave initialization.
2. Environment is established.
3. HLL user exit is invoked.
4. Main routine is invoked.
5. Main routine returns control to caller.

Runtime user exits

374 z/OS: z/OS Language Environment Programming Guide

6. Assembler user exit is invoked for termination of the enclave. CEEBXITA is invoked for enclave
termination processing after all application code in the enclave has completed, but before any enclave
termination activity.

7. Environment is terminated.
8. Assembler user exit is invoked for termination of the process. CEEBXITA is invoked again when the

Language Environment process terminates.

Language Environment provides the CEEBXITA assembler user exit for termination but does not provide a
corresponding HLL termination user exit.

CEEBXITA behaves differently, depending upon when it is invoked, as described in the following topics.

CEEBXITA behavior during enclave initialization
The CEEBXITA assembler user exit is invoked before enclave initialization is performed. You can use
CEEBXITA to help establish your application runtime environment. For example, in the assembler user
exit you can specify the stack and heap runtime options and allocate data sets. You can also use the user
exit to interrogate program parameters supplied in the JCL and change them if you want. In addition,
you can specify runtime options in the user exit by using the CEEAUE_A_OPTIONS field of the assembler
interface.

CEEBXITA returns control to Language Environment initialization.

CEEBXITA behavior during enclave termination
The CEEBXITA assembler exit is invoked after the user code for the enclave has completed, but before the
occurrence of any enclave termination activity. In other words, the assembler user exit for termination is
invoked when the environment is still active. For example, CEEBXITA is invoked before the storage report
is produced (if you requested one), data sets are closed, and CODE is invoked for enclave termination.

The assembler user exit permits you to request an abend. You can also request a dump to assist in
problem diagnosis. Because termination activities have not yet begun when the user exit is invoked, the
majority of storage has not been modified when the dump is produced.

You can request the abend and dump in the assembler user exit for all enclave-terminating events
including:

• The situation that occurs in PL/I when the ON condition (including ERROR or FINISH) is raised and one
of the following conditions is true:

– The program does not have an appropriate ON-unit.
– The ON-unit does not terminate with a GOTO.
– The GOTO is not allowed.

This rule applies only to the conditions that cause termination of the program.
• Return from the main routine
• A debug tool QUIT command
• An HLL stop statement such as:

– C exit()
– COBOL STOP RUN
– PL/I STOP or EXIT
– Fortran STOP

• An unhandled condition of severity 2 or above

If a dump is requested in the user assembler exit and an unhandled condition has occurred, this dump
will overwrite the dump taken by TERMTHDACT(UADUMP).

Runtime user exits

Chapter 28. Using runtime user exits 375

CEEBXITA behavior during process termination
The CEEBXITA assembler exit is invoked after:

• All enclaves have been terminated,
• The enclave resources have been relinquished,
• Any files managed by Language Environment have been closed,
• IBM z/OS Debugger has been terminated,

At this time you can free allocated files and request an abend.

During termination, CEEBXITA can interrogate the Language Environment reason and return codes and,
if necessary, request an abend with or without a dump. This can be done at either enclave or process
termination.

Specifying abend codes to be percolated by Language Environment
The assembler user exit, when invoked for initialization, might return a list of abend codes (contained in
the CEEAUE_A_AB_CODES field of the assembler user exit interface—see “CEEBXITA assembler user exit
interface” on page 376) that are to be percolated by Language Environment.

On non-CICS systems, this list is contained in the CEEAUE_A_AB_CODES field of the assembler user exit
interface. (See “CEEBXITA assembler user exit interface” on page 376.) Both system abends and user
abends can be specified in this list. The abend percolation list specified in the assembler user exit applies
to all threads in the enclave.

When TRAP(ON) is in effect, and the abend code is in the CEEAUE_A_AB_CODES list, Language
Environment percolates the abend. Normal Language Environment condition handling is never invoked
to handle these abends. This feature is useful when you do not want Language Environment condition
handling to intervene for certain abends, such as when IMS issues a user ABEND code 777.

When TRAP(OFF) is specified and there is a program interrupt, the user exit for termination is not driven.

Actions taken for errors that occur within the exit
If any errors occur during the enclave initialization user exit, the standard system action occurs because
Language Environment condition handling has not yet been established.

Any errors occurring during the enclave termination user exit lead to abnormal termination (through an
abend) of the Language Environment environment.

If there is a program check during the enclave termination user exit and TRAP(ON) is in effect, the
application ends abnormally with ABEND code 4044 and reason code 2. If there is a program check
during the enclave termination user exit and TRAP(OFF) has been specified, the application ends
abnormally without additional error checking support. Language Environment performs no condition
handling; error handling is performed by the operating system.

Language Environment takes the same actions as described above for program checks during the process
termination user exit.

CEEBXITA assembler user exit interface
You can modify CEEBXITA to perform any function you need, but the exit must have the following
attributes after you modify it at installation:

• The user-supplied exit must be named CEEBXITA.
• The exit must be reentrant.
• The exit must be capable of executing in AMODE(ANY) and RMODE(ANY).

Runtime user exits

376 z/OS: z/OS Language Environment Programming Guide

Guidelines for using CEEBXITA
Installation-wide:

• You must bind (link) the exit with the appropriate Language Environment initialization/termination
routines after modification.

• Use the sample customization jobs CEEWDXIT and CEEWCXIT to assist with creating and binding
(linking) your exit with Language Environment initialization/termination routines.

Application-specific:

• You must bind (link) the exit with your application.
• Use the sample job CEEWUXIT to assist with creating your exit.

If a user exit is modified, you are responsible for conforming to the interface shown in Figure 99
on page 377. This user exit must be written in assembler. You cannot code CEEBXITA as an XPLINK
application. However, since CEEBXITA is called directly by Language Environment and not the application,
a non-XPLINK CEEBXITA can be statically bound in the same program object with an XPLINK application.

CEEAUE

Register 1 1 XITPTR

CEEAUE_LEN0(0)

CEEAUE_FUNC4(4)

CEEAUE_RETC

CEEAUE_RSNC

CEEAUE_FLAGS16(10)

CEEAUE_A_CC_PLIST20(14)

CEEAUE_A_WORK24(18)

CEEAUE_A_OPTIONS

CEEAUE_USERWD32(20)

CEEAUE_A_AB_CODES36(24)

CEEAUE_FBCODE

CEEAUE_PAGE44(2C)

8(8)

12(C)

28(1C)

40(28)

Figure 99. Interface for the CEEBXITA assembler user exit

When the user exit is called, register 1 points to a word that contains the address of the CEEAUE control
block. The high-order bit is on.

The CEEAUE control block contains the following fullwords:
CEEAUE_LEN (input parameter)

A fullword integer that specifies the total length of this control block. For Language Environment, the
length is 48 bytes.

CEEAUE_FUNC (input parameter)
A fullword integer that specifies the function code. Language Environment supports the following
function codes:
1

Initialization of the first enclave within a process.

Runtime user exits

Chapter 28. Using runtime user exits 377

2
Termination of the first enclave within a process.

3
Nested enclave initialization.

4
Nested enclave termination.

5
Process termination.

The user exit should ignore function codes other than those numbered from 1 through 5.
CEEAUE_RETC (input/output parameter)

A fullword integer that specifies the return or abend code. CEEAUE_RETC has different meanings,
depending on CEEAUE_ABND:

• If the flag CEEAUE_ABND (see below) is off, this fullword is interpreted as the Language
Environment return code placed in register 15.

• If the flag CEEAUE_ABND is on, CEEAUE_RETC is interpreted as an abend code used when an abend
is issued. (This could be either an EXEC CICS ABEND or an SVC13.)

CEEAUE_RSNC (input/output parameter)
A fullword integer that specifies the reason code for CEEAUE_RETC:

• If the flag CEEAUE_ABND (see below) is off, this word is interpreted as the Language Environment
reason code placed in register 0.

• If the flag CEEAUE_ABND is on, CEEAUE_RETC is interpreted as an abend reason code used when
an abend is issued.

This field is ignored when an EXEC CICS ABEND is issued.

CEEAUE_FLAGS
Contains four 1-byte flags. CEEBXITA uses only the first byte but reserves the remaining flags. All
unspecified bits and bytes must be 0. The layout of these flags is shown in Figure 100 on page 378:

Byte 0
 x... CEEAUE_ABTERM
 0... Normal termination
 1... Abnormal termination
 .x.. CEEAUE_ABND
 .0.. Terminate with CEEAUE_RETC
 .1.. ABEND with CEEAUE_RETC and CEEAUE_RSNC given
 ..x. CEEAUE_DUMP
 ..0. If CEEAUE_ABND=0, ABEND with no dump
 ..1. If CEEAUE_ABND=1, ABEND with a dump
 ...x CEEAUE_STEPS
 ...0 ABEND the task
 ...1 ABEND the step
 0000 Reserved (must be zero)
Byte 1
 0000 0000 Reserved for future use
Byte 2
 0000 0000 Reserved for future use
Byte 3
 0000 0000 Reserved for future use

Figure 100. CEEAUE_FLAGS format

Byte 0 (CEEAUE_FLAG1) has the following meaning:
CEEAUE_ABTERM (input parameter)

Runtime user exits

378 z/OS: z/OS Language Environment Programming Guide

OFF
Indicates that the enclave is terminating normally (severity 0 or 1 condition).

ON
Indicates that the enclave is terminating with an Language Environment return code modifier of 2
or greater. This could, for example, indicate that a severity 2 or greater condition was raised but
not handled.

CEEAUE_ABND (input/output parameter)
OFF

Indicates that the enclave should terminate without an abend being issued. Thus, CEEAUE_RETC
and CEEAUE_RSNC are placed into register 15 and register 0 and returned to the enclave creator.

ON
Indicates that the enclave terminates with an abend. Thus, CEEAUE_RETC and CEEAUE_RSNC are
used by Language Environment in the invocation of the abend. During running in CICS, an EXEC
CICS ABEND command is issued.

The TRAP runtime option does not affect the setting of CEEAUE_ABND.

When the ABTERMENC(ABEND) runtime option is specified, the enclave always terminates with an
abend when there is an unhandled condition of severity 2 or greater, regardless of the setting of the
CEEAUE_ABND flag. See “Termination behavior for unhandled conditions” on page 133 for a detailed
explanation of how the CEEAUE_ABND parameter can affect the behavior of the ABTERMENC runtime
option.

CEEAUE_DUMP (output parameter)

OFF
Indicates that when you request an abend, an abend is issued without requesting a dump.

ON
Indicates that when you request an abend, an abend requesting a dump is issued.

CEEAUE_STEPS (output parameter)

OFF
Indicates that when you request an abend, an abend is issued to abend the entire TASK.

ON
Indicates that when you request an abend, an abend is issued to abend the STEP.

This parameter is ignored under CICS.

CEEAUE_A_CC_PLIST (input/output parameter)
A fullword pointer to the parameter address list of the application program.

If the parameter is not a character string, CEEAUE_A_CC_PLIST contains the register 1 value as
passed by the calling program or operating system at the time of program entry.

If the parameter inbound to the MAIN routine is a character string, CEEAUE_A_CC_PLIST contains the
address of a fullword address that points to a halfword prefixed string. If this string is altered by the
user exit, the string must not be extended in place.

CEEAUE_A_WORK (input parameter)
A fullword pointer to a 256-byte work area that the exit can use. On entry it contains binary zeros and
is doubleword-aligned.

This area does not persist across exits.

CEEAUE_A_OPTIONS (output parameter)
Upon return, this field contains a fullword pointer to the address of a halfword-length prefixed
character string that contains runtime options. These options are honored only during the initialization
of an enclave. When invoked for enclave termination, this field is ignored.

Runtime user exits

Chapter 28. Using runtime user exits 379

These runtime options override all other sources of runtime options except those that are specified as
NONOVR.

Under CICS, the STACK runtime option cannot be modified with the assembler user exit.

CEEAUE_USERWD (input/output parameter)
A fullword whose value is maintained without alteration and passed to every user exit. Upon entry to
the enclave initialization user exit, it is zero. Thereafter, the value of the user word is not altered by
Language Environment or any member libraries. The user exit might change the value of this field, and
Language Environment maintains that value. This allows the user exit to acquire a work area, initialize
it, and pass it to subsequent user exits. The work area might be freed by the termination user exit.

CEEAUE_A_AB_CODES (output parameter)
During the initialization exit, this field contains a fullword address of a table of abend codes that
the Language Environment condition handler percolates while in the (E)STAE exit. Therefore, the
application does not have the chance to address the abend. This table is honored before shunt
routines. The table consists of:

• A fullword count of the number of abend codes that are to be percolated
• A fullword for each of the particular abend codes that are to be percolated

The abend codes might be either user abend codes or system abend codes. User abend codes are
specified by F'uuu'. For example, if you want to percolate user ABEND 777, a F'777' would be coded.
System abend codes are specified by X'00sss000'.

This parameter is not enabled under CICS.

CEEAUE_FBCODE (input parameter)
Contains a fullword address of the condition token with which the enclave terminated. If the enclave
terminates normally (that is, not due to a condition), the condition token is zero.

CEEAUE_PAGE (input parameter)
This parameter indicates whether PL/I BASED variables that are allocated storage outside of AREAs
are allocated on a 4K-page boundary. You can specify in the field the minimum number of bytes of
storage that must be allocated. Your allocation request must be an exact multiple of 4 KB.

The IBM-supplied default setting for CEEAUE_PAGE is 32768 (32 KB).

If CEEAUE_PAGE is set to zero, PL/I BASED variables can be placed on other than 4K-page
boundaries.

CEEAUE_PAGE is honored only during enclave initialization, that is, when CEEAUE_FUNC is 1 or 3.

The offset of CEEAUE_PAGE under Language Environment is different than under OS PL/I Version 2
Release 3.

Parameter values in the assembler user exit
The parameters described in “CEEBXITA assembler user exit interface” on page 376 contain different
values depending on how the user exit is used. Table 61 on page 381 and Table 62 on page 383 describe
the possible values for the parameters based on how the assembler user exit is invoked.

Runtime user exits

380 z/OS: z/OS Language Environment Programming Guide

Table 61. Parameter values in the assembler user exit (Part 1). The assembler user exit contains these
parameter values depending on when it is invoked.

When invoked CEEAUE_
LEN

CEEAUE_RETC CEEAUE_RSNC CEEAUE_
FLAGS

CEEAUE_A_CC_
PLIST

First enclave
within process
initialization:
Entry

CEEAUE_FUNC
= 1

48 0 0 0 Upon entry,
CEEAUE_A_CC_
PLIST contains the
register 1 value
from the operating
system. It contains
the user parameters.
You can alter
it in a user
exit. Upon return,
the CEEAUE_A_CC_
PLIST is processed
and merged as the
invocation string.

First enclave
within process
initialization:
Return

0, or abend code if
CEEAUE_ABND = 1

0, or reason code
for CEEAUE_RETC
if CEEAUE_ABND =
1

See Note “1”
on page 383.

Register 1, used as
the new parameter
list. CEEAUE_A_CC_
PLIST contains the
user parameters. You
can alter it in a user
exit. Upon return,
the CEEAUE_A_CC_
PLIST is processed
and merged as the
invocation string.

First enclave
within process
termination:
Entry

CEEAUE_FUNC
= 2

48 Return code issued
by application that
is terminating.

Reason code
that accompanies
CEEAUE_RETC.

See Note “2”
on page 383.

First enclave
within process
termination:
Return

If CEEAUE_ABND
= 0, the return
code placed
into register 15
when the enclave
terminates.

If CEEAUE_ABND =
1, the abend code.

If CEEAUE_ABND
= 0, the enclave
reason code.

If CEEAUE_ABND
= 1, the abend
reason code.

See Note “1”
on page 383.

Runtime user exits

Chapter 28. Using runtime user exits 381

Table 61. Parameter values in the assembler user exit (Part 1). The assembler user exit contains these
parameter values depending on when it is invoked. (continued)

When invoked CEEAUE_
LEN

CEEAUE_RETC CEEAUE_RSNC CEEAUE_
FLAGS

CEEAUE_A_CC_
PLIST

Nested enclave
initialization:
Entry

CEEAUE_FUNC
= 3

48 0 0 0 The register 1
value discovered
in a nested
enclave creation.
CEEAUE_A_CC_
PLIST contains the
user parameters. You
can alter it in a user
exit. Upon return,
the CEEAUE_A_CC_
PLIST is processed
and merged as the
invocation string.

Nested enclave
initialization:
Return

0, or if
CEEAUE_ABND =
1, the abend code.

0, or if
CEEAUE_ABND =
1, reason code for
CEEAUE_RETC.

See Note “1”
on page 383.

Register 1 used
as the new
enclave parameter
list. CEEAUE_A_CC_
PLIST contains the
user parameters. You
can alter it in a user
exit. Upon return,
the CEEAUE_A_CC_
PLIST is processed
and merged as the
invocation string.

Nested enclave
termination:
Entry

CEEAUE_FUNC
= 4

48 Return code issued
by enclave that is
terminating.

Reason code
accompanying
CEEAUE_RETC.

See Note “2”
on page 383.

Nested enclave
termination:
Return

If CEEAUE_ABND =
0, the return code
from the enclave.

If CEEAUE_ABND =
1, the abend code.

If CEEAUE_ABND
= 0, the enclave
reason code.

If CEEAUE_ABND
= 1, the enclave
reason code.

See Note “1”
on page 383.

Process
termination:
Entry

Function code =
5

48 Return code
presented to the
invoking system in
register 15 that
reflects the value
returned from
the "first enclave
within process
termination".

Reason code
accompanying
CEEAUE_RETC that
is presented to the
invoking system
in register 0 and
reflects the value
returned from
the "first enclave
within process
termination".

See Note “3”
on page 383.

Runtime user exits

382 z/OS: z/OS Language Environment Programming Guide

Table 61. Parameter values in the assembler user exit (Part 1). The assembler user exit contains these
parameter values depending on when it is invoked. (continued)

When invoked CEEAUE_
LEN

CEEAUE_RETC CEEAUE_RSNC CEEAUE_
FLAGS

CEEAUE_A_CC_
PLIST

Process
termination:
Return

If CEEAUE_ABND =
0, return code from
the process.

If CEEAUE_ABND =
1, the abend code.

If CEEAUE_ABND =
0, the reason code
for CEEAUE_RETC
from the process.

If CEEAUE_ABND =
1, reason code for
the CEEAUE_RETC
abend reason
code.

See Note “1”
on page 383.

Notes:

1. CEEAUE_FLAGS:

CEEAUE_ABND = 1 if an abend is requested, or 0 if the enclave should continue with termination
processing
CEEAUE_DUMP = 1 if the abend should request a dump
CEEAUE_STEPS = 1 if the abend should abend the step
CEEAUE_STEPS = 0 if the abend should abend the task

2. CEEAUE_FLAGS:

CEEAUE_ABTERM = 1 if the application is terminating with an Language Environment return code
modifier of 2 or greater, or 0 otherwise
CEEAUE_ABND = 1 if an abend is requested, or 0 if the enclave should continue with termination
processing
CEEAUE_DUMP = 0
CEEAUE_STEPS = 0

3. CEEAUE_FLAGS:

CEEAUE_ABTERM = 1 if the last enclave is terminating abnormally (that is, a Language Environment
return code modifier is 2 or greater). This reflects the value returned from the "first enclave within
process termination".
CEEAUE_ABND = 1 if an abend is requested, or 0 if the enclave should continue with termination
processing "first enclave within process termination" (function code 2).
CEEAUE_DUMP = 0
CEEAUE_STEPS = 0

Table 62. Parameter values in the assembler user exit (Part 2). The assembler user exit contains these parameter values depending on when it is invoked.

When invoked CEEAUE_A_WORK CEEAUE_
A_OPTIONS

CEEAUE_ USERWD CEEAUE_
A_AB_ CODES

CEEAUE_
FBCODE

CEEAUE_PAGE

First enclave within
process initialization:
Entry

CEEAUE_FUNC = 1

Address of a 256-
byte work area of
binary zeros.

0 0 Minimum number of
storage bytes to
be allocated for
PL/I BASED variables
(default = 32768).

First enclave within
process initialization:
Return

Pointer to address of
a halfword prefixed
character string
containing runtime
options, or 0.

The value of
CEEAUE_ USERWD
for all subsequent
exits.

Pointer to the
abend codes
table, or 0.

User specified PAGE
value. Minimum number
of storage bytes
to be allocated for
PL/I BASED variables
(default = 32768).

Runtime user exits

Chapter 28. Using runtime user exits 383

Table 62. Parameter values in the assembler user exit (Part 2). The assembler user exit contains these parameter values depending on when it is invoked.
(continued)

When invoked CEEAUE_A_WORK CEEAUE_
A_OPTIONS

CEEAUE_ USERWD CEEAUE_
A_AB_ CODES

CEEAUE_
FBCODE

CEEAUE_PAGE

First enclave within
process termination:
Entry

CEEAUE_FUNC = 2

Address of a 256-
byte area of binary
zeros.

Return value from
previous exit.

Feedback
code
causing
termination.

First enclave within
process termination:
Return

The value of
CEEAUE_ USERWD
for all subsequent
exits.

Nested enclave
initialization: Entry

CEEAUE_FUNC = 3

Address of a 256-
byte work area of
binary zeros.

Return value from
previous exit.

0 Minimum number of
storage bytes to
be allocated for
PL/I BASED variables
(default = 32768).

Nested enclave
initialization: Return

Pointer to fullword
address that points
to a halfword
prefixed length string
containing runtime
options, or 0.

The value of
CEEAUE_ USERWD
for all subsequent
exits.

Pointer to
abend codes
table, or 0.

User specified PAGE
value. Minimum number
of storage bytes
to be allocated for
PL/I BASED variables
(default = 32768).

Nested enclave
termination: — Entry

CEEAUE_FUNC = 4

Address of a 256-
byte work area of
binary zeros.

Return value from
previous exit.

Feedback
code
causing
termination.

Nested enclave
termination: Return

The value of
CEEAUE_ USERWD
for all subsequent
exits.

Process termination:
Entry

CEEAUE_FUNC = 5

Address of a 256-
byte work area of
binary zeros.

Return value from
previous exit.

Feedback
code
causing
termination.

Process termination:
Return

The value of
CEEAUE_ USERWD
for all subsequent
exits.

CEEBINT high-level language user exit interface
Language Environment provides CEEBINT for enclave initialization. You can code CEEBINT in non-XPLINK
C and C++, Fortran, PL/I, or Language Environment-conforming assembler. You cannot code CEEBINT
as an XPLINK application. CEEBINT is not invoked for an XPLINK application. COBOL programs can use
CEEBINT, but CEEBINT cannot be written in COBOL or be used to call COBOL programs.

CEEBINT is supported with POSIX(ON) and in a threaded environment. It is driven only on the initial
thread.

You can modify CEEBINT to perform any function desired, although the exit must have the following
attributes after you modify it:

• The user exit must not be a main-designated routine. That is, it must not be a C or C/++ main function,
and OPTIONS(MAIN) must not be specified for PL/I applications.

• CEEBINT must be linked with compiled code. If you do not provide an initialization user exit, an
IBM-supplied default, which simply returns control to your application, is linked with the compiled code.
When written in C/++, CEEBINT must be linked with your application and it can only function as an
application-specific user exit.

• The exit cannot be written in COBOL.
• When CEEBINT is written in C/C/++, the following must be coded so that SMP/E can maintain the CSECT

and properly link the intended user exit:

Runtime user exits

384 z/OS: z/OS Language Environment Programming Guide

#pragma map(CEEBINT,"CEEBINT")

• The exit should be coded so that it returns for all unknown function codes.
• C or C/++ constructs such as the exit(), abort(), raise(SIGTERM), and raise(SIGABRT)

functions terminate the enclave.
• A PL/I EXIT or STOP statement terminates the enclave.
• Use the callable service IBMHKS to turn hooks on and off. For more information about IBMHKS, see PL/I

for MVS & VM Programming Guide.
• C or C/++ functions such as exit(), abort(), raise(SIGTERM), and raise(SIGABRT) terminate

the entire application as well as the user exit.

CEEBINT is invoked after the enclave has been established, after the IBM z/OS Debugger initial command
string has been processed, and before the invocation of compiled code. When invoked, it is passed a
parameter list. The parameters are all fullwords and are defined as:
Number of arguments in parameter list (input)

A fullword binary integer

• On entry: Contains 7
• On exit: Not applicable

Return code (output)
A fullword binary integer

• On entry: 0
• On exit: Able to be set by the exit, but not interrogated by Language Environment

Reason code (output)
A fullword binary integer

• On entry: 0
• On exit: Able to be set by the exit, but not interrogated by Language Environment

Function code (input)
A fullword binary integer

• On entry: 1, indicating the exit is being driven for initialization
• On exit: Not applicable

User word (input/output)
A fullword binary integer

• On entry: Value of the user word (CEEAUE_USERWD) as set by the assembler user exit.
• On exit: The value set by the user exit, maintained by Language Environment and passed

to subsequent user exits. It can be accessed from the main() function through the system
programming facilities C __xusr() function.

Address of the main program entry point (input)
A fullword binary address

• On entry: The address of the routine that gains control first
• On exit: Not applicable

Exit List Address (output)
The address of the exit list control block, Exit_list

• On entry: 0
• On exit: 0, unless you establish a hook exit, in which case you would set this pointer and fill in the

relevant control blocks. The control blocks for Exit_list and Hook_exit are shown in the following
figure.

Runtime user exits

Chapter 28. Using runtime user exits 385

As supplied, CEEBINT has only one exit defined that you can establish — the hook exit that is described
by the Hook_exit control block. This exit gains control when hooks that are generated by the PL/I compiler
TEST option are executed. You can establish this exit by setting appropriate pointers (A_Exits to Exit_list
to Hook_exit).

Figure 101. Exit_list and hook_exit control blocks

The control block Exit_list exit contains the following fields:
Exit_list_len

The length of the control block; it must be 1
Exit_list_hooks

The address of the Hook_exit control block

The control block for the hook exit must contain the following fields:
Hook_exit_len

The length of the control block

Runtime user exits

386 z/OS: z/OS Language Environment Programming Guide

Hook_exit_rtn
The address of a routine you want invoked for the exit. When the routine is invoked, it is passed the
address of this control block. Since this routine is invoked only if the address you specify is nonzero,
you can turn the exit on and off.

Hook_exit_fnccode
The function code with which the exit is invoked. This is always 1.

Hook_exit_retcode
The return code set by the exit. You must ensure that it conforms to the following specifications:
0

Requests that the IBM z/OS Debugger be invoked next.
4

Requests that the program resume immediately.
16

Requests that the program be terminated.
Hook_exit_rsncode

The reason code set by the exit. This is always zero.
Hook_exit_userwd

The user word passed to the user exits CEEBXITA and CEEBINT
Hook_exit_ptr

An exit-specific user word
Hook_exit_reserved

Reserved
Hook_exit_dsa

The contents of register 13 when the hook was executed
Hook_exit_addr

The address of the hook instruction executed

Runtime user exits

Chapter 28. Using runtime user exits 387

Runtime user exits

388 z/OS: z/OS Language Environment Programming Guide

Chapter 29. Assembler considerations

You can run applications written in assembler language in Language Environment. Applications written in
Language Environment-conforming HLLs can also call or be called by assembler language applications. It
is important to note that Fortran applications cannot call CEEHDLR or any other Language Environment
callable service directly, therefore Fortran condition handling must be done by calling an assembler
application to provide condition handling support.

This topic discusses considerations for assembler applications and introduces library routine retention, a
function that can provide performance improvement for applications or subsystems running on z/OS.

You can write assembler language applications that conform to the XPLINK call linkage. z/OS XL C/C+
+ Programming Guide describes how to create XPLINK assembler applications using the EDCXPRLG,
EDCXEPLG, and EDCXCALL macros, and describes the XPLINK register conventions, parameter passing
conventions and stack layout. z/OS Language Environment Vendor Interfaces has details on the XPLINK
architecture that will be useful to an assembler programmer.

Whether you plan to execute a single-language assembler application or a multiple-language application
containing assembler code, there are a number of restrictions you must follow under Language
Environment. For example, to communicate with Language Environment and other applications running in
the common runtime environment, your assembler application must preserve the use of certain registers
and storage areas in a consistent way. Calling conventions for non-XPLINK assembler programs must
follow the standard S/370 linkage conventions. Calling conventions for XPLINK assembler programs must
follow the XPLINK linkage conventions. In addition, your assembler program is restricted from using some
operating system services. These conventions and restrictions are described in this section.

Compatibility considerations
If you are coding a new assembler routine that you want to conform to the Language Environment
interface or if your assembler routine calls Language Environment services, you must use the macros
provided by Language Environment. For a list of these macros, see “Assembler macros” on page 397.
Language Environment-conforming assembler routine refers to an assembler routine coded using the
CEEENTRY and associated macros.

Control blocks
Assembler routines that rely on control blocks that were versions of C, COBOL, Fortran, and PL/I (for
example, routines that check flags or switches in these control blocks) might not run under Language
Environment. These control blocks might have changed.

Save areas
Any non-XPLINK assembler routine used within the scope of a Language Environment application must
use standard S/370 save area conventions. Any XPLINK assembler routine used within the scope of a
Language Environment application must use XPLINK save area conventions.

Note:

1. To call a COBOL program from assembler, set the first two bytes of the save area to hex zero.
2. Language Environment does not support the linkage stack.
3. A non-Language Environment-conforming assembler routine must have its own save area.

CICS
When running with a release of CICS TS earlier than CICS TS 3.1, Language Environment-conforming
assembler main routines are not supported under CICS.

Assembler considerations

© Copyright IBM Corp. 1991, 2022 389

C and Fortran duplicate names
Several external names, shown in column one of Table 63 on page 390, are identical in C and Fortran. If
any of the names is used in an assembler program as an external reference, the C—not the Fortran—entity
is obtained. If you wish to obtain the Fortran version, you can instead reassemble using the names shown
in column two of Table 63 on page 390 as a substitute for the C names in column one.

For example, if your assembler program currently references the Fortran ABS function with the
instruction:

ABSADDR DC V(ABS)

you could instead reassemble it with the instruction:

ABSADDR DC V(A#ABS)

to obtain the Fortran function as before. The C versions of the functions might additionally require a
different parameter-list format.

As an alternative to changing the conflicting names in an assembler routine and then reassembling,
you can relink the existing routine following the procedure explained in “Resolving library module name
conflicts between Fortran and C” on page 13.

Table 63. C external names and their analogous Fortran names

C external name Fortran external name

ABS A#ABS

ACOS A#COS

ASIN A#SIN

ATAN A#TAN

ATAN2 A#TAN2

CLOCK CLOCK#

COS C#OS

COSH C#OSH

ERF E#RF

ERFC E#RFC

EXIT EXIT#

EXP E#XP

GAMMA G#AMMA

LOG A#LOG

LOG10 A#LOG1

SIN S#IN

SINH S#INH

SQRT S#QRT

TAN T#AN

TANH T#ANH

Assembler considerations

390 z/OS: z/OS Language Environment Programming Guide

Register conventions
To communicate properly with assembler routines, you must observe certain register conventions on
entry into the assembler routine (while it runs), and on exit from the assembler routine.

Language Environment-conforming assembler and non-Language Environment-conforming assembler
each has its own requirements for register conventions when running under Language Environment.

Language Environment-conforming assembler
When you use the macros listed in “Assembler macros” on page 397 to write your Language Environment-
conforming assembler routines, the macros generate code that follows the required register conventions.

On entry into the Language Environment-conforming non-XPLINK assembler main routine, registers must
contain the following values because they are passed without change to the CEEENTRY macro:
R0

Undefined
R1

Address of the parameter list, or zero if no parameters are passed
R13

Caller's standard register save area
R14

Return address
R15

Entry point address

On entry into the Language Environment-conforming assembler subroutine, these registers must contain
the following values when NAB=YES is specified on the CEEENTRY macro:
R0

Reserved
R1

Address of the parameter list, or zero
R12

Common anchor area (CAA) address
R13

Caller's DSA
R14

Return address
R15

Entry point address
All others

Undefined

On entry into a Language Environment-conforming assembler routine, CEEENTRY loads the caller's
registers (R14 through R12) in the DSA provided by the caller. After it allocates a DSA (which sets the
NAB field correctly in the new DSA), the first halfword of the DSA is set to hex zero and the backchain is
set properly.

At all times while the Language Environment-conforming non-XPLINK assembler routine is running, R13
must point to the routine's DSA.

At call points, R12 must contain the common anchor area (CAA) address, except in the following cases:

• When calling a COBOL program
• When calling an assembler routine that is not Language Environment-conforming

Assembler considerations

Chapter 29. Assembler considerations 391

• When calling a Language Environment-conforming assembler routine that specifies NAB=NO on the
CEEENTRY macro

On exit from a Language Environment-conforming assembler routine, these registers contain:
R0

Undefined
R1

Undefined
R14

Undefined
R15

Undefined
All others

The contents they had upon entry

Non-Language Environment conforming assembler routines
When you run a non-Language Environment-conforming routine in Language Environment, you must
observe the following conventions:

• R13 must contain the address of the executing routine's own register save area
• The register save area back chain must be set to a valid 31-bit address (if the address is a 24 bit

address, the first byte of the address must be hex zeros)
• The first two bytes of the register save area must be hex zeros

Considerations for coding or running assembler routines
This topic summarizes some areas you might need to consider when coding or running an assembler
routine under Language Environment.

Asynchronous interrupts
If an asynchronous signal is being delivered to a thread running with POSIX(ON), the thread is interrupted
for the signal only when the execution is:

• In a user C routine, or in a user COBOL routine compiled with the THREAD compiler option
• Just before a return to a C routine or to a return to a user COBOL routine compiled with the THREAD

compiler option
• Just before an invocation of a Language Environment library from a user routine

C routines or COBOL routines compiled with the THREAD compiler option may need to protect against
asynchronous signals based on the application logic including the possible use of the POSIX signal-
blocking function that is available.

Condition handling
Language Environment default condition handling actions occur for assembler routines unless you have
registered a user-written condition handler using CEEHDLR. For more information about CEEHDLR,
see CEEHDLR—Register user-written condition handler in z/OS Language Environment Programming
Reference.

Language Environment relinquishes all enclave-level resources that were obtained by Language
Environment when the enclave terminates, and all process-level resources when the process terminates.

Assembler considerations

392 z/OS: z/OS Language Environment Programming Guide

Access to the inbound parameter string
You can access the standardized form of the inbound parameter list for the assembler main routine any
time after routine initialization by using one of the following:

• The CEE3PRM and CEE3PR2(query parameter string) callable service described in z/OS Language
Environment Programming Reference.

What CEE3PRM and CEE3PR2 return depends on the operating system you run under, and the runtime
or compiler options you specify. See “What the enclave returns from CEE3PRM and CEE3PR2” on page
476 for more information.

• The PARMREG output value from the CEEENTRY macro described in “CEEENTRY macro— Generate a
Language-Environment-conforming prolog” on page 397.

Overlay programs
Language Environment does not provide explicit support for overlay programs. If programs are overlaid,
Language Environment imposes the following restrictions:

• All Language Environment routines and static data must be placed in the root segment.
• All named routines and static data referred to by Language Environment must be in the root segment.
• All ENTRY values or static data addresses passed to any Language Environment service must point to

routines in the root segment.
• All routines in the save area chain must be in storage for the whole time that they are in the chain.
• All calls must be inclusive, not exclusive. See your Linkage Editor and Loader User's Guide for the
definitions of these terms.

• Calls that cause a new overlay segment to be loaded must be between two routines in the same
language (that is, they cannot be ILC calls).

CEESTART, CEEMAIN, and CEEFMAIN
Assembler programs cannot call or use directly CEESTART, CEEMAIN, or CEEFMAIN as a standard entry
point. Results are unpredictable if this rule is violated.

When link-editing an application it must be possible for the link-editor to resolve CEESTART. As long as
the NCAL link-editor option is not specified, CEESTART will be automatically resolved. If NCAL is used it
becomes necessary to explicitly include CEESTART in the link-edit process.

Mode considerations
The CEEENTRY macro automatically sets the module to AMODE ANY and RMODE ANY. Therefore, when
converting to Language Environment-conforming assembler, if data management macros had been coded
using 24-bit addressing mode, they should be changed to use 31-bit addressing mode. If it is not possible
to change all the modules making up the program to use 31-bit addressing mode (and none of the
modules are already set to RMODE 24), then it will be necessary to use the RMODE=24 CEEENTRY option.
Alternatively, the module can be set to RMODE 24 during the link-edit process. This is done by specifying
the link-edit RMODE option on the invocation PARM or the SETOPT control statement.

Language Environment library routine retention (LRR)
Language Environment library routine retention is a function that provides a performance improvement
for those applications or subsystems with the following attributes:

• The application or subsystem invokes programs that require Language Environment.
• The application or subsystem is not Language Environment-conforming. That is, Language Environment

is not already initialized when the application or subsystem invokes programs that require Language
Environment.

Assembler considerations

Chapter 29. Assembler considerations 393

• The application or subsystem, while running under the same task, repeatedly invokes programs that
require Language Environment.

• The application or subsystem is not using Language Environment preinitialization services.

Restriction: Language Environment library routine retention is not supported to run on CICS.

The use of library routine retention does not affect the behavior of applications other than improving their
performance.

Language Environment provides a macro called CEELRR, which is used in an assembler program to
initialize library routine retention and to terminate library routine retention. See “CEELRR macro —
Initialize or terminate Language Environment library routine retention” on page 395 for details about
the CEELRR macro.

In addition, Language Environment provides three sample programs that use the CEELRR macro:
CEELRRIN

This routine uses the CEELRR macro to initialize a library routine retention environment that does
not permit XPLINK applications. The source for this routine can be found in member CEELRRIN in
SCEESAMP. The load module associated with this routine can be found in SCEERUN with member
name CEELRRIN.

CEELRRXP
This routine uses the CEELRR macro to initialize a library routine retention environment that permits
XPLINK applications. The source for this routine can be found in member CEELRRXP in SCEESAMP.
The load module associated with this routine can be found in SCEERUN with member name
CEELRRXP.

CEELRRTR
This routine uses the CEELRR macro to terminate library routine retention. The source for this routine
can be found in member CEELRRTR in SCEESAMP. The load module associated with this routine can
be found in SCEERUN with member name CEELRRTR.

When library routine retention has been initialized, Language Environment keeps a subset of its resources
in memory after the environment terminates. As a result, subsequent invocations of programs in the same
task that caused Language Environment to be initialized are much faster because the resources can be
reused without having to be reacquired and reinitialized.

When library routine retention has been initialized, the resources that Language Environment keeps in
memory when it terminates include the following:

• Language Environment runtime load modules
• Language Environment storage associated with the management of the runtime load modules
• Language Environment storage for startup control blocks

When library routine retention is terminated, the resources that Language Environment kept in memory
are freed. (Library routines are deleted and storage is freed.)

Note:

1. If library routine retention is initialized, and the task in which it is being used is terminated, the
operating system frees the Language Environment resources as part of task termination.

2. 31-bit XPLINK applications are supported under the LRR environment.

Using library routine retention
If you are going to use library routine retention, you need to be aware of the following:

• Library routine retention cannot be used on CICS.
• To successfully initialize library routine retention or terminate library routine retention, Language

Environment must not be currently initialized.

Assembler considerations

394 z/OS: z/OS Language Environment Programming Guide

For example, if you use CEELRR with ACTION=INIT in a Language Environment-conforming assembler
program, library routine retention is not initialized, because the invocation of the assembler program
caused Language Environment to be initialized.

Library routine retention and preinitialization
The Language Environment preinitialization services can be used while library routine retention is
initialized. However, the Language Environment resources initialized and terminated with Language
Environment preinitialization services are not kept in memory when while library routine retention
is initialized. There is no sharing of resources between Language Environment when initialized with
preinitialization services and an environment initialized by invoking an HLL program without using
preinitialization services. There is no performance benefit of library routine retention for those
applications and subsystems that bring up a Language Environment preinitialized environment and then
use the preinitialization services to invoke programs that require Language Environment.

CEELRR macro — Initialize or terminate Language Environment library
routine retention

CEELRR is used to tell Language Environment to initialize and terminate library routine retention. The
macro generates reentrant code.

label CEELRR ACTION= INIT

TERM

, XPLINK

NO

YES

label
Assembler label on this macro generation.

ACTION=
The action to be performed by Language Environment with regard to library routine retention. Valid
values are INIT and TERM. A value of INIT tells Language Environment to initialize library routine
retention. A value of TERM tells Language Environment to terminate library routine retention. You
must specify the ACTION value.

XPLINK=

The XPLINK keyword allows the application to specify whether XPLINK applications are permitted
under the LRR environment. Valid values are YES and NO. When XPLINK applications are run under
an LRR environment, the region size may need to be increased because an additional load module
CELHV003 is kept in memory.

For ACTION=INIT, if the XPLINK= keyword is specified, valid values are YES or NO. If omitted, the
default for the XPLINK= keyword is NO.

For ACTION=TERM, if the XPLINK= keyword is specified, it is ignored.

Usage notes:

1. The macro must be used in an assembler routine that is not Language Environment -conforming.
2. The contents of the following registers are destroyed by the macro invocation:

• R14
• R15: Upon return, contains the return code
• R0
• R1

3. The code generated by the macro expansion assumes that R13 has a standard RSA available.
4. One of the following return codes is put in R15 upon completion of the code generated by the CEELRR

macro with ACTION=INIT:

Assembler considerations

Chapter 29. Assembler considerations 395

0
Library routine retention was successfully initialized.

4
Library routine retention is already initialized. No action was taken.

8
Library routine retention was not initialized; the parameter list is not recognized.

12
Library routine retention was not initialized due to one of the following problems:

• There was insufficient storage.
• There was an error in an attempt to load CEEBINIT or CEEBLIBM.

16
Library routine retention was not initialized because Language Environment is currently initialized.
This return code can occur in the following example scenarios:

• A program that is running with Language Environment calls an assembler program that uses
CEELRR with ACTION=INIT.

• An assembler program calls IGZERRE to initialize a reusable environment, and then it uses
CEELRR with ACTION=INIT.

• A reusable environment is established with the RTEREUS runtime option and a call is made to an
assembler program that uses CEELRR with ACTION=INIT.

20
Library routine retention was not initialized because the Language Environment preinitialized
environment has been established and is dormant. This return code can occur in the following
example scenarios:

• An assembler program calls CEEPIPI to preinitialize Language Environment, and then it uses
CEELRR with ACTION=INIT.

• An assembler program uses the PL/I preinitialize program interface, and then it uses CEELRR
with ACTION=INIT.

5. One of the following return codes is put in R15 upon completion of the code generated by the CEELRR
macro with ACTION=TERM:
0

Library routine retention was successfully terminated. All resources associated with library routine
retention were freed.

4
Library routine retention is not initialized. No action was taken.

8
Library routine retention was not terminated; the parameter list is not recognized.

16
Library routine retention was not terminated because Language Environment is currently
initialized. This return code can occur in the following example scenarios:

• A program that is running with Language Environment calls an assembler program that uses
CEELRR with ACTION=TERM.

• An assembler program calls IGZERRE with the initialize function, and then it uses CEELRR with
ACTION=TERM.

• A reusable environment is established with the RTEREUS runtime option and a call is made to an
assembler program that uses CEELRR with ACTION=TERM.

20
Library routine retention was not terminated because the Language Environment preinitialized
environment has been established and is dormant. This return code can occur in the following
example scenarios:

Assembler considerations

396 z/OS: z/OS Language Environment Programming Guide

• An assembler program calls CEEPIPI to preinitialize Language Environment, and then it uses
CEELRR with ACTION=TERM.

• An assembler program uses the PL/I preinitialize program interface, and then it uses CEELRR
with ACTION=TERM.

Assembler macros
Language Environment provides the following macros to assist in the entry and exit of assembler routines,
to map the CAA and DSA, to generate the appropriate fields in the program prolog area (PPA), to create
assembler DLLs, and to use DLLs from assembler routines:

• CEEENTRY generates a Language Environment-conforming prolog. You must use CEEENTRY in
conjunction with the following macros, except for CEELOAD. (See “CEEENTRY macro— Generate a
Language-Environment-conforming prolog” on page 397 for syntax.)

• CEETERM generates a Language Environment-conforming epilog and terminates the assembler routine.
(See “CEETERM macro — Terminate a Language Environment-conforming routine” on page 401 for
syntax.)

• CEECAA generates a CAA mapping. (See “CEECAA macro — Generate a CAA mapping” on page 402 for
syntax.)

• CEEDSA generates a DSA mapping. (See “CEEDSA macro — Generate a DSA mapping” on page 402 for
syntax.)

• CEEPPA generates the appropriate fields in the PPA in your assembler routine. The fields describe the
entry point of a Language Environment block. (See “CEEPPA macro — Generate a PPA” on page 402 for
syntax.)

• CEELOAD loads a Language Environment-conforming assembler routine; the target of CEELOAD must be
a subroutine. (See “CEELOAD macro — Dynamically load a Language Environment-conforming routine”
on page 405 for syntax.)

• CEEFETCH dynamically loads a routine and returns information about a routine. (See “CEEFETCH macro
— Dynamically load a routine” on page 407 for syntax.)

• CEEFTCH generates a FTCHINFO mapping. (See “CEEFTCH macro — Generate a FTCHINFO mapping”
on page 411 for syntax.)

• CEEGLOB is used to extract the Language Environment product information at assembly-time. (See
“CEEGLOB macro — Extract Language Environment product information” on page 413 for syntax.)

• CEERELES dynamically deletes a routine. (See “CEERELES macro — Dynamically delete a routine” on
page 414 for syntax.)

• CEEPCALL calls a Language Environment-conforming routine. It is similar to the CALL macro, except
that it supports dynamic calls to routines in a DLL. (See “CEEPCALL macro — Pass control to control
sections at specified entry points” on page 415 for syntax.)

• CEEPDDA defines a data item in WSA, or declares a reference to an imported data item. (See “CEEPDDA
macro — Define a data item in the writeable static area (WSA)” on page 417 for syntax.)

• CEEPLDA returns the address of a data item that was defined by CEEPDDA. It is intended to be used
to get the address of imported or exported variables residing in the Writeable Static Area (WSA). (See
“CEEPLDA macro — Returns the address of a data item defined by CEEPDDA” on page 418 for syntax.)

For a description of Assembler macros to assist in writing XPLINK assembler routines, see XPLINK
Assembler in z/OS XL C/C++ Programming Guide.

Note: All keyword parameter values, such as YES, NO, ANY, must be specified in uppercase. For example,
MAIN=YES, AMODE=ANY.

CEEENTRY macro— Generate a Language-Environment-conforming prolog
CEEENTRY provides a Language Environment-conforming prolog. Code is generated in cooperation with
the CEEPPA macro. (See “CEEPPA macro — Generate a PPA” on page 402 for syntax.) The macro
generates reentrant code.

Assembler considerations

Chapter 29. Assembler considerations 397

You must use CEEENTRY in conjunction with the macros CEETERM, CEECAA, CEEDSA, and CEEPPA.

CEEENTRY assumes that the registers contain what is described in “Register conventions” on page 391
for assembler main routines.

To call an assembler routine from an existing Fortran program, or to make a static call from OS/VS COBOL
or VS COBOL II, CEEENTRY must specify NAB=NO and MAIN=NO.

name CEEENTRY

PPA= label , AUTO= value ,

NAB=

YES

NO , MAIN=

YES

NO ,

ENCLAVE=

NO

YES , EXECOPS=

YES

NO ,

PARMREG= register ,

EXPORT=

NO

YES ,

BASE= register

(

,

register)

,

PLIST=

HOST

MVS

TSO

CICS

IMS

OS

, RMODE=

ANY

24

31

,

AMODE=

ANY

24

31

ANY31

, STKPROT=

NO

YES

name
The entry name (and the CSECT name, if this is the first call to CEEENTRY).

PPA=
The label of the corresponding PPA (Program Prolog Area) generated using the CEEPPA macro. If
unspecified, the name “PPA” is used.

AUTO=
The total number of bytes (rounded up to a doubleword) used by prolog code for the DSA and local
automatic variables that are to be allocated for the duration of this routine. If unspecified, the default
is only the size of the DSA without any automatic variables. This default size is indicated by the label

Assembler considerations

398 z/OS: z/OS Language Environment Programming Guide

CEEDSASZ (the DSA by the CEEDSA macro). See “CEEDSA macro — Generate a DSA mapping” on
page 402 for syntax).

NAB=

YES
Indicates that the previous save area has a NAB (next available byte) value. In general,

• If your routine is always called by a Language Environment-conforming assembler routine,
specify NAB=YES.

• If your routine can be called by a non-Language Environment-conforming assembler routine,
specify NAB=NO.

YES is the default.
NO

Indicates that the previous save area may not contain the NAB. Code to find the NAB is generated.
This parameter is ignored if MAIN=YES is specified. You must specify MAIN=NO and NAB=NO to
call an assembler routine from an existing Fortran application, or to make a static call from OS/VS
COBOL or VS COBOL II.

MAIN=
YES

Indicates that the Language Environment environment should be brought up. Designates this
assembler routine as the main routine in the enclave. YES is the default. If you specify MAIN=YES,
you cannot specify register 2 as the base register for the module. MAIN=YES is not supported
under CICS on releases earlier than CICS TS 3.1.

The following is accomplished by the macro invocation:

• The caller's registers (14 through 12) are saved in a DSA provided by the caller.
• The base register is set (see BASE= for more information).
• Register 12 is set with an address of CEECAA.
• Register 13 is set with an address of CEEDSA.
• PARMREG (Register 1 is the default) is set based on PLIST.
• All other registers are undefined.

YES is the default.

NO
Designates this assembler routine as a subroutine in the enclave. NO should be specified when
the Language Environment environment is already active and only prolog code is needed. You
must specify NAB=NO in order to call an assembler routine from an existing Fortran application, or
to make a static call from OS/VS COBOL or VS COBOL II.

The following is accomplished by the macro invocation:

• The caller's registers (14 through 12) are saved in a DSA provided by the caller.
• The base register is set (see BASE= for more information).
• Register 13 is set with an address of CEEDSA.
• PARMREG is set (see PARMREG.)
• All other registers are undefined.

ENCLAVE=
YES

Indicates that Language Environment should always create a nested enclave for this program.
ENCLAVE=YES can only be specified when MAIN=YES. The use of ENCLAVE=YES will result in
increased storage and CPU usage. Most applications will not need a new enclave; therefore
ENCLAVE=NO should be used.

Assembler considerations

Chapter 29. Assembler considerations 399

NO
Indicates that a new enclave is not needed for this program. NO is the default.

EXECOPS=

YES
Indicates that the main routines are to honor runtime options on the inbound parameter string.
This option is applicable only when MAIN=YES is in effect for the routine. The EXECOPS setting is
ignored if MAIN=NO is specified. YES is the default.

NO
Indicates that there are no runtime options in the inbound parameter string. Language
Environment considers the entire inbound parameter string as program arguments, but does not
attempt to process runtime options and remove them from the inbound parameter string.

PARMREG=
Specifies the register to hold the inbound parameters. If you do not specify a value, register 1 is
assumed.

For MAIN=YES, the value in the PARMREG is determined by PLIST. For MAIN=NO and PARMREG=1
(PARMREG defaults to 1), register 1 is restored from the save area that is passed to the routine. When
MAIN=NO and PARMREG is not equal to 1, register 1 is used to load the specified PARMREG. Then,
register 1 is used for the CEEENTRY expansion.

EXPORT=
Indicates whether this entry point will be exported.
NO

This entry point can only be called from other routines that are link-edited into the same program
object. NO is the default.

YES
This entry point is marked as an exported DLL function. If you specify EXPORT=YES, then you
must use the GOFF Assembler option.

If you want the exported name to be a long name or mixed case, follow the CEEENTRY macro with
an ALIAS statement. For more details about DLLs, including full sample assembler DLL routines, see
Chapter 4, “Building and using dynamic link libraries (DLLs),” on page 35.

For the entry point to be available as an exported DLL function, you must specify the DYNAM(DLL)
binder option, and the resulting program object must reside in a PDSE.

BASE=
Establishes the registers that you specify here as the base registers for this module. If you do not
specify a value, register 11 is assumed; register 12 cannot be used. When more than one register
is specified, the registers must be separated by commas and enclosed in parentheses. The same
register cannot be specified more than once.

PLIST=
Indicates that the main routines are to honor PLIST format on the inbound parameter string. This
option is applicable only when MAIN=YES is in effect for the routine. The PLIST settings are ignored if
MAIN=NO is specified.

The HOST format sets the specified PARMREG based on the environment in which the program is
executing. For example, in an environment that assumes CEEENTRY defaults, register 1 is set equal to
the address of a one word PLIST that contains the address of a field with a halfword-prefixed string of
user parameters. To obtain the inbound parameter list as specified, use PLIST (OS).

HOST is the default.

RMODE=
Allows the specification of the modules CSECT RMODE setting. Valid settings for this option are ANY,
24 and 31. ANY is the default.

Assembler considerations

400 z/OS: z/OS Language Environment Programming Guide

AMODE=
Allows the specification of the modules CSECT AMODE setting. Valid settings for this option are 24,
31, ANY31, and ANY. ANY is the default.

STKPROT=
Indicates whether this procedure has STACKPROTECT enabled.

Usage notes:

1. The CEEENTRY macro automatically sets the module to AMODE ANY and RMODE ANY. Therefore,
when converting to Language Environment-conforming assembler, if data management macros had
been coded using 24-bit addressing mode, they should be changed to use 31-bit addressing mode. If
it is not possible to change all the modules making up the program to use 31-bit addressing mode (and
none of the modules are already set to RMODE 24), then it will be necessary to use the RMODE=24
CEEENTRY option. Alternatively, the module can be set to RMODE 24 during the link-edit process.
This is done by specifying the link-edit RMODE option on the invocation PARM or the SETOPT control
statement.

2. Unless otherwise indicated, no register values should be expected to remain unchanged after the code
generated by CEEENTRY has executed.

3. When more than one CEEENTRY macro invocation occurs in an assembly, it is the programmer's
responsibility to code DROP statements for the base registers set up by the previous invocation of the
CEEENTRY macro.

CEETERM macro — Terminate a Language Environment-conforming routine
CEETERM provides a Language Environment-conforming epilog and is used to terminate, or return from,
a Language Environment-conforming routine. If used with a main entry, the appropriate call is made to
Language Environment termination routines.

name CEETERM

RC= return_code , MODIFIER= modifier

MF= L

(E, ctrl_addr

name
The entry name (and the CSECT name, if this is for a main entry).

RC=
The return code that is to be placed into R15 after the MODIFIER is added to it, if terminating a main
routine. If returning from a Language Environment subroutine, the return code itself is placed into
R15, without MODIFIER being added to it. return code can be a fixed constant, variable, or register
2–12.

MODIFIER=
The return code modifier that is multiplied by the appropriate value (based upon the operating
system), added to the return code, and placed into R15 (if terminating a main routine). The MODIFIER
is independently placed into R0. Modifier can be a fixed constant, variable, or register 2-12.

MF=L
Indicates the list form of the macro. A remote control program parameter list for the macro is defined,
but the service is not invoked. The list form of the macro is usually used in conjunction with the
execute form of macro.

MF=(E, ctrl_addr)
Indicates the execute form of the macro. The service is invoked using the remote control program
parameter list addressed by ctrl_addr (normally defined by the list form of the macro, it cannot be
register 0).

Assembler considerations

Chapter 29. Assembler considerations 401

Usage notes:

1. The MF=L and the MF=(E, ctrl_addr) parameters cannot both be coded for the same macro invocation.
If neither is coded, the immediate form of the macro is used. The immediate form generates an inline
parameter list, and generates nonreentrant code.

2. The address of the name can be specified as a register using parentheses ().
3. The macro invocation destroys the registers R1, R14, and R15.
4. MF=L and MF=(E, ctrl_addr) can only be used when CEEENTRY MAIN=YES has been specified. These

parameters are not necessary when CEEENTRY MAIN=NO has been specified; in that environment,
CEETERM automatically generates reentrant code.

CEECAA macro — Generate a CAA mapping

CEECAA

CEECAA is used to generate a common anchor area (CAA) mapping. This macro has no parameters, and
no label can be specified. CEECAA is required for the CEEENTRY macro.

CEEDSA macro — Generate a DSA mapping

CEEDSA

CEEDSA is used to generate a dynamic save area (DSA) mapping. This macro has no parameters, and no
label can be specified. The minimum size of the DSA is contained in an assembler EQUATE CEEDSASZ.
CEEDSA is required for the CEEENTRY macro.

CEEPPA macro — Generate a PPA
CEEPPA is used to generate the Language Environment program prolog area (PPA). The PPA defines
constants that describe the entry point of a Language Environment block. It is generated at the time of
assembly; one PPA is generated per entry point. The CEEPPA macro is required for the CEEENTRY macro.

Assembler considerations

402 z/OS: z/OS Language Environment Programming Guide

label CEEPPA

LIBRARY=

NO

YES , PPA2=

YES

NO ,

EXTPROC=

YES

NO , TSTAMP=

YES

NO ,

PEP=

YES

NO , INSTOP=

NO

YES ,

EXITDSA=

NO

YES , OWNEXM=

YES

NO ,

EPNAME= name , VER= version_number ,

REL= release_number , MOD= level ,

DSA=

YES

NO ,

SERVICE= service_string

VRSMASK= vrsmask VRSLOCR= vrslocator

STKPROT=

NO

YES

label
The name of the PPA. If you specified a name for PPA in the CEEENTRY macro, you must specify the
same name here. If you did not specify a name for PPA in the CEEENTRY macro, you must specify PPA
(the CEEENTRY default PPA label) as the name here.

LIBRARY=
Indicates whether the routine is a Language Environment library routine. Valid values for LIBRARY
are YES and NO. If you do not specify a value, NO is used. Use of this IBM-supplied default is
recommended.

PPA2=
Instructs the macro to generate a PPA2 or suppress the generation of the PPA2. A PPA2 is a program
prolog area that defines constants for the CSECT. Only one is used, independent of the number of
entry points. Valid values for PPA2 are YES and NO.

The default is YES, which generates a PPA2 field.

EXTPROC=
Indicates if this routine is an external procedure or an internal procedure. Valid values for EXTPROC
are YES and NO. The default is YES, which indicates that the block is an external procedure.

TSTAMP=
Indicates whether a time stamp, indicating the date and time of assembly, should be generated. Valid
values for TSTAMP are YES and NO.The default is YES is used and a time stamp is generated.

Assembler considerations

Chapter 29. Assembler considerations 403

PEP=
Indicates whether this entry point is primary or secondary. A secondary entry point is an alternative
entry point. Some Language Environment facilities, such as CEE3DMP, report information that is based
on the primary entry point only.

Valid values for PEP are YES and NO. The default is YES, which indicates that this is a primary entry
point (PEP).

INSTOP=
Indicates whether time spent in this routine should be attributed to the program (rather than to
the system). Valid values for INSTOP are YES and NO. The default is NO, which indicates that time
should be attributed to the system. The information is intended to be used by application performance
analysis tools.

EXITDSA=
Indicates whether the code should gain control on GOTO out of block. Valid values for EXITDSA are
YES and NO. The default is NO, which indicates that the code does not gain control for GOTO out of
block. Use of this IBM-supplied default is recommended.

OWNEXM=
Specifies whether this routine should participate in condition handling according to the exception
model of its own member language (OWNEXM=YES), or according to the exception model inherited
from the caller's member language (OWNEXM=NO). Valid values for OWNEXM are YES and NO. The
default is YES. Use of this IBM-supplied default is recommended.

EPNAME=
Indicates the entry point name. The default is the name of the CSECT is used.

VER=
The version number for the routine. This field is not interrogated by Language Environment. Valid
values for VER are 1 through 99. The default is 1.

REL=
The release number for the routine. This field is not interrogated by Language Environment. Valid
values for REL are 1 through 99. If you do not specify a value, 1 is used.

MOD=
The modification level for the routine. This field is not interrogated by Language Environment. Valid
values for MOD are 1 through 99. The default is 1.

DSA=YES
Indicates whether this procedure has a DSA. Valid values for DSA are YES and NO. The default
is YES, which indicates that the code has an associated DSA. Use of this IBM-supplied default is
recommended.

SERVICE=
Indicates the service level string for the routine. The service string length and contents are located
following the time stamp and version information. The first 7 bytes of the service level string is treated
as character data for the Service column of a traceback. When the SERVICE keyword is in use, the
time stamp is generated automatically, the TSTAMP option is defaulted to YES even when the user
specified TSTAMP=NO. The SERVICE keyword can only be specified on the first CEEPPA macro in the
assembler source. All other instances of the keyword are ignored.

VRSMASK=
The Vector Registers save bit mask field in hexadecimal format. Valid values for VRSMASK are 00
through FF. VRSMASK and VRSLOCR must be provided at the same time for the VRs optional area.

VRSLOCR=
The Vector Registers locator field in hexadecimal format. Valid values for VRSLOCR are 00 through FF.
VRSMASK and VRSLOCR must be provided at the same time for the VRs optional area.

STKPROT=
Indicates whether this procedure has STACKPROTECT enabled.

Assembler considerations

404 z/OS: z/OS Language Environment Programming Guide

CEELOAD macro — Dynamically load a Language Environment-conforming
routine

CEELOAD is used to dynamically load a Language Environment-conforming routine. It does not create a
nested enclave, so the target of CEELOAD must be a subroutine.

There is no corresponding service to delete Language Environment-conforming routines. You should not
use system services to delete modules that you load using CEELOAD; during thread (if SCOPE=THREAD)
or enclave (if SCOPE=ENCLAVE) termination, Language Environment deletes modules loaded by
CEELOAD.

Using CEELOAD imposes restrictions on further dynamic loading or dynamic calls or fetches; results are
unpredictable if these rules are violated.

• You cannot dynamically load a routine with CEELOAD that has already been dynamically loaded by
CEELOAD or has been fetched or dynamically called.

• You cannot fetch or dynamically call a routine that has already been dynamically loaded by CEELOAD.

If CEELOAD completes successfully, the address of the loaded routine is found in R15. You can then
invoke the routine using BALR 14,15 (or BASSM 14,15).

Language Environment returns the address of the target routine with the high-order bit indicating the
addressing mode (AMODE) of the routine. Language Environment-enabled programs return in the AMODE
in which they are entered. Because Language Environment does not provide any AMODE switching on
behalf of the target routine, you must provide any necessary AMODE switching code.

The macro invocation destroys the following registers:

• R0
• R1
• R14
• R15 (upon return, contains the target address)

When the macro code is expanded and run, the following assumptions are made:

• R12 points to the CAA.
• R13 has a standard Language Environment DSA available.

label CEELOAD

NAME= name

NAMEADDR= nameaddr

,

SCOPE=ENCLAVE

SCOPE=THREAD

,

FEEDBACK=fbcode

,

MF=I

MF=L

MF=(E, ctrl_addr)

label
The assembler label you give to this invocation of the macro. A label is required if MF=L; otherwise it is
optional.

NAME=
The name of the entry point to be loaded by Language Environment. If MF=I or MF=L, you must
specify either NAME or NAMEADDR, but not both.

NAMEADDR=
The address of a halfword-prefixed name that should be loaded by Language Environment. This can
be an A-type address or a register (register 2 through 11). If MF=I or MF=L, you must specify either

Assembler considerations

Chapter 29. Assembler considerations 405

NAME or NAMEADDR, but not both. The address of the name can be specified as a register using
parentheses ().

SCOPE=THREAD
Indicates that the load is to be scoped to the thread level. Modules loaded at the thread level are
deleted automatically at thread termination.

SCOPE=ENCLAVE
Indicates that the load is to be scoped to the enclave level. Modules loaded at the enclave level are
deleted automatically at enclave termination. SCOPE=ENCLAVE is the default.

FEEDBACK=
The name of a variable to contain the resulting 12-byte feedback token. If you omit this parameter,
any nonzero feedback token that results is signaled. The following symbolic conditions might be
returned from this service:

Symbolic
feedback code

Severity Message
number

Message text

CEE000 0 — The service completed successfully.

CEE3DC 3 3500 Not enough storage was available to load module-
name.

CEE3DD 3 3501 The module module-name was not found.

CEE3DE 3 3502 The module name module-name was too long.

CEE3DF 3 3503 The load request for module module-name was
unsuccessful.

CEE39K 1 3380 The target load module was not recognized by
Language Environment.

CEE38M 3 3350 CEE3ADM or CEE3MBR could not find the event
handler.

CEE38N 3 3351 CEE3ADM or CEE3MBR could not properly initialize the
event handler.

CEE38V 2 3359 The module or language list is not supported in this
environment.

MF=I
Indicates the immediate form of the macro. The immediate form generates an inline parameter list,
and generates nonreentrant code.

MF=L
Indicates the list form of the macro. A remote control program parameter list for the macro is defined,
but the service is not invoked. The list form of the macro is usually used in conjunction with the
execute form of the macro.

MF=(E, ctrl_addr)
Indicates the execute form of the macro. The service is invoked using the remote control program
parameter list addressed by ctrl_addr (normally defined by the list form of the macro).

Only one of the MF=I, MF=L, or MF=(E, ctrl_addr) parameters can be coded for the same macro
invocation. If none is coded, the immediate form of the macro is used.

The following example illustrates an invocation of the CEELOAD macro.

CLOADTST CEEENTRY MAIN=YES,PPA=LEPPA,AUTO=DSALGTH
**
* Copy parameters to be passed to CEELOAD
**
MVC LOADPL(PLLEN),PLLIST
**
* Invoke CEELOAD to load module HIWORLD
**
CEELOAD MF=(E,LOADPL) LOAD ROUTINE

Assembler considerations

406 z/OS: z/OS Language Environment Programming Guide

**
* Pass control to HIWORLD
**
BALR 14,15 INVOKE ROUTINE
**
* Invoke CEETERM to return to Caller
**
CEETERM RC=(15),MF=(E,DSARPL) BACK TO CALLER
**
* Constants
**
PLLIST CEELOAD MF=L,NAME=HIWORLD,SCOPE=THREAD
PLLEN EQU *-PLLIST
LEPPA CEEPPA ,
**
* Mappings
**
CEECAA , LE/370 COMMON ANCHOR AREA
**
* Workarea and DSA
**
CEEDSA , LE/370 DYNAMIC STORAGE AREA
DSARPL CEETERM MF=L
DS 0F
LOADPL DS XL(PLLEN)
DSALGTH EQU *-CEEDSA
END

Usage notes:

1. Language Environment issues the appropriate load command according to the Language Environment
search order (described in “Program library definition and search order” on page 67) and performs the
necessary dynamic updates to accommodate the new load module.

2. Language Environment performs any language-related initialization required.
3. You cannot use CEELOAD to load a program object which was created using the program management

binder. You can, however, use CEEFETCH for loading program objects.
4. You cannot use CEELOAD to load C++ modules, because C++ modules are always compiled RENT and

have writable static that is not switched when control passes between functions.
5. #pragma linkage (xxx,fetchable) should not be used. If a module is linked with #pragma
linkage (xxx,fetchable), it will have CEESTART as an entry point, which is not allowed, and the
module could have writable static requirements that would not be handled using CEELOAD.

When using CEELOAD to load a C module, the function or functions within this module must not be
designated as fetchable. The #pragma linkage (xxx,fetchable) directive should not be coded in
the module. Instead, such modules should be fetched using the fetch() function.

6. #pragma linkage (xxx,COBOL) should not be used.
7. For C users, the load module entry point must be the function name, and cannot be CEESTART (nested

environment initialization causes Language Environment to abend). You cannot use CEELOAD to load
any function that uses writable static. The module must be built NORENT and the entry point must be
a C function, not CEESTART.

8. This macro should not be used for DLLs.

CEEFETCH macro — Dynamically load a routine
CEEFETCH is used to dynamically load a routine.

Use the CEERELES macro to delete routines that are loaded with CEEFETCH. Do not use system
services to delete modules that you load using CEEFETCH; during thread (if SCOPE=THREAD), enclave (if
SCOPE=ENCLAVE), or process (if SCOPE=PROCESS) termination, Language Environment deletes modules
that are loaded by CEEFETCH.

If CEEFETCH completes successfully, the address of the target routine is found in R15. You can then
invoke the routine using the BALR 14,15 (or BASSM 14,15) instruction.

Language Environment returns the address of the target routine with the high-order bit indicating the
addressing mode (AMODE) of the routine. Language Environment-enabled programs return in the AMODE

Assembler considerations

Chapter 29. Assembler considerations 407

in which they are entered. Because Language Environment does not provide any AMODE switching on
behalf of the target routine, you must provide any necessary AMODE switching code.

For example:

 LA 2,RESET SAVE BRANCH ADDRESS AND CURRENT
 BSM 2,0 AMODE IN REGISTER 2
 BASSM 14,15 CALL COBOL PROGRAM
 BSM 0,2 BRANCH AND RESTORE AMODE FROM REG. 2
RESET DS OH

The macro invocation destroys the following registers:

• R0
• R1
• R14
• R15 (upon return, contains the target address)

When the macro code is expanded and run, the following assumptions are made:

• R12 points to the CAA.
• R13 has a standard Language Environment DSA available.

label CEEFETCH

NAME= name

NAMEADDR= nameaddr

ENTRYPT= entrypt

,

SCOPE=ENCLAVE

SCOPE=THREAD

SCOPE=PROCESS

,
SEARCH=MVS

SEARCH=HFS

SEARCH=MVSHFS

SEARCH=HFSMVS

,

TOKEN= token

,

FTCHINFO= ftchinfo

,

FEEDBACK= fbcode

,
MF=I

MF=L

MF=(E, ctrl_addr)

label
The assembler label that you give to this invocation of the macro. A label is required if MF=L is
specified; otherwise, it is optional.

NAME=name
The name of the entry point to be loaded by Language Environment. The maximum length of name
is eight characters. If a longer name is needed, the NAMEADDR parameter must be used. You cannot
specify NAME and NAMEADDR together.

Assembler considerations

408 z/OS: z/OS Language Environment Programming Guide

NAMEADDR=nameaddr
The address of a halfword-prefixed name that should be loaded by Language Environment. A halfword
prefix name is a string where the first two bytes identify the length of a name string and are followed
by the name string itself. This can be an A-type address or a register (register 2 through 11). The
address of the name can be specified as a register using parentheses (). The maximum length of the
name is 1023 characters. You cannot specify NAME and NAMEADDR together.

ENTRYPT=entrypt
The name of a fullword address variable that contains the entry point for a module that was previously
loaded or the register (enclosed in parentheses) containing the entry point for a module that was
previously loaded. The NAME and NAMEADDR keywords are mutually exclusive with ENTRYPT. The
SEARCH keyword is ignored when ENTRYPT is specified. The FTCHINFO keyword is required when
ENTRYPT is specified. A corresponding “delete” using CEERELES can be done if CEEFETCH returns
successfully.

SCOPE=THREAD
Indicates that the load is to be scoped to the thread level. Modules that are loaded at the thread level
are deleted automatically at thread termination.

SCOPE=ENCLAVE
Indicates that the load is to be scoped to the enclave level. Modules that are loaded at the enclave
level are deleted automatically at enclave termination. It is the default.

SCOPE=PROCESS
Indicates that the load is to be scoped to the process level. Modules that are loaded at the process
level are deleted automatically at process termination.

TOKEN=token
The name of a variable to contain the resulting 4-byte token. This variable must be passed to the
CEERELES macro if the load module is to be deleted. If MF=I or MF=L are specified, you must specify
TOKEN.

SEARCH=MVS
Indicates that only the MVS file system is to be searched for the load module. It is the default.

SEARCH=HFS
Indicates that only the HFS file system is to be searched for the load module.

SEARCH=MVSHFS
Indicates that the MVS file system is to be searched first and then the HFS file system for the load
module.

SEARCH=HFSMVS
Indicates that the HFS file system is to be searched first and then the z/OS file system for the load
module.

FEEDBACK=fbcode
The name of a variable to contain the resulting 12-byte feedback token. If you omit this parameter,
any nonzero feedback token that results is signaled. The following symbolic conditions might be
returned from this service:

Symbolic
feedback code

Severity Message
number

Message text

CEE000 0 — The service completed successfully.

CEE3DC 3 3500 Not enough storage was available to load module-
name.

CEE3DD 3 3501 The module module-name was not found.

CEE3DE 3 3502 The module name module-name was too long.

CEE3DF 3 3503 The load request for module module-name was
unsuccessful.

CEE39K 1 3380 The target load module was not recognized by
Language Environment.

Assembler considerations

Chapter 29. Assembler considerations 409

Symbolic
feedback code

Severity Message
number

Message text

CEE38M 3 3350 CEE3ADM or CEE3MBR could not find the event
handler.

CEE38N 3 3351 CEE3ADM or CEE3MBR could not properly initialize
the event handler.

CEE3N9 2 3817 The member event handler did not return a usable
function pointer.

CEE38V 2 3359 The module or language list is not supported in this
environment.

CEE3DV 3 3519 The version that is specified in the CEEFTCH
control block passed to the CEEFETCH macro is not
supported.

CEE3QS 1 3932 The system service CSVQUERY failed with return
code <return_code> and reason code 0.

MF=I
Indicates the immediate form of the macro. The immediate form generates an inline parameter list
and generates nonreentrant code. This is the default value.

MF=L
Indicates the list form of the macro. A remote control program parameter list for the macro is defined,
but the service is not invoked. The list form of the macro is usually used with the execute form of the
macro.

MF=(E,ctrl_addr)
Indicates the execute form of the macro. The service is invoked using the remote control program
parameter list addressed by ctrl_addr (usually defined by the list form of the macro).

Only one of the MF=I, MF=L, or MF=(E, ctrl_addr) parameters can be coded for the same macro
invocation. If none is coded, the immediate form of the macro is used.

FTCHINFO=ftchinfo
The name of a fullword address variable that contains the address of a previously allocated FTCHINFO
storage area or the register (enclosed in parentheses) containing the address of a preallocated
FTCHINFO storage area, where the resulting module information is to be stored. The user must
set the CEEFTCH_VERSION field in the FTCHINFO storage area. This keyword is useful for retrieving
information about a target module whose characteristics are unknown. If the module is identified
as a Language Environment conforming AMODE 24 or AMODE 31 subroutine, then processing would
be as normal, otherwise only a load of the target is attempted. Only an AMODE 24 or AMODE 31
target module can be recognized as a DLL. An AMODE 24 or AMODE 31 COBOL target is classified as
a subroutine and follows the normal processing. The CEEFTCH macro provides the mapping for the
FTCHINFO storage area. see the “CEEFTCH macro — Generate a FTCHINFO mapping” on page 411
description for details about its contents.

Usage notes:

1. Language Environment issues the appropriate load command according to Language Environment
search order (described in “Program library definition and search order” on page 67), and performs
the necessary dynamic updates to accommodate the load module.

2. Language Environment performs any language-related initialization required.
3. Any COBOL, PL/I, or Fortran module that is fetched, dynamically called, or CEEFETCHed more than

once must be reentrant.
4. When using CEEFETCH to fetch a C module, the C module must contain #pragma linkage
(xxx,fetchable). For exceptions to this rule, see fetch() - Get a load module in z/OS XL C/C++
Runtime Library Reference.

Assembler considerations

410 z/OS: z/OS Language Environment Programming Guide

5. CEEFETCH can be used in a non-XPLINK Assembler program to fetch an XPLINK-compiled module.
The fetched XPLINK-compiled module must contain #pragma linkage(xxx,fetchable). The
address of the target routine that is returned by CEEFETCH in R15 contains any necessary glue code
to call an XPLINK routine from non-XPLINK, and can still be invoked using BALR 14,15. All rules and
restrictions on the environment that is imposed by XPLINK still apply. See Chapter 3, “Using Extra
Performance Linkage (XPLINK),” on page 23.

6. Do not use CEEFETCH for DLLs.
7. If CEEFETCH is used to fetch a C++ module, the C++ module must contain the #pragma
linkage(xxx,fetchable) directive and must be declared extern "C". For more informative
about extern "C", see fetch() - Get a load module in z/OS XL C/C++ Runtime Library Reference.

8. The Fortran compilers do not conform to the Language Environment interface conventions, thus
Fortran targets will not be recognized as Language Environment conforming. For more information,
see the Fortran migration guide.

9. Do not reuse the contents that are returned in R15 after a call to CEEFETCH as input to a follow-up
call to CEEFETCH. This scenario could result in the issue of the CEE3932W message.

10. In a multithread environment, using a CEEFETCH / BALR (or BASSM) / CEERELES sequence on more
than one thread is not supported if the target routine is the same COBOL routine, even when the
COBOL routine is enabled for multithreading. COBOL does not allow a CANCEL of a routine that is
active on another thread.

11. In a multithread environment, using a CEEFETCH / BALR (or BASSM) / CEERELES sequence on more
than one thread is not supported if the target routine is the same PL/I routine.

12. The SCOPE of the CEEFETCH is with respect to the load module only. Other storage and data that
is associated with the module, such as the function descriptor and writeable static area (WSA),
are scoped to the enclave level. (If C/C++, PL/I, and certain features of other compilers are used,
function descriptors and writeable static areas might exist.)

CEEFTCH macro — Generate a FTCHINFO mapping
CEEFTCH is used to generate a mapping for the FTCHINFO storage area. Module information can be
returned from the CEEFETCH macro in a FTCHINFO storage area. No label can be specified for this macro.

The FLAG information provided for AMODE 64 modules is limited to the AMODE, if Language
Environment-conforming, if XPLINK, and if SEGMENTED. A target that is recognized as an AMODE 24 or
AMODE 31 DLL, will have the MAIN and SUB bits turned OFF. The EP address for an AMODE 31 target will
have the high order bit turned off and the EP64 address for an AMODE 64 target will have the low-order
bit turned off.

When the ENTRYPT keyword is used with CEEFETCH in the CICS environment (running on the QR
TCB), the load point address, load length, and module segment information will not be provided in the
FTCHINFO storage area. The module segment information will also not be provided when the FTCHINFO
keyword is used without ENTRYPT keyword in the CICS environment.

The user must set the CEEFTCH_VERSION field in CEEFTCH before invoking the CEEFETCH macro to
return module information. (Currently the only valid value for CEEFTCH_VERSION is 1.) An unsupported
version will result in the CEE3DV feedback code from CEEFETCH. See the following CEEFTCH tables for
supported mapping versions.

CEEFTCH

DSECT= YES

DSECT= No

DSECT=YES
Indicates that a DSECT mapping should be generated. This is the default for the mapping if the DSECT
option is not specified.

Assembler considerations

Chapter 29. Assembler considerations 411

DSECT=NO
Indicates that a data area mapping should be generated.

The following tables show the format of the CEEFTCH mapping Version 1 (CEEFTCH_VERSION = 1).

Table 64. Structure of version 1 CEEFTCH

OFFSET
Dec

OFFSET
Hex

Type Len Name (Dim) Description

0 (0) STRUCTURE 64 CEEFTCH Start of CEEFTCH

0 (0) CHARACTER 8 CEEFTCH_EYE_CATCHER eyecatcher

8 (8) UNSIGNED 2 CEEFTCH_VERSION Version requested

10 (A) BIT(8) 1 CEEFTCH_FLAGS1 CEEFTCH flags1

10 (A) BIT(1) 1 CEEFTCH_A24 X'80' target is AMODE 24

10 (A) BIT(1) POS(2) 1 CEEFTCH_A31 X'40' target is AMODE 31

10 (A) BIT(1) POS(3) 1 CEEFTCH_A64 X'20' target is AMODE 64

10 (A) BIT(1) POS(4) 1 CEEFTCH_XPLINK X'10' target is XPLINK

10 (A) BIT(1) POS(5) 1 CEEFTCH_LE X'08' target is Language Environment
conforming

10 (A) BIT(1) POS(6) 1 CEEFTCH_MAIN X'04' target is MAIN

10 (A) BIT(1) POS(7) 1 CEEFTCH_SUB X'02' target is a SUB

10 (A) BIT(1) POS(8) 1 CEEFTCH_DLL X'01' target is DLL

11 (B) BIT(8) 1 CEEFTCH_FLAGS2 CEEFTCH flags2

11 (B) BIT(1) 1 CEEFTCH_SEGMENTED X'80' target module is divided into
multiple initial load segments (deferred
load segments, if any, are not counted)

11 (B) BIT(1) POS(2) 1 CEEFTCH_CICS X'40' CICS environment

11 (B) BIT(6) POS(3) 1 * Available

12 (C) SIGNED 4 * Available

16 (10) ADDRESS 8 CEEFTCH_CEESTART64 Address of 64bit CEESTART

16 (10) SIGNED 4 *

20 (14) ADDRESS 4 CEEFTCH_CEESTART Address of 31-bit CEESTART

24 (18) ADDRESS 8 CEEFTCH_MOD64 Address of 64-bit target

24 (18) SIGNED 4 *

28 (1C) ADDRESS 4 CEEFTCH_MOD Address of 31-bit target

32 (20) SIGNED 8 CEEFTCH_MOD_LEN64 Length of 64-bit target

32 (20) SIGNED 4 *

36 (24) SIGNED 4 CEEFTCH_MOD_LEN Length of 31-bit target

40 (28) ADDRESS 8 CEEFTCH_EP64 Address of 64-bit EntryPt

40 (28) SIGNED 4 *

44 (2C) ADDRESS 4 CEEFTCH_EP Address of 31-bit EntryPt

48 (30) UNSIGNED 8 * Available

56 (38) UNSIGNED 8 * Available

Assembler considerations

412 z/OS: z/OS Language Environment Programming Guide

Table 65. Cross reference for version 1 CEEFTCH

Name Offset Level

CEEFTCH 0 1

CEEFTCH_A24 A 3

CEEFTCH_A31 A 3

CEEFTCH_A64 A 3

CEEFTCH_CEESTART 14 3

CEEFTCH_CEESTART64 10 2

CEEFTCH_CICS B 3

CEEFTCH_DLL A 3

CEEFTCH_EP 2C 3

CEEFTCH_EP64 28 2

CEEFTCH_EYE_CATCHER 0 2

CEEFTCH_FLAGS1 A 2

CEEFTCH_FLAGS2 B 2

CEEFTCH_LE A 3

CEEFTCH_MAIN A 3

CEEFTCH_MOD 1C 3

CEEFTCH_MOD_LEN 24 3

CEEFTCH_MOD_LEN64 20 2

CEEFTCH_MOD64 18 2

CEEFTCH_SEGMENTED B 3

CEEFTCH_SUB A 3

CEEFTCH_VERSION 8 2

CEEFTCH_XPLINK A 3

CEEGLOB macro — Extract Language Environment product information
CEEGLOB is used to generate global symbols that provide Language Environment product information at
assembly time.

label CEEGLOB

label is an optional assembler label that a user can give to this invocation of the macro.

The CEEGLOB macro generates the following global assembler variables to match the information
returned by CEEGPID:

&CEEGPRO (alias &GPRO)
Product number

&CEEGVER (alias &GVER)
Product version

&CEEGREL (alias &GREL)
Product release

&CEEGMOD (alias &GMOD)
Product modification level

Assembler considerations

Chapter 29. Assembler considerations 413

&CEEGENV (alias &GENV)
OS environment from which the macro was invoked. Set to 3 for z/OS.

These global assembler variables can be tested and used at assembly time to verify availability of services
and function that require specific levels of Language Environment or operating systems.

Note: If you need to make a decision concerning Language Environment and z/OS levels at runtime
instead of assembly time, use CEEGPID instead. For more information about CEEGPID, see CEEGPID —
Retrieve the Language Environment version and platform ID in z/OS Language Environment Programming
Reference.

CEERELES macro — Dynamically delete a routine
CEERELES is used to dynamically delete a routine. The macro invocation destroys the following registers:

• R0
• R1
• R14
• R15

When the macro code is expanded and run, the following assumptions are made:

• R12 points to the CAA.
• R13 has a standard Language Environment DSA available.

label CEERELES

TOKEN= token

,

FEEDBACK= fbcode

,

MF=I

MF=L

MF=(E, ctrl_addr)

label
The assembler label you give to this invocation of the macro. A label is required if MF=L is specified;
otherwise, it is optional.

TOKEN=token
The name of a variable that contains the token returned by the CEEFETCH macro. If MF=I or MF=L,
you must specify TOKEN.

FEEDBACK=fbcode
The name of a variable to contain the resulting 12-byte feedback token. If you omit this parameter,
any nonzero feedback token that results is signaled. The following symbolic conditions might be
returned from this service:

Symbolic feedback
code

Severity Message
number

Message text

CEE000 0 — The service completed successfully.

CEE38N 3 3351 An event handler was unable to process a request
successfully.

CEE39K 1 3380 The target load module was not recognized by
Language Environment.

CEE3DG 3 3504 Delete service request for module-name was
unsuccessful.

Assembler considerations

414 z/OS: z/OS Language Environment Programming Guide

Symbolic feedback
code

Severity Message
number

Message text

CEE3E0 3 3520 The token passed to the CEERELES macro was
invalid.

MF=I
Indicates the immediate form of the macro. The immediate form generates an inline parameter list,
and generates nonreentrant code. This is the default.

MF=L
Indicates the list form of the macro. A remote control program parameter list for the macro is defined,
but the service is not invoked. The list form of the macro is usually used with the execute form of the
macro.

MF=(E,ctrl_addr)
Indicates the execute form of the macro. The service is invoked using the remote control program
parameter list addressed by ctrl_addr (usually defined by the list form of the macro).

Only one of the MF=I, MF=L, or MF=(E, ctrl_addr) parameters can be coded for the same macro
invocation. If none is coded, the immediate form of the macro is used.

Usage notes:

1. Language Environment issues the appropriate operating system delete command and performs the
necessary dynamic updates to accommodate the deleted load module.

2. Language Environment performs any language-related cleanup required.
3. This macro should not be used for DLLs.
4. In a multithread environment, using a CEEFETCH / BALR (or BASSM) / CEERELES sequence on more

than one thread is not supported if the target routine is the same COBOL routine, even when the
COBOL routine is enabled for multithreading. COBOL does not allow a CANCEL of a routine that is
active on another thread.

5. In a multithread environment, using a CEEFETCH / BALR (or BASSM) / CEERELES sequence on more
than one thread is not supported if the target routine is the same PL/I routine.

CEEPCALL macro — Pass control to control sections at specified entry points
The CEEPCALL macro passes control to a control section at a specified entry point. The target of
CEEPCALL can be resolved either statically (link-edited with the same program object) or dynamically
(imported from a DLL). The only required positional parameter is the name of the called entry point. This
name is case-sensitive, and can be up to 255 characters in length. The optional parameter list will be
pointed to by General Purpose Register (GPR) 1.

Since only REENTRANT Assembler code is supported by this macro, it must be specified as a combination
of LIST and EXECUTE forms so that the parameter list can be built in automatic (that is, stack) storage.

The CEEPCALL macro does not generate any return codes. A return code may be placed in GPR 15 by the
called program.

GPRs 1, 14, and 15 are not preserved by this macro.

label

CEEPCALL

, (parm1 , ...)

,VL

, MF=L

or

Assembler considerations

Chapter 29. Assembler considerations 415

label

CEEPCALL entry-name

, (parm1 , ...)

,VL

, MF=(E, prob_addr)

label
Optional symbol beginning in column 1.

entry-name
Specifies the entry name of the program to be given control. This entry name can reside in the same
program object, or can be an exported DLL function.

(parm1, ...)
One or more optional parameters to be passed to the called program, separated by commas. In the
list form, these are specified as A-type addresses, and in the execute form are RX-type addresses or
specified as registers (2) - (12).

To create the parameter list, the calling program creates a list of addresses of each parameter in the
order designated. In the execute form of the macro, GPR 1 contains the address of the parameter list
when the program receives control. (If no parameters are coded, GPR 1 is not altered.) See Figure 103
on page 417.

VL
Code VL only if the called program can be passed a variable number of parameters. VL causes the
high-order bit of the last address parameter to be set to 1; the bit can be checked to find the end of
the list.

MF=L
Creates the list form of the CEEPCALL macro to construct a nonexecutable problem program
parameter list. This list form generates only ADCONs of the address parameters. You should refer
to this problem program parameter list in the execute form of a CEEPCALL macro.

MF=(E,prob_addr)
Creates the execute form of the CEEPCALL macro, which can refer to and modify a remote problem
program parameter list. Only executable instructions and a function descriptor representing the entry
point are generated.

Usage notes:

1. This macro requires the GOFF Assembler option
2. This macro requires the binder to link edit, and the RENT and DYNAM(DLL) binder options. You also

need the CASE(MIXED) binder option if the entry-name is mixed case.
3. The output from the binder must be a PM3 (or higher) format program object, and therefore must

reside in either a PDSE or a UNIX file system.

For more information about DLLs, including full sample assembler DLL routines, see Chapter 4, “Building
and using dynamic link libraries (DLLs),” on page 35. The following example illustrates an invocation of the
CEEPCALL macro to call the routine named Bif1 with no parameters:

Assembler considerations

416 z/OS: z/OS Language Environment Programming Guide

DLLAPPL CEEENTRY MAIN=YES,PPA=DLLPPA
* Symbolic Register Definitions and Usage
R15 EQU 15 Entry point address
*
 CEEPCALL Bif1,MF=(E,)
*
 SR R15,R15
RETURN DS 0H
 CEETERM RC=(R15),MODIFIER=0
*
DLLPPA CEEPPA
 LTORG
 CEEDSA
 CEECAA
 END DLLAPPL

Figure 102. Example calling routine named Bif5 with no parameters:

The following example illustrates an invocation of the CEEPCALL macro to call the routine named Bif5
passing 5 integer parameters:

DLLAPPL CEEENTRY MAIN=YES,PPA=DLLPPA,AUTO=AUTOSZ
* Symbolic Register Definitions and Usage
R15 EQU 15 Entry point address
*
THECALL CEEPCALL Bif5,(PARM1,PARM2,PARM3,PARM4,PARM5),VL,MF=(E,PARMS)
*
 SR R15,R15
RETURN DS 0H
 CEETERM RC=(R15),MODIFIER=0
*
PARM1 DC A(15)
PARM2 DC A(33)
PARM3 DC A(45)
PARM4 DC A(57)
PARM5 DC A(99)
DLLPPA CEEPPA
 LTORG
 CEEDSA
PARMS CEEPCALL ,(0,0,0,0,0),MF=L
AUTOEND DS 0D
AUTOSZ EQU AUTOEND-CEEDSA
 CEECAA
 END DLLAPPL

Figure 103. Example calling routine named Bif5 passing 5 integer parameters:

CEEPDDA macro — Define a data item in the writeable static area (WSA)
CEEPDDA can be used to define data in the writeable static area (WSA), and optionally specify it as either
exported or imported data.

If the CEEPDDA macro is followed by data constants, it is declared data, and must be followed by a
subsequent CEEPDDA invocation with only the END parameter to mark the end of the declared data. If
there are no subsequent data constants, a reference is created for the imported data.

label

CEEPDDA END

dataname , SCOPE= LOCAL

EXPORT

IMPORT

label
Optional label beginning in column 1.

Assembler considerations

Chapter 29. Assembler considerations 417

dataname
Specifies the name of the data item. It is case sensitive and can be up to 255 characters in length.
This entry name can reside in the same program object, or can be an exported DLL function.

SCOPE= {LOCAL|EXPORT|IMPORT}
Optional keyword parameter that results in the data being exported if SCOPE=EXPORT is specified
and this instance of CEEPDDA is to declare data, or the data being imported if SCOPE=IMPORT is
specified and this instance of CEEPDDA generates a reference to data (that is, no data constants
follow macro). Use SCOPE=LOCAL to declare data in WSA that is not exported.

END
The use of CEEPDDA with the END parameter is used to indicate the end of this defined data
item. It must be used in conjunction with an invocation of CEEPDDA with the SCOPE=EXPORT or
SCOPE=LOCAL keyword parameter.

Usage notes:

1. This macro requires the GOFF Assembler option.
2. This macro requires the binder to link edit, and the RENT and DYNAM(DLL) binder options. You also

need the CASE(MIXED) binder option if the dataname is mixed case.
3. The output from the binder must be a PM3 (or higher) format program object, and therefore must

reside in either a PDSE or the z/OS UNIX file system.

For more details on DLLs, including full sample assembler DLL routines, see Chapter 4, “Building and
using dynamic link libraries (DLLs),” on page 35.

The following example illustrates how to export data from Assembler. The first exported data item is an
integer with the initial value 123, and the second exported data item is the character string "Hello World"
with a terminating NULL (x'00') character:

 CEEPDDA DllVar,SCOPE=EXPORT
 DC A(123)
 CEEPDDA END
 CEEPDDA DllStr,SCOPE=EXPORT
 DC C'Hello World'
 DC X'00'
 CEEPDDA END

The following example illustrates how to import the variable named Biv1 into Assembler.

 CEEPDDA Biv1,SCOPE=IMPORT

CEEPLDA macro — Returns the address of a data item defined by CEEPDDA
CEEPLDA is used to obtain the address of a local, imported, or exported data item. The required
dataname label will name the data item, is case sensitive, and can be up to 255 characters in length.

Registers 0, 14, and 15 are not preserved by this macro.

label

CEEPLDA dataname , REG= register

label
Optional label beginning in column 1.

dataname
Specifies the name of the data item whose address will be returned. It is case sensitive and can be up
to 255 characters in length.

REG=
The numeric value of the register to contain the address of the data identified by dataname. Registers
0, 14, and 15 cannot be used.

Assembler considerations

418 z/OS: z/OS Language Environment Programming Guide

Usage notes:

1. This macro requires the GOFF Assembler option.
2. This macro requires the binder to link-edit, and the RENT and DYNAM(DLL) binder options. You will

also need the CASE(MIXED) binder option if the dataname is mixed case.
3. The output from the binder must be a PM3 (or higher) format program object, and therefore must

reside in either a PDSE or the z/OS UNIX file system.

For more details on DLLs, including full sample assembler DLL routines, see Chapter 4, “Building and
using dynamic link libraries (DLLs),” on page 35.

The following example illustrates how to obtain the address of an imported variable in WSA and store
an integer value into it. This particular example uses a corresponding CEEPDDA instance for an imported
variable, but an exported or local variable would also work.

* Obtain address of imported variable Biv1 in register 9
 CEEPLDA Biv1,REG=9
* Set value of imported variable to 123
 LA R8,123
 ST R8,0(,R9)
...
 CEEPDDA Biv1,SCOPE=IMPORT

Example of assembler main routine
Figure 104 on page 419 shows a simple assembler main routine. In the example, the Language
Environment environment is established, a message showing control is received in the routine, and the
Language Environment environment terminates with a zero return code passed in R15 to the invoker.

If you write an assembler main routine, nominate the routine as a load module entry point using the END
statement, as Figure 104 on page 419 shows. Otherwise, you must explicitly declare the routine as the
entry point at link-edit time.

*COMPILATION UNIT: LEASMMN
* ===
*
* A simple main assembler routine that brings up the
* LE/370 environment, prints a message in the main routine,
* and returns with a return code of 0, modifier of 0.
*
* ===
MAIN CEEENTRY PPA=MAINPPA
*
* Invoke CEEMOUT to issue a message for us
*
 CALL CEEMOUT,(STRING,DEST,0),VL Omitted feedback code
*
* Terminate the LE/370 environment and return to the caller
*
 CEETERM RC=0,MODIFIER=0
* ==
* CONSTANTS AND WORKAREAS
* ==
*
DEST DC F'2'
STRING DC Y(STRLEN)
STRBEGIN DC C'In the main routine'
STRLEN EQU *-STRBEGIN
MAINPPA CEEPPA , Constants describing the code block
 CEEDSA , Mapping of the dynamic save area
 CEECAA , Mapping of the common anchor area
 END MAIN Nominate MAIN as the entry point

Figure 104. Example of a simple main assembler routine

Assembler considerations

Chapter 29. Assembler considerations 419

Example of an assembler main calling an assembler subroutine
Following is a simple assembler main routine that calls the DISPARM subroutine shown in “DSPARM
subroutine example” on page 420.

*COMPILATION UNIT: LEASMSB
* ===

*
* A simple main assembler routine brings up Language
* Environment, calls a subroutine, and returns with
* a return code of 0.
*
* ===
SUBXMP CEEENTRY PPA=XMPPPA,AUTO=WORKSIZE
 USING WORKAREA,R13
*
* --
*
* Invoke CEEMOUT to issue the greeting message
*
 CALL CEEMOUT,(HELLOMSG,DEST,FBCODE),VL,MF=(E,CALLMOUT)
*
* No plist to DISPARM, so zero R1. Then call it.
*
 SR R01,R01
 CALL DISPARM
*
* Invoke CEEMOUT to issue the farewell message
*
 CALL CEEMOUT,(BYEMSG,DEST,FBCODE),VL,MF=(E,CALLMOUT)
*
* Terminate Language Environment and return to the caller
*
 CEETERM RC=0
* ==
* CONSTANTS
* ==
*
HELLOMSG DC Y(HELLOEND-HELLOSTR)
HELLOSTR DC C'Hello from the sub example.'
HELLOEND EQU *
*
BYEMSG DC Y(BYEEND-BYESTART)
BYESTART DC C'Terminating the sub example.'
BYEEND EQU *
*
DEST DC F'2' Destination is the LE message file
*
XMPPPA CEEPPA , Constants describing the code block
* ==
* The Workarea and DSA
* ==
WORKAREA DSECT
 ORG *+CEEDSASZ Leave space for the DSA fixed part
CALLMOUT CALL ,(,,),VL,MF=L 3-argument parameter list
*
FBCODE DS 3F Space for a 12-byte feedback code
*
*
 DS 0D
WORKSIZE EQU *-WORKAREA
 CEEDSA , Mapping of the dynamic save area
 CEECAA , Mapping of the common anchor area
*
R01 EQU 1
R13 EQU 13
 END SUBXMP Nominate SUBXMP as the entry point

DSPARM subroutine example
*COMPILATION UNIT: LEASMPRM
* ==
*
* Shows an assembler subroutine that displays inbound
* parameters and returns.
*

Assembler considerations

420 z/OS: z/OS Language Environment Programming Guide

* ==
DISPARM CEEENTRY PPA=PARMPPA,AUTO=WORKSIZE,MAIN=NO
 USING WORKAREA,R13
*
* --
*
* Invoke CEE3PRM to retrieve the command parameters for us
*
 CALL CEE3PRM,(CHARPARM,FBCODE),VL,MF=(E,CALL3PRM)
*
* Check the feedback code from CEE3PRM to see if everything worked.
*
 CLC FBCODE(8),CEE000
 BE GOT_PARM
*
* Invoke CEEMOUT to issue the error message for us
*
 CALL CEEMOUT,(BADFBC,DEST,FBCODE),VL,MF=(E,CALLMOUT)
 B GO_HOME Time to go....
*
GOT_PARM DS 0H
*
* See if the parm string is blank.
*
 CLC CHARPARM(80),=CL80' ' Is the parm empty?
 BNE DISPLAY_PARM No. Print it out.
*
* Invoke CEEMOUT to issue the error message for us
*
 CALL CEEMOUT,(NOPARM,DEST,FBCODE),VL,MF=(E,CALLMOUT)
 B GO_HOME Time to go....
*
DISPLAY_PARM DS 0H
*
* Set up the plist to CEEMOUT to display the parm.
*
 LA R02,80 Get the size of the string
 STH R02,BUFFSIZE Save it for the len-prefixed string
*
* Invoke CEEMOUT to display the parm string for us
*
 CALL CEEMOUT,(BUFFSIZE,DEST,FBCODE),VL,MF=(E,CALLMOUT)
*
* Return to the caller
*
GO_HOME DS 0H
 CEETERM RC=0

* ==
* CONSTANTS
* ==
*
DEST DC F'2' Destination is the LE message file
CEE000 DS 3F'0' Success feedback code
*
BADFBC DC Y(BADFBEND-BADFBSTR)
BADFBSTR DC C'Feedback code from CEE3PRM was nonzero.'
BADFBEND EQU *
*
NOPARM DC Y(NOPRMEND-NOPRMSTR)
NOPRMSTR DC C'No user parm was passed to the application.'
NOPRMEND EQU *
*
*
PARMPPA CEEPPA , Constants describing the code block
* ==
* The Workarea and DSA
* ==
WORKAREA DSECT
 ORG *+CEEDSASZ Leave space for the DSA fixed part
*
CALL3PRM CALL ,(,),VL,MF=L 2-argument parameter list
CALLMOUT CALL ,(,,),VL,MF=L 3-argument parameter list
FBCODE DS 3F Space for a 12-byte feedback code
*
BUFFSIZE DS H Halfword prefix for following string
CHARPARM DS CL255 80-byte buffer
*
*
 DS 0D
WORKSIZE EQU *-WORKAREA
 CEEDSA , Mapping of the dynamic save area

Assembler considerations

Chapter 29. Assembler considerations 421

 CEECAA , Mapping of the common anchor area
*
R02 EQU 2
R13 EQU 13
 END

Invoking callable services from assembler routines
A Language Environment-conforming assembler routine called by C should not invoke a z/OS UNIX API.

The interface to a callable service is the same as the interface previously described for assembler
routines. An example of calling the CEEGTST (Get Heap Storage) callable service is shown in Figure 105
on page 422.

A X'80000000' placed in the last parameter address slot indicates that the fc (feedback code) parameter
is omitted.

*
* R12 = A(CAA)
* R13 = DSA
* This example is non-reentrant.
*
 LA R1,PLIST
 L R15,=V(CEEGTST)
 BALR R14,R15⋮
 PLIST DS 0D
 DC A(HEAP_ID)
 DC A(SIZE)
 DC A(ADDR)
 DC A(X'80000000')
HEAP_ID DC F'0' Heap ID for the user
SIZE DC F'256' Size of storage to allocate
ADDR DC F'0' Address of allocated storage

Figure 105. Sample invocation of a callable service from assembler

System Services available to assembler routines
Language Environment provides a number of services that the host system typically provides. Each of
these system-provided services belongs to one of three categories, depending on whether it can and
ought to be used in Language Environment:

• The system-provided service can be used, but you must manage the resource; examples are ENQ and
DEQ.

• The system-provided service can, but should not be used. The system-provided service might not
have the desired effect. For example, instead of using GETMAIN and FREEMAIN, use the Language
Environment dynamic storage callable services.

• The system-provided service should not be used. If you use this service, it directly interferes with the
Language Environment environment. For example, any ESTAE or ESPIE that you issue interferes with
Language Environment condition handling.

Whenever possible, non-Language Environment-conforming assembler routines should use the
equivalent Language Environment services. A list of the equivalent services is provided in Table 66 on
page 422.

Table 66. Equivalent host services provided by Language Environment

Host service Language Environment equivalent Usability

ABEND Call CEESGL with a severity 4 condition, call
CEE3ABD, or have the assembler user exit
request an abend at termination.

Host services can, but should not,
be used. Use of equivalent Language
Environment services is advised. ABEND
can be used as a last resort.

Assembler considerations

422 z/OS: z/OS Language Environment Programming Guide

Table 66. Equivalent host services provided by Language Environment (continued)

Host service Language Environment equivalent Usability

ATTACH/DETACH/CHAP1 No equivalent Language Environment
function.

These services can be used.

ENQ/DEQ No equivalent Language Environment
function.

These services can be used.

(E)STAE/(E)SPIE/ SETRP/
STAX

Use Language Environmentcondition
management callable services: CEEHDLR,
CEEHDLU, and CEESGL.

Host services should not be
used; instances should be changed
to use Language Environment
condition management callable services.
Otherwise, unpredictable results may
occur.

EXEC CICS LOAD/DELETE Use the Language Environment CEEFETCH
assembler macro (see “CEEFETCH macro —
Dynamically load a routine” on page 407).

Host services can be used, but you must
manage the loaded routines.

EXEC CICS XCTL/LINK No equivalent Language Environment
function.

These services can be used.

GETMAIN/FREEMAIN

EXEC CICS GETMAIN/ EXEC
CICS FREEMAIN

For automatic storage (block-related), use
Language Environment’s stack storage.

For non-block-related storage (that is,
the storage persists beyond the current
activation), use Language Environment heap
storage.

Host services can, but should not,
be used. Use of equivalent Language
Environment storage management
services is advised.

Any heap storage allocated by Language
Environment will automatically be freed
at termination.

LOAD/DELETE CVSRTLS Use the Language Environment CEEFETCH
assembler macro (see “CEEFETCH macro —
Dynamically load a routine” on page 407).

If you are introducing a new language
into the environment, host services must
not be used. The new language is not
properly initialized.

If you are not introducing a new language
into the environment, host services can
be used. However, you must manage the
loaded routines.

OPEN/CLOSE GET/PUT READ/
WRITE

No equivalent Language Environment
function.

Host services can be used.

PC (Program Call instruction) High level language call statements, such as
assembler BALR/BASSM.

Not supported by Language Environment.

SNAP Call CEE3DMP. This service can be used.

STIMER2 No equivalent Language Environment
function.

This service can be used.

TIME Call Language Environment date and time
services.

This service can be used.

SVC LINK No equivalent Language Environment function This service can be used. For
compatibility, Language Environment
supports the LINK boundary crossing and
treats it as a new enclave.

WAIT/POST/EVENTS3 No equivalent Language Environment
function.

Host services can be used.

WTO Call CEEMOUT. This writes to the error log or
the terminal.

Host services can be used.

XCTL No equivalent Language Environment
function.

Host services can, but should not, be
used.

Assembler considerations

Chapter 29. Assembler considerations 423

Notes:

1. When running with POSIX(ON), use the POSIX functions pthread_create and pthread_exit in
place of the host system functions ATTACH and DETACH. You cannot use ATTACH, DETACH, or CHAP
when running a PL/I multitasking application.

2. When running with POSIX(ON), use the C functions ALARM and SLEEP in place of the host system
function STIMER.

3. When running with POSIX(ON), use the POSIX functions pthread_mutex_lock and
pthread_mutex_unlock in place of the host system functions WAIT and POST.

Using the ATTACH macro
Figure 106 on page 424 illustrates the concept of performing an OS ATTACH to a C, C++, nonmultitasking
PL/I, or COBOL program, and thus establishing a separate Language Environment runtime environment.
For each ATTACH to a Language Environment-conforming routine, another Language Environment runtime
environment is added to the MVS address space. In COBOL, this is called multitasking; COBOL RES
multitasking is supported only when all of the COBOL programs are compiled with Enterprise COBOL for
z/OS, COBOL for OS/390 & VM, COBOL for MVS & VM, or COBOL/370 (not with OS/VS COBOL or VS COBOL
II).

Figure 106. Issuing an ATTACH to Language Environment-conforming routines

When running with POSIX(ON), use the POSIX function pthread_create in place of OS ATTACH to
create a new thread.

Currently, each Language Environment environment supports one process. Within the process each
enclave supports a single thread.

To make best use of the ATTACH macro, you need to be aware of:

• Whether you are using POSIX(ON) in a multithread environment. You must not use the ATTACH macro in
this case. If you are running a PL/I multitasking application, you cannot use the ATTACH macro.

• Whether the Language Environment environments share any resources.
• The MVS affinity aspects of each routine. For example, if you OPEN a file in one TCB, you must CLOSE it

in the same TCB.
• The concurrency aspects of each routine. For example, you must ensure that two routines do not

attempt to make contradictory or destructive changes to a data base.

Assembler considerations

424 z/OS: z/OS Language Environment Programming Guide

• The termination order of all routines, particularly those in a new Language Environment environment.
• The compiler options and link-edit options when using COBOL.

Sharing resources
Unless you indicate otherwise, the environments share the same user files and message file. To avoid
conflicting use of shared resources, you should specify different ddnames using the MSGFILE runtime
option, and create distinctive user files for each environment.

Note: The ENQ suboption of the MSGFILE runtime option can be used to provide serialization around
writes to the Message File. For more information about MSGFILE, see MSGFILE in z/OS Language
Environment Programming Reference.

z/OS affinity aspects
z/OS calls certain pairs of commands or procedures affinity aspects, and requires each member of the
pair to be issued from the same TCB.

Some examples are:

OPEN/CLOSE

If you OPEN a file in one TCB, you must CLOSE it in the same TCB. You can process the file in as many
environments as you wish; you simply need to open and close it in a single TCB.

LOAD/DELETE

GETMAIN/FREEMAIN

Language Environment heap storage, including storage associated with a call to the CEECRHP callable
service, will have affinity to the TCB which created the heap. All get and free requests must be done from
this single TCB.

A less obvious example is a Db2 table. You can update a Db2 table only in the same TCB in which it was
created.

Concurrency aspects
Concurrency aspects include which routines have access to shared resources, and the timing of changes
to those resources. Because Language Environment does not provide services to lock files, to serialize
access to shared resources, or to synchronize changes to shared resources, you must manage the
concurrency aspects of your environments.

Termination order
Language Environment does not coordinate termination order between multiple environments. Your
routines are exited properly if you adhere to the hierarchical structure created by the TCB structure.

COBOL considerations
To run COBOL programs in more than one task with Language Environment, the COBOL programs must be
Enterprise COBOL for z/OS, COBOL for OS/390 & VM, COBOL for MVS & VM, or COBOL/370. Running VS
COBOL II programs in more than one task is not supported. When you use COBOL programs in more than
one task, it is recommended that the COBOL programs be compiled with the RENT compiler option, and
that the load modules be linked as REUS and RENT.

If a COBOL program running in one task dynamically calls a COBOL program that has already been
dynamically called from another task, then the called program must be:

• Compiled with the RENT compiler option, or
• Compiled with the NORENT compiler option and link-edited with the NORENT and NOREUS linkage

editor options.

Assembler considerations

Chapter 29. Assembler considerations 425

Each copy of a COBOL program in each task will have its own unique copy of WORKING-STORAGE; you
cannot share WORKING-STORAGE between tasks.

For example (see Figure 107 on page 426), if a COBOL program calls an assembler program, which starts
a new Subtask B, and COBOL program CBL3 in the new subtask dynamically calls COBOL program CBL2
which was previously dynamically called in the main task, then CBL2 must not be link-edited with the
RENT or REUS link-edit options unless it is compiled with the RENT compiler option.

 MAIN .
 task . Subtask B
 .
 CBL1 .
 | .
 V .
 CBL2 <---.------------
 | . |
 V . |
 ASMA----(attach)---->CBL3

Figure 107. A dynamically-called COBOL program that dynamically calls another COBOL program

Using the SVC LINK macro
If you issue an SVC LINK, a new enclave is created. See “Creating child enclaves using SVC LINK” on page
471 for more information about nested enclaves created using the SVC LINK macro.

Assembler considerations

426 z/OS: z/OS Language Environment Programming Guide

Chapter 30. Using preinitialization services

You can use preinitialization to enhance the performance of your application. Preinitialization lets an
application initialize an HLL environment once, perform multiple executions using that environment,
and then explicitly terminate the environment. Because the environment is initialized only once (even if
you perform multiple executions), you free up system resources and allow for faster responses to your
requests.

The Language Environment-supplied routine, CEEPIPI, provides the interface for preinitialized routines.
Using CEEPIPI, you can initialize an environment, invoke applications, terminate an environment, and add
an entry to the Preinitialization table (PreInit table). (The PreInit table contains the names and entry point
addresses of routines that can be executed in the preinitialized environment.)

Reentrancy considerations for a preinitialized environment, XPLINK considerations, user exit invocation,
stop semantics, service routines, and an example of CEEPIPI invocation. are described.

Before the introduction of a common runtime environment, introduced with Language Environment, some
of the individual languages had their own form of preinitialization. This older form of preinitialization is
supported by Language Environment, but it is not strategic. The following is a list of these older forms of
preinitialization and some considerations for their use:

• C

Language Environment supports the prior form of C preinitialization, through the use of an extended
parameter list.

• C++

There is no prior form of preinitialization for C++.
• COBOL

Language Environment supports the prior form of COBOL preinitialization, RTEREUS, ILBOSTP0, and
IGZERRE. For more information about these interfaces, see the Enterprise COBOL for z/OS library
(www.ibm.com/support/docview.wss?uid=swg27036733). This prior form of COBOL preinitialization
cannot be used at the same time that Language Environment preinitialization is used.

• Fortran

There is no prior form of preinitialization for Fortran.
• PL/I

Language Environment supports the prior form of PL/I preinitialization, through the use of an Extended
Parameter List. For more information about this interface, see the IBM Enterprise PL/I for z/OS library
(www.ibm.com/support/docview.wss?uid=swg27036735). This prior form of PL/I preinitialization does
not support PL/I multitasking applications.

Restriction: The ILBOSTP0 and IGZERRE methods of preinitialization are not supported with Enterprise
COBOL v5 or later. If you are using Enterprise COBOL v5 or later, the recommended form of
preinitialization is CEEPIPI.

Using preinitialization
From a non-Language Environment-conforming driver (such as assembler) you can use Language
Environment preinitialization facilities to create and initialize a common runtime environment,
execute applications written in a Language Environment-conforming HLL multiple times within the
preinitialized environment, and terminate the preinitialized environment. Language Environment provides
a preinitialized interface to perform these tasks.

In the preinitialized environment, the first routine to execute can be treated as either the main routine or a
subroutine of that execution instance. Language Environment provides support for both of these types of
preinitialized routines:

Preinitialization services

© Copyright IBM Corp. 1991, 2022 427

http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735

• Executing one main routine multiple times
• Executing subroutines multiple times

Language Environment preinitialization is commonly used to enhance performance for repeated
invocations of an application or for a complex application where there are many repetitive requests
and where fast response is required. For instance, if an assembler routine invokes either a number of
Language Environment-conforming HLL routines or the same HLL routine a number of times, the creation
and termination of that HLL environment multiple times is needlessly inefficient. A more efficient method
is to create the HLL environment only once for use by all invocations of the routine.

The interface for preinitialized routines is a loadable routine called CEEPIPI. This routine is loaded as an
RMODE(24) / AMODE(ANY) routine and returns in the AMODE of its caller when the request is satisfied.

CEEPIPI handles the requests and provides services for environment initialization, application invocation,
and environment termination. All requests for services by CEEPIPI must be made from a non-Language
Environment environment. (“Preinitialization interface” on page 433 contains a detailed description and
information about how to invoke each of these services.) The parameter list for CEEPIPI is an OS standard
linkage parameter list. Each request to CEEPIPI is identified by a function code that describes the
CEEPIPI service and that is the first parameter in the parameter list. The function code is a fullword
integer (for example, 1 = init_main, 2 = call_main).

The preinitialization services offered under Language Environment are listed in Table 68 on page 433.
Preinitialization services do not support PL/I multitasking applications.

An example assembler program in “An example program invocation of CEEPIPI” on page 464 illustrates
invocation of CEEPIPI for the function codes init_sub, call_sub, and term.

Using the PreInit table
Language Environment uses the PreInit table to identify the routines that are candidates for execution
in the preinitialized environment, as well as optionally to load the routine when it is called. It is possible
to have an empty PreInit table with no entries. The PreInit table contains the names and the entry point
addresses of each routine that can be executed within the preinitialized environment. Candidate routines
can be present in the table when the init_main or init_sub functions are invoked, or can be added to
the table using (add_entry).

When the entry point address is supplied either as an entry in the initial PreInit table provided with
initialization functions, or as specified on the add_entry function, the high order bit of the address must be
set to indicate the addressing mode for the routine. If the high order bit is OFF the routine is called in 24
bit addressing mode and the address must be a valid 24 bit address. If the high order bit is ON the routine
is called in 31 bit addressing mode and the address must be a valid 31 bit address.

C considerations
C routines that are the target of (call_main) or (call_sub) must be z/OS C routines.

• C main routines must be initialized with (init_main).
• C routines that are the target of (call_main) must contain a main().

C++ considerations
The preinitialization routines (call_main) or (call_sub) can support C++ applications.

• C++ main routines must be initialized with (init_main).
• C++ routines that are the target of (call_main) must contain a main().

COBOL considerations
COBOL programs that are the target of (call_main) or (call_sub) must be Enterprise COBOL for z/OS,
COBOL for OS/390 & VM, COBOL for MVS & VM, or COBOL/370 programs.

Preinitialization services

428 z/OS: z/OS Language Environment Programming Guide

Fortran considerations
Fortran routines cannot be the target of a CEEPIPI call.

PL/I considerations
PL/I routines that are the target of (call_main) or (call_sub) must be Enterprise PL/I for z/OS or PL/I
for MVS & VM routines. OS PL/I Version 1 and OS PL/I Version 2 routines can run in the preinitialized
environment only when called from PL/I routines that are the target of (call_main) or (call_sub).

Macros that generate the PreInit table
Language Environment provides the following assembler macros to generate the PreInit table for you:
CEEXPIT, CEEXPITY, and CEEXPITS.

CEEXPIT
CEEXPIT generates a header for the PreInit table.

table_name CEEXPIT

NOSTOR=

ABEND

RC STKPROT=

NO

YES

table_name
Assembler symbolic name assigned to the first word in the PreInit table. The address of this symbol
should be used as the ceexptbl_addr parameter in a (init_main) or a (init_sub) call.

NOSTOR=ABEND
Indicates that the system is to issue an abend if it cannot obtain storage for the preinitialization
environment. This is the default.

NOSTOR=RC
Indicates that the system is to issue a return code if it cannot obtain storage for the preinitialization
environment.

STKPROT=NO
Indicates that the preinitialized subroutine environment that was created will not be enabled for
STACKPROTECT. This is the default. It has no effect for a preinitialized main environment.

STKPROT=YES
Indicates that the preinitialized subroutine environment that was created will be enabled for
STACKPROTECT. It has no effect for a preinitialized main environment.

CEEXPITY
CEEXPITY generates an entry within the PreInit table.

CEEXPITY
name

,

entry_point

name
The first eight characters of the load name of a routine that can be invoked within the Language
Environment preinitialized environment.

entry_point
The address of the load module that is to be invoked, or 0, to indicate that the module is to be
dynamically loaded.

Preinitialization services

Chapter 30. Using preinitialization services 429

The high-order bit of the entry_point address must be set to indicate the addressing mode for the routine.
If the high-order bit is OFF, the routine is called in 24 bit addressing mode and the address must be a valid
24 bit address. If the high-order bit is ON, the routine is called in 31 bit addressing mode and the address
must be a valid 31 bit address.

You have the option of specifying either, both, or neither of the parameters:

• If name is omitted and entry_point is present, the comma must be present.
• If both parameters are omitted, the entry is a candidate for assignment to the PreInit table by a call to

(add_entry).
• If both parameters are present, name is ignored and entry_point is used as the start of the routine.

Each invocation of the CEEXPITY macro generates a row in the PreInit table. The first entry is row 0, the
second is row 1, and so on.

CEEXPITS
CEEXPITS identifies the end of the PreInit table. This macro has no parameters.

CEEXPITS

Reentrancy considerations
You can make multiple calls to main routines by invoking CEEPIPI services and making multiple requests
from a single PreInit table. In general, you should specify only reentrant routines for multiple invocations,
or you might get unexpected results.

For example, if you have a reentrant C main program that is invoked using (call_main) and that uses
external variables, then when your routine is invoked again, the external variables are re-initialized.
Multiple executions of a reentrant main routine are not influenced by a previous execution of the same
routine.

However, if you have a nonreentrant C main program that is invoked using (call_main) and that uses
external variables, then when your routine is invoked again, the external variables can potentially contain
last-used values. Local variables (those contained in the object code itself) might also contain last-used
values. If main routines are allowed to execute multiple times, a given execution of a routine can influence
subsequent executions of the same routine.

If you are calling init_sub, init_sub_dp, or add_entry for C/C++, the routines can either be naturally
reentrant or may be compiled RENT and made reentrant by using the z/OS C Prelinker Utility. If the
subroutine is made reentrant using the z/OS C Prelinker Utility, multiple instances of the same subroutine
are influenced by the previous instance of the same subroutine.

If you have a nonreentrant COBOL program that is invoked using (call_main), condition IGZ0044S is
signaled when the routine is invoked again.

PreInit XPLINK considerations
Language Environment preinitialization services (PreInit) support programs that have been compiled
XPLINK. Specifically, it allows programs and subroutines that have been compiled XPLINK to be defined
in the PreInit table. The following guidelines are provided for this new option:

• XPLINK CEEPIPI subroutines must be fetchable. For C programs, this is done using the #pragma linkage
(fetchable) statement. For more details about fetchable subroutines, see fetch() - Get a load module in
z/OS XL C/C++ Runtime Library Reference.

• Non-XPLINK PreInit programs can run in an XPLINK PreInit environment, but there may be performance
degradation since non-XPLINK programs will be required to execute linkage-switching glue code. If
possible, consider having separate PreInit environments for running XPLINK and non-XPLINK programs.

Preinitialization services

430 z/OS: z/OS Language Environment Programming Guide

• If a PreInit environment has been initialized as a non-XPLINK environment and either the main()
function is XPLINK or the XPLINK(ON) runtime option has been specified, then the PreInit environment
will be rebuilt as an XPLINK environment. This is a one-time occurrence that can not be undone.

Creating an XPLINK environment versus a non-XPLINK environment
When initializing a PreInit environment, you can select to create an XPLINK or a non-XPLINK
environment. There are four methods used to initialize a PreInit environment; init_main, init_main_dp,
init_sub, and init_sub_dp. In each case, a token of the preinitialized environment is passed back to the
customer PreInit driver program. This token ID is used and passed as input when executing PreInit
programs. The following rules will determine if the initialized PreInit environment will be XPLINK or
non-XPLINK. You can make a one-time dynamic change in the PreInit environment from non-XPLINK to
XPLINK by using (call_main) to an XPLINK main().

init_main: (Input: PreInit table pointer, no runtime options are passed as input)

• If the first program in the customer PreInit table is an XPLINK program, then an XPLINK environment
will be initialized.

• If the first program in the PreInit table is a non-XPLINK program, then a non-XPLINK environment will
be initialized.

• If the PreInit table is empty at initialization time, then a non-XPLINK environment will be initialized.

init_main_dp: (Input: PreInit table pointer, no runtime options are passed as input)

• If the first program in the customer PreInit table is an XPLINK program, then an XPLINK environment
will be initialized.

• If the first program in the PreInit table is a non-XPLINK program, then a non-XPLINK environment will
be initialized.

• If the PreInit table is empty at initialization time, then a non-XPLINK environment will be initialized.

init_sub: (Input: PreInit table pointer, and runtime options)

• If the first program in the customer PreInit table is an XPLINK program, then an XPLINK environment
will be initialized.

• If the runtime options are passed as input and the XPLINK option is specified as XPLINK(ON), then an
XPLINK environment will be initialized.

• If neither of the above are true (the first program in the customer PreInit table is a non-XPLINK
program and the XPLINK runtime option is off or not specified), then a non-XPLINK environment will be
initialized.

Note:

1. The runtime options you specify will apply to all of the subroutines that are called by (call_sub)
function. This includes options such as XPLINK. Therefore, all of your subroutines must have the same
characteristics and requirements needed for these runtime options.

2. If this is a non-XPLINK sub environment, then do not allow an XPLINK subroutine to be added to the
table.

init_sub_dp: (Input: PreInit table pointer, and runtime options)

• If the first program in the customer PreInit table is an XPLINK program, then an XPLINK environment
will be initialized.

• If the runtime options are passed as input and the XPLINK option is specified as XPLINK(ON), then an
XPLINK environment will be initialized.

• If neither of the above are true (the first program in the customer PreInit table is a non-XPLINK
program and the XPLINK runtime option is off or not specified), then a non-XPLINK environment will be
initialized.

Preinitialization services

Chapter 30. Using preinitialization services 431

Note: The runtime options you specify will apply to all of the subroutines that are called by (call_sub)
function. This includes options such as XPLINK. Therefore, all of your subroutines must have the same
characteristics and requirements needed for these runtime options.

User exit invocation
User exits are invoked for initialization and termination during calls to CEEPIPI as shown in Table 67 on
page 432.

Table 67. Invocation of user exits during process and enclave initialization and termination

Function When invoked

Assembler user exit for first enclave
initialization

• (init_sub)
• (init_sub_dp)
• (call_main)
• (call_sub) or (call_sub_addr) or (call_sub_addr) ended with stop

semantics (see “Stop semantics” on page 432)

HLL user exit • (init_sub)
• (init_sub_dp)
• (call_main)
• (call_sub) or (call_sub_addr) or (call_sub_addr) ended with stop

semantics

C atexit() functions • (call_main)
• (call_sub) or (call_sub_addr), which ended stop semantics.
• (term) for environment created with (init_sub) or (init_sub_dp), if the

last (call_sub) or (call_sub_addr) did not end with stop semantics

Assembler user exit for first enclave
termination

• (call_main)
• (call_sub) or (call_sub_addr), which ended stop semantics
• (term) for environment created with (init_sub) or (init_sub_addr) if

the last (call_sub) or (call_sub_addr) did not end with stop semantics

Assembler user exit for process
termination

• (term)

For main environments, the CEEBXITA assembler user exit and CEEBINT HLL user exit that are used with
the environment are taken from the main routine being called.

For sub environments, the CEEBXITA assembler user exit and CEEBINT HLL user exit that are used with
the environment are taken from the first entry in the PreInit table. Any occurrences of CEEBXITA or
CEEBINT in any other PreInit table entries, or in load modules used for call_sub_addr-type calls, are
ignored.

See Chapter 28, “Using runtime user exits,” on page 371 for more information about user exits.

Stop semantics
When one of the following is issued within the preinitialized environment for subroutines:

• C exit(), abort(), or signal handling function specifying a normal or abnormal termination
• COBOL STOP RUN statement
• PL/I STOP or EXIT

or when an unhandled condition causes termination of the (only) thread, the logical enclave is terminated.
The process level of the environment is retained. Language Environment does not delete those entries
that were loaded explicitly by Language Environment during the preinitialization processing.

Preinitialization services

432 z/OS: z/OS Language Environment Programming Guide

Attention: If the first entry in the PreInit table is either different or deleted from when the
enclave was last initialized, the assembler user exit (CEEBXITA), HLL user exit (CEEBINT), or
programmer default runtime options (CEEUOPT) used during either an enclave reinitialization
or enclave termination will either be different or not available. This will result in unpredictable
results. Therefore, when using PreInit subroutine environments and in order to keep consistent
enclave initialization and termination behavior, users need to ensure the first valid entry in the
PreInit table does not change, especially when it contains the aforementioned external references.

Preinitialization interface
This section describes how to invoke the PreInit interface, CEEPIPI, to perform the following tasks:

• Initialization
• Application invocation
• Termination
• Addition of an entry to the PreInit table
• Deletion of a main entry from the PreInit table
• Identification of an entry in the PreInit table
• Access to the CAA user word

The PreInit services offered under Language Environment using CEEPIPI are listed in the following tables:

• Table 68 on page 433
• Table 69 on page 433
• Table 70 on page 434
• Table 71 on page 434
• Table 72 on page 434
• Table 73 on page 434
• Table 74 on page 434
• Table 75 on page 434

For Initialization:

Table 68. Preinitialization services accessed using CEEPIPI for initialization

Function code Integer value Service performed

init_main 1 Create and initialize an environment for multiple executions of main
routines.

init_main_dp 19 Create and initialize an environment for multiple executions of main
routines.

init_sub 3 Create and initialize an environment for multiple executions of
subroutines.

init_sub_dp 9 Create and initialize an environment for multiple executions of
subroutines.

For application invocation:

Table 69. Preinitialization services accessed using CEEPIPI for application invocation

Function code Integer value Service performed

call_main 2 Invoke a main routine within an already initialized environment.

call_sub 4 Invoke a subroutine within an already initialized environment.

start_seq 7 Start a sequence of uninterruptable calls to a number of subroutines.

Preinitialization services

Chapter 30. Using preinitialization services 433

Table 69. Preinitialization services accessed using CEEPIPI for application invocation (continued)

Function code Integer value Service performed

call_sub_addr 10 Invoke a subroutine by address within an already initialized
environment.

For termination:

Table 70. Preinitialization services accessed using CEEPIPI for termination

Function code Integer value Service performed

term 5 Explicitly terminate the environment without executing a user routine.

end_seq 8 Terminate a sequence of uninterruptable calls to a number of
subroutines.

For the addition of entries to the PreInit table:

Table 71. Preinitialization services accessed using CEEPIPI for the addition of an entry to the PreInit table

Function code Integer value Service performed

add_entry 6 Dynamically add a candidate routine to execute within the
preinitialized environment.

For the deletion of entries from the PreInit table:

Table 72. Preinitialization services accessed using CEEPIPI for the deletion of an entry to the PreInit table

Function code Integer value Service performed

delete_entry 11 Delete an entry from the PreInit table, making it available for
subsequent add_entry functions.

For the identification of a PreInit table entry:

Table 73. Preinitialization services accessed using CEEPIPI for the identification of a PreInit table entry

Function code Integer value Service performed

identify_entry 13 Identify the programming language of an entry in the PreInit table.

identify_attributes 16 Identify the attributes of an entry in the PreInit table.

For the identification of the environment:

Table 74. Preinitialization services accessed using CEEPIPI for the addition of an entry to the PreInit table

Function code Integer value Service performed

identify_environment 15 Identify the environment that was preinitialized.

For the access to the CAA user word:

Table 75. Preinitialization services accessed using CEEPIPI for access to the CAA user word

Function code Integer value Service performed

set_user_word 17 Set value to be used to initialize CAA user word.

get_user_word 18 Get value to be used to initialize CAA user word.

Initialization
Language Environment supports four forms of preinitialized environments. The first supports the
execution of main routines. The second is a special form of the first, that allows multiple preinitialized

Preinitialization services

434 z/OS: z/OS Language Environment Programming Guide

environments, for executing main routines. to be created within the same address space. The third
supports the execution of subroutines. The fourth is a special form of the third, that allows multiple
preinitialized environments, for executing subroutines, to be created within the same address-space.

The primary difference between these environments is the amount of Language Environment initialization
(and termination) that occurs on each application invocation call. With an environment that supports main
routines, most of the application's execution environment is reinitialized with each invocation. With an
environment that supports subroutines, very little of the execution environment is reinitialized with each
invocation. This difference has its advantages and disadvantages.

For the main environment, the advantages are:

• A new, pristine environment is created.
• Runtime options can be specified for each application.

and the disadvantages are:

• Poorer performance.

For the subenvironment, the advantages are:

• Best performance.

and the disadvantages are:

• The environment is left in what ever state the previous application left it in.
• Runtime options cannot be changed.

(init_main) — initialize for main routines
The invocation of this routine:

• Creates and initializes a new common runtime environment (process) that allows the execution of main
routines multiple times

• Sets the environment to dormant so that exceptions are percolated out of it
• Returns a token identifying the environment to the caller
• Returns a code in register 15 indicating whether an environment was successfully initialized

CALL CEEPIPI (init_main , ceexptbl_addr , service_rtns , token)

init_main (input)
A fullword function code (integer value = 1) containing the init_main request.

ceexptbl_addr (input)
A fullword containing the address of the PreInit table to be used during initialization of the new
environment. Language Environment does not alter the user-supplied copy of the table. If an entry
address is zero and the entry name is non-blank, Language Environment searches for the routine (in
the LPA, saved segment, or nucleus) and dynamically loads it. Language Environment places the entry
address in the corresponding slot of a Language Environment-maintained table.

Language Environment uses the high-order bit of the entry address to determine what AMODE to
use when calling the routine. If the entry address is zero, and the entry name is supplied, Language
Environment uses the AMODE returned by the system loader. If the entry address is supplied, you
must provide the AMODE in the high-order bit of the address.

service_rtns (input)
A fullword containing the address of the service routine vector or 0, if there is no service routine
vector. See “Service routines” on page 457 for more information.

Preinitialization services

Chapter 30. Using preinitialization services 435

token (output)
A fullword containing a unique value used to represent the environment. The token should be used
only as input to additional calls to CEEPIPI, and should not be altered or used in any other manner.

Return codes
Register 15 contains a return code indicating if an environment was successfully initialized. Possible
return codes (in decimal) are:
0

A new environment was successfully initialized.
4

The function code is not valid.
8

All addresses in the table were not resolved. This can occur if a LOAD failure was encountered or a
routine within the table was generated by a non-Language Environment-conforming HLL.

12
Storage for the preinitialization environment could not be obtained.

16
CEEPIPI was called from an active environment.

32
An unhandled error condition was encountered. This error is a result of a program interrupt or other
abend that occurred that prevented the preinitialization services from completing.

Usage notes
• The assembler user exit (CEEBXITA), HLL user exit (CEEBINT), and programmer defaults (CEEUOPT)

that are used to initialize the environment are taken from the main routine being called through
call_main.

• If a program in the PreInit table failed to load (return code 8), the identify_attributes CEEPIPI function
can be used to help determine what table entry address did not resolve.

XPLINK considerations
• If the environment being initialized is to be an XPLINK environment then the first program in the PreInit

table must be an XPLINK module.
• If there is no entry in the PreInit table or if the first module is a non-XPLINK program, a non-XPLINK

environment will be initialized.
• It is possible to change the environment from a non-XPLINK to an XPLINK environment when doing a

call_main. For more details, see call_main.

(init_main_dp) — initialize for main routines (multiple environment)
The invocation of this routine:

• Creates and initializes a new common runtime environment (process) that allows the execution of main
routines multiple times.

• Sets the environment dormant so that exceptions are percolated out of it.
• Returns a token identifying the environment to the caller.
• Returns a code in register 15 indicating whether an environment was successfully initialized.
• Ensures that the environment tolerates the existence of multiple Language Environment processes or

enclaves.

Note: Multiple main environments can be established by using (init_main_dp), as opposed to using
(init_main), which can establish only a single environment.

Preinitialization services

436 z/OS: z/OS Language Environment Programming Guide

CALL CEEPIPI (init_main_dp , ceexptbl_addr , service_rtns , token

)

init_main_dp (input)
A fullword function code (integer value = 19) containing the (init_main_dp) request.

ceexptbl_addr (input)
A fullword containing the address of the PreInit table to be used during initialization of the new
environment. A user-supplied copy of the table is not altered. If an entry address is zero and the entry
name is non-blank, a search is performed for the routine (in the LPA, saved segment, or nucleus)
and the routine is dynamically loaded. An entry is placed in the corresponding slot of a Language
Environment-maintained table.

The high-order bit of the entry address determines what AMODE to use when calling the routine. If
the entry address is zero, and the entry name is supplied, the AMODE returned by the system loader
is used. If the entry address is supplied, you must provide the AMODE in the high-order bit of the
address.

service_rtns (input)
A fullword containing the address of the service routine vector or 0, if there is no service routine
vector. See “Service routines” on page 457 for more information.

token (output)
A fullword containing a unique value used to represent the environment. The token should be used
only as input to additional calls to CEEPIPI, and should not be altered or used in any other manner.

Return codes
Register 15 contains a return code indicating if an environment was successfully initialized. Possible
return codes (in decimal) are:
0

A new environment was successfully initialized.
4

The function code is not valid.
8

All addresses in the table were not resolved. This can occur if a LOAD failure was encountered or a
routine within the table was generated by a non-Language Environment-conforming HLL.

12
Storage for the preinitialization environment could not be obtained.

16
CEEPIPI was called from an active environment other than a CEEPIPI main_dp environment.

32
An unhandled error condition was encountered. This error is a result of a program interrupt or other
abend that occurred that prevented the preinitialization services from completing.

Usage notes
• The assembler user exit (CEEBXITA), HLL user exit (CEEBINT), and programmer defaults (CEEUOPT)

that are used to initialize the environment are taken from the main routine being called through
(call_main).

• If a program in the PreInit table failed to load (return code 8), the (identify_attributes) CEEPIPI function
can be used to help determine what table entry address did not resolve.

• If the process ID needs to be the same for all programs called by (call_main), the preinitialization driver
program should pre-dub the task (TCB) before performing (init_main_dp).

• MSGFILE output can be directed to either a spool or to a unique file.

Preinitialization services

Chapter 30. Using preinitialization services 437

• Language Environment resources are not shared across multiple environments.
• C memory files are not shared across multiple environments.
• Calling POSIX(ON) programs in an (init_main_dp) environment is not supported.

XPLINK considerations
• If the environment being initialized is to be an XPLINK environment then the first program in the PreInit

table must be an XPLINK module.
• If there is no entry in the PreInit table or if the first module is a non-XPLINK program, a non-XPLINK

environment will be initialized.
• It is possible to change the environment from a non-XPLINK to an XPLINK environment when using

(call_main). For more information, see “(call_main) — invocation for main routine” on page 442.

Nested main_dp environment considerations
• Main_dp environments can be initialized by calling CEEPIPI(init_main_dp) from an active main_dp

environment. From an active main_dp environment, nested calls to CEEPIPI can be made with a token
returned from (init_main_dp) to perform certain other functions:

– (call_main)
– (add_entry)
– (delete_entry)
– (term)
– (set_user_word)
– (get_user_word)
– (identify_entry)
– (identify_environment)
– (identify_attributes)

• Restrictions for nested main_dp environments:

– When the calling environment has a user-provided @EXCEPRTN, the nested main_dp environment
must also have a user-provided @EXCEPRTN.

– If the user-written preinitialization driver program has established a SPIE or ESPIE routine, the
nested main_dp environment must have a user-provided @EXCEPRTN.

– All CEEPIPI calls that use a token must be made from the same TCB.
– The INTERRUPT(ON) runtime option is not supported when using nested main_dp environments

under TSO/E.
– When the TRAP runtime option is used with nested main_dp environments, use of the TSO/E

attention key is not supported.
– If an ABEND (40XX, for example) causes the immediate ending of a nested main_dp environment

without orderly Language Environment termination, the user-provided preinitialization driver program
cannot be returned to. The calling main_dp environment will also end without orderly Language
Environment termination

– If the ABTERMENC(ABEND) runtime option is in effect and an unhandled condition causes a nested
main_dp environment to ABEND, Language Environment will not return to the preinitialization
assembler driver program. The calling main_dp environment will also ABEND without orderly
Language Environment termination. Consider using ABTERMENC(RETCODE) in nested main_dp
environments

– If a main_dp environment which uses the TRAP(ON,SPIE) runtime option does (call_main) to a
nested main_dp environment which uses TRAP(ON,NOSPIE), language environment issues an ESPIE
macro to prevent program checks from being passed to any existing ESPIE routine. If this ESPIE call
must be avoided, do not call a nested main_dp environment with TRAP(ON,NOSPIE) from a main_dp
environment that uses TRAP(ON,SPIE).

Preinitialization services

438 z/OS: z/OS Language Environment Programming Guide

(init_sub) — initialize for subroutines
The invocation of this routine:

• Creates and initializes a new common runtime environment (process and enclave) that allows the
execution of subroutines multiple times.

• Sets the environment dormant so that exceptions are percolated out of it.
• Returns a token identifying the environment to the caller.
• Returns a code in register 15 indicating whether an environment was successfully initialized.
• Ensures that when the environment is dormant, it is immune to other Language Environment enclaves

that are created or terminated.

CALL CEEPIPI (init_sub , ceexptbl_addr , service_rtns , runtime_opts

, token)

init_sub (input)
A fullword function code (integer value = 3) containing the init_sub request.

ceexptbl_addr (input)
A fullword containing the address of the PreInit table to be used during initialization of the new
environment. Language Environment does not alter the user-supplied copy of the table. If an entry
address is zero and the entry name is non-blank, Language Environment searches for the routine (in
the LPA, saved segment, or nucleus) and dynamically loads it. Language Environment then places the
entry address in the corresponding slot of a Language Environment-maintained table.

Language Environment uses the high-order bit of the entry address to determine what AMODE to
use when calling the routine. If the entry address is zero, and the entry name is supplied, Language
Environment uses the AMODE returned by the system loader. If the entry address is supplied, you
must provide the AMODE in the high-order bit of the address.

service_rtns (input)
A fullword containing the address of the service routine vector. It contains 0 if there is no service
routine vector. See “Service routines” on page 457 for more information.

runtime_opts (input)
A fixed-length 255-character string containing runtime options. For a list of runtime options that you
can specify, see Language Environment runtime options in z/OS Language Environment Programming
Reference.

Note:

1. The runtime options you specify will apply to all of the subroutines that are called by the (call_sub)
function. This includes options such as POSIX. Therefore, all of your subroutines must have the
same characteristics and requirements needed for these runtime options.

2. If the Language Environment being initialized is a non-XPLINK environment, then all of your
subroutines must be non-XPLINK subroutines.

token (output)
A fullword containing a unique value used to represent the environment. The token should be used
only as input to additional calls to CEEPIPI, and should not be altered or used in any other manner.

Return codes
Register 15 contains a return code indicating if an environment was successfully initialized. Possible
return codes (in decimal) are:
0

A new environment was successfully initialized.

Preinitialization services

Chapter 30. Using preinitialization services 439

4
The function code is not valid.

8
All addresses in the table were not resolved. This can occur if a LOAD failure was encountered, a
routine within the table was not generated by a Language Environment-conforming HLL, or a C or PL/I
routine within the table was not fetchable.

12
Storage for the preinitialization environment could not be obtained.

16
CEEPIPI was called from an active environment.

32
An unhandled error condition was encountered. This error is a result of a program interrupt or other
abend that occurred that prevented the preinitialization services from completing.

40
An entry in the PreInit table is an XPLINK subroutine and the environment is a non-XPLINK sub
environment. This entry is not valid.

Usage notes
• The assembler user exit (CEEBXITA), HLL user exit (CEEBINT), and programmer defaults (CEEUOPT)

that are used to initialize the environment are taken from the first valid entry in the PreInit table.
Any occurrences of CEEBXITA, CEEBINT, and CEEUOPT in other PreInit table entries are ignored.
Unpredictable results will occur if this first entry is deleted or changed.

• If a program in the PreInit table failed to load (return code 8 or 40), the identify_attributes CEEPIPI
function can be used to help determine what table entry address did not resolve.

XPLINK considerations
• If the first program in the customer PreInit table is an XPLINK program, then an XPLINK environment

will be initialized.
• If the runtime options are passed as input and the XPLINK option is specified as XPLINK(ON), then an

XPLINK environment will be initialized.
• If neither of the above are true (the first program in the customer PreInit table is a non-XPLINK

program and the XPLINK runtime option is off or not specified), then a non-XPLINK environment will be
initialized.

Note:

1. The runtime options you specify will apply to all of the subroutines that are called by (call_sub)
function. This includes options such as XPLINK. Therefore, all of your subroutines must have the same
characteristics and requirements needed for these runtime options.

2. If this is a non-XPLINK sub environment, then do not allow an XPLINK subroutine to be added to the
table.

(init_sub_dp) — initialize for subroutine (multiple environment)
The invocation of this routine:

• Creates and initializes a new Language Environment process and enclave to allow the execution of
subroutines multiple times.

• Sets the environment dormant so that exceptions are percolated out of it.
• Returns a token identifying the environment to the caller.
• Returns a code in register 15 indicating whether an environment was successfully initialized.
• Ensures that the environment tolerates the existence of multiple Language Environment enclaves.

Preinitialization services

440 z/OS: z/OS Language Environment Programming Guide

• Ensures that when the environment is dormant, it is immune to other Language Environment enclaves
that are created or terminated.

Multiple environments can be established only by using (init_sub_dp) as opposed to (init_sub), which can
establish only a single environment.

CALL CEEPIPI (init_sub_dp , ceexptbl_addr , service_rtns ,

runtime_opts , token)

init_sub_dp (input)
A fullword function code (integer value = 9) containing the init_sub_dp request.

ceexptbl_addr (input)
A fullword containing the address of the PreInit table to be used during initialization of the new
environment. Language Environment does not alter the user-supplied copy of the table. If an entry
address is zero and the entry name is non-blank, Language Environment searches for the routine (in
the LPA, saved segment, or nucleus) and dynamically loads it. Language Environment then places the
entry address in the corresponding slot of a Language Environment-maintained table.

Language Environment uses the high-order bit of the entry address to determine what AMODE to
use when calling the routine. If the entry address is zero, and the entry name is supplied, Language
Environment uses the AMODE returned by the system loader. If the entry address is supplied, you
must provide the AMODE in the high-order bit of the address.

service_rtns (input)
A fullword containing the address of the service routine vector. It contains 0 if there is no service
routine vector. See “Service routines” on page 457 for more information.

runtime_opts (input)
A fixed-length 255-character string containing runtime options. For a list of runtime options that you
can specify, see Language Environment runtime options in z/OS Language Environment Programming
Reference.

Note:

1. The runtime options you specify will apply to all of the subroutines that are called by the (call_sub)
function. This includes options, such as POSIX. Therefore, all of your subroutines must have the
same characteristics and requirements needed for these runtime options.

2. If you want to run XPLINK routines in a PreInit sub environment, you must specify the XPLINK(ON)
runtime option field when you create the sub environment by calling CEEPIPI(init_sub). You can
not run XPLINK routines in a sub environment when runtime option XPLINK(OFF) is in effect.

token (output)
A fullword containing a unique value used to represent the environment. The token should be used
only as input to additional calls to CEEPIPI, and should not be altered or used in any other manner.

Return codes
Register 15 contains a return code indicating if an environment was successfully initialized. Possible
return codes (in decimal) are:
0

A new environment was successfully initialized.
4

The function code is not valid.
8

All addresses in the table were not resolved. This can occur if a LOAD failure was encountered or a
routine within the table was not generated by a Language Environment-conforming HLL.

12
Storage for the preinitialization environment could not be obtained.

Preinitialization services

Chapter 30. Using preinitialization services 441

32
An unhandled error condition was encountered. This error is a result of a program interrupt or other
abend that occurred that prevented the preinitialization services from completing.

40
An entry in the PreInit table is an XPLINK subroutine and the environment is a non-XPLINK sub
environment. This entry is not valid.

Usage notes
• The assembler user exit (CEEBXITA), HLL user exit (CEEBINT), and programmer defaults (CEEUOPT)

that are used to initialize the environment are taken from the first valid entry in the PreInit table.
Any occurrences of CEEBXITA, CEEBINT, and CEEUOPT in other PreInit table entries are ignored.
Unpredictable results will occur if this first entry is deleted or changed.

• COBOL, PL/I, and C routines must be compiled RENT to participate in this environment
• You can direct MSGFILE output to either a spool or to a unique file.
• C memory files are not shared across multiple environments.
• If the (init_sub_dp,...) interface is used to create additional environments, neither the existing

environment, nor the one trying to be created can be POSIX(ON).
• If a program in the PreInit table failed to load (return code 8 or 40), the identify_attributes CEEPIPI

function can be used to help determine what table entry address did not resolve.

XPLINK considerations
• If the first program in the customer PreInit table is an XPLINK program, then an XPLINK environment

will be initialized.
• If the runtime options are passed as input and the XPLINK option is specified as XPLINK(ON), then an

XPLINK environment will be initialized.
• If neither of the above are true (the first program in the customer PreInit table is a non-XPLINK

program and the XPLINK runtime option is off or not specified), then a non-XPLINK environment will be
initialized.

Note: The runtime options you specify apply to all of the subroutines that are called by (call_sub_dp)
function. This includes options such as XPLINK. Therefore, all of your subroutines must have the same
characteristics and requirements needed for these runtime options.

Application invocation
Language Environment provides facilities to invoke either a main routine or subroutine. When invoking
main routines, the environment must have been initialized using the init_main or init_main_dp function
code. Similarly, when invoking subroutines, the environment must have been initialized with the init_sub
or init_sub_dp function codes.

(call_main) — invocation for main routine
This invocation of CEEPIPI invokes as a main routine the routine that you specify. The common execution
environment identified by token is activated before the called routine is invoked, and after the called
routine returns, the environment is dormant.

At termination, the currently active HLL event handlers are driven to enforce language semantics for the
termination of an application such as closing files and freeing storage. The process level is made dormant
rather than terminated. The thread and enclave levels are terminated. The assembler user exit is driven
with the function code for first enclave termination. (For more information about user exits, see Chapter
28, “Using runtime user exits,” on page 371.)

Preinitialization services

442 z/OS: z/OS Language Environment Programming Guide

CALL CEEPIPI (call_main , ceexptl_index , token , runtime_opts ,

parm_ptr , enclave_return_code , enclave_reason_code ,

appl_feedback_code)

call_main (input)
A fullword function code (integer value = 2) containing the call_main request.

ceexptbl_index (input)
A fullword containing the row number within the PreInit table of the entry that should be invoked. The
index starts at 0.

Each invocation of the CEEXPITY macro generates a row in the PreInit table. The first entry is row 0,
the second is row 1 and so on. A call to (add_entry) to add an entry to the PreInit table also returns a
row number in the ceexptbl_index parameter.

token (input)
A fullword with the value of the token returned by (init_main) or (init_main_dp) when the common
runtime environment is initialized. The token must identify a previously preinitialized environment that
is not active at the time of the call.

runtime_opts (input)
A fixed-length 255-character string containing runtime options. (See Language Environment runtime
options in z/OS Language Environment Programming Reference for a list of runtime options that you
can specify.)

parm_ptr (input)
A fullword parameter list pointer or 0 (zero) that is placed in register 1 when the main routine is
executed. The parameter list that is passed must be in a format that HLL subroutines expect (for
example, in an argc, argv format for C routines).

enclave_return_code (output)
A fullword containing the enclave return code returned by the called routine when it finished
executing. For more information about return codes, see “Managing return codes in Language
Environment” on page 130.

enclave_reason_code (output)
A fullword containing the enclave reason code returned by the environment when the routine finished
executing. For more information about reason codes, see “Managing return codes in Language
Environment” on page 130.

appl_feedback_code (output)
A 96-bit condition token indicating why the application terminated.

Return codes
Register 15 contains a return code indicating the success or failure of the request. Possible return codes
(in decimal) are:
0

The environment was activated and the routine called.
4

The function code is not valid.
8

If token was initialized by (init_main) or (init_sub), CEEPIPI(call_main) was called from a Language
Environment-conforming HLL.

If token was initialized by (init_main_dp), CEEPIPI(call_main) was called from a Language
Environment-conforming HLL that is not running in a (main_dp) environment, or token is already in use
for another call to CEEPIPI.

Preinitialization services

Chapter 30. Using preinitialization services 443

12
The indicated environment was initialized for subroutines. No routine was executed.

16
The token is not valid.

20
The index points to an entry that is not valid or empty.

24
The index that was passed is outside the range of the table.

32
An unhandled error condition was encountered. This error is a result of a program interrupt or other
abend that occurred that prevented the preinitialization services from completing.

The user return code and Language Environment return code modifier are set to zero before invoking the
target routine.

Usage notes
• The NOEXECOPS and CBLOPTS runtime options are ignored since the parameter inbound to the

application and the runtime options are separated already. Therefore, NOEXECOPS and CBLOPTS do
not affect the parameter string format. See “C PLIST and EXECOPS interactions” on page 506 for more
information.

• The assembler user exit (CEEBXITA), HLL user exit (CEEBINT), and programmer defaults (CEEUOPT)
that are used to initialize the environment are taken from the main routine being called. Any
occurrences of CEEBXITA, CEEBINT, and CEEUOPT in other PreInit table entries are ignored.

• For more information about return codes, see “Managing return codes in Language Environment” on
page 130.

(call_sub) — invocation for subroutines
This invocation of CEEPIPI invokes as a subroutine the routine that you specify. The common runtime
environment identified by token is activated before the called routine is invoked, and after the called
routine returns, the environment is dormant.

The enclave is terminated when an unhandled condition is encountered or a STOP statement is executed.
(See “Stop semantics” on page 432 for more information.) However, the process level is maintained. The
next call to (call_sub) initializes a new enclave.

CALL CEEPIPI (call_sub , ceexptl_index , token , parm_ptr ,

sub_ret_code , sub_reason_code , sub_feedback_code)

call_sub (input)
A fullword function code (integer value = 4) containing the call_sub request for a subroutine.

ceexptbl_index (input)
A fullword containing the row number of the entry within the PreInit table that should be invoked; the
index starts at 0.

Note: If the token pointing to the previously preinitialized environment is a non-XPLINK environment
and the subprogram to be invoked is XPLINK, then a return code of 40 will be returned because this is
not valid.

token (input)
A fullword with the value of the token returned when the common runtime environment is initialized.
This token is initialized by the (init_sub) or (init_sub_dp). The token must identify a previously
preinitialized environment that is not active at the time of the call. You must not alter the value of
the token.

Preinitialization services

444 z/OS: z/OS Language Environment Programming Guide

Note: If the token pointing to the previously preinitialized environment is a non-XPLINK environment
and the subprogram to be invoked is XPLINK a return code of 40 will be returned because this is not
valid.

parm_ptr (input)
A parameter list pointer or 0 (zero) that is placed in register 1 when the routine is executed.

C and C++ users need to follow the subroutine linkage convention for C/C++ and assembler ILC
applications, as described in Interlanguage calls with z/OS XL C/C++ in z/OS XL C/C++ Programming
Guide.

sub_ret_code (output)
The subroutine return code. If the enclave is terminated due to an unhandled condition, a STOP
statement, or EXIT statement (or an exit() function), this contains the enclave return code for
termination.

sub_reason_code (output)
The subroutine reason code. This is 0 for normal subroutine returns. If the enclave is terminated due
to an unhandled condition, a STOP statement, or EXIT statement (or an exit() function), this contains
the enclave reason code for termination.

sub_feedback_code (output)
The feedback code for enclave termination. This is the CEE000 feedback code for normal subroutine
returns. If the enclave is terminated due to an unhandled condition, a STOP statement, or EXIT
statement (or an exit() function), this contains the enclave feedback code for termination.

Return codes
Register 15 contains a return code indicating the success or failure of the request. Possible return codes
(in decimal) are:
0

The environment was activated and the routine called.
4

The function code is not valid.
8

CEEPIPI was called from a Language Environment-conforming HLL.
12

The indicated environment was initialized for main routines. No routine was executed.
16

The token is not valid.
20

The index points to an entry that is not valid or empty.
24

The index passed is outside the range of the table.
28

The enclave was terminated but the process level persists.

This value indicates the enclave was terminated while the process was retained. This can occur
due to a STOP statement being issued or due to an unhandled condition. The sub_ret_code,
sub_reason_code, and sub_feedback_code indicate this action.

40
The subprogram was an XPLINK program and the preinitialized environment is non-XPLINK. This is
not valid.

Usage notes
• The enclave terminates if the subroutine issues a STOP statement, EXIT statement (or an exit()

function), or if there is an unhandled condition. However, the process level is not terminated. When
the enclave level is terminated, any subsequent invocation creates a new enclave by using the same

Preinitialization services

Chapter 30. Using preinitialization services 445

runtime options used in the creation of the first enclave. Language Environment does not delete any
user routines that were loaded into the PreInit table.

However, if, the first valid entry in the PreInit table is different than when the enclave was last initialized,
the assembler user exit (CEEBXITA), HLL user exit (CEEBINT), and/or programmer default runtime
options (CEEUOPT) used during the enclave re-initialization might be different. PreInit subroutine
initialization uses these external references only when associated with the first valid entry in the
PreInit table. Therefore, when using PreInit subroutine environments and you want consistent enclave
initialization behavior across the stop semantics, you need to ensure the first valid entry in the PreInit
table does not change, especially when it contains the aforementioned external references.

(See “Stop semantics” on page 432.)
• Any subroutine that modifies external data cannot make assumptions about the initial state of that

external data. The initial state of the external data is influenced by previous instances of the same
subroutine and also by previous instances of any subroutine that caused enclave termination.

• If the first entry in the PreInit table contained a CEEBXITA, CEEBINIT or CEEUOPT when the
environment was initialized and is then deleted or changed, the results of subsequent enclave re-
initialization or termination is unpredictable. It is the responsibility of the user to ensure the first entry in
the PreInit table does not change, especially when it contains the aforementioned external references.

(call_sub_addr) — invocation for subroutines by address
This invocation of CEEPIPI invokes a specified routine as a subroutine. The common runtime environment
identified by token is activated before the called routine is invoked; after the called routine returns, the
environment is dormant.

The enclave is terminated when an unhandled condition is encountered or a STOP or EXIT statement (or
an exit() function) is executed. (See “Stop semantics” on page 432 for more information.) However, the
process level is maintained; only the enclave level terminates.

CALL CEEPIPI (call_sub_addr , routine_addr , token , parm_ptr ,

sub_ret_code , sub_reason_code , sub_feedback_code)

call_sub_addr (input)
A fullword function code (integer value = 10) containing the call_sub request for a subroutine.

routine_addr (input/output)
A doubleword containing the address of the routine that should be invoked. The first fullword contains
the entry point address.

1. If this is an XPLINK environment and the second fullword is zero, Preinitialization services will
create a new function pointer to call the routine directly. The new function pointer will be returned
in the second fullword.

2. If this is an XPLINK environment and the second fullword is a function pointer, the XPLINK
subroutine is called directly. This fast path avoids the overhead of translating the routine address
to the function pointer.

token (input)
A fullword with the value of the token returned by (init_sub) or (init_sub_dp) when the common
runtime environment is initialized. The token must identify a previously preinitialized environment that
is not active at the time of the call. You must not alter the value of the token.

If the token pointing to the previously preinitialized environment is a non-XPLINK environment and
the subprogram to be invoked is XPLINK, then a return code of 40 will be returned because this is not
valid.

parm_ptr (input)
A parameter list pointer or 0 (zero) that is placed in register 1 when the routine is executed.

Preinitialization services

446 z/OS: z/OS Language Environment Programming Guide

C and C++ users are advised to follow the subroutine linkage convention for C/C++ — assembler ILC
applications, as described in Interlanguage calls with z/OS XL C/C++ in z/OS XL C/C++ Programming
Guide.

sub_ret_code (output)
The subroutine return code. If the enclave is terminated due to an unhandled condition or a STOP or
EXIT statement (or an exit() function), this contains the enclave return code for termination.

sub_reason_code (output)
The subroutine reason code. This is 0 for normal subroutine returns. If the enclave is terminated
due to an unhandled condition or a STOP or EXIT statement (or an exit() function), this contains the
enclave reason code for termination.

sub_feedback_code (output)
The feedback code for enclave termination. This is the CEE000 feedback code for normal subroutine
returns. If the enclave is terminated due to an unhandled condition or a STOP or EXIT statement (or
an exit() function), this contains the enclave feedback code for termination.

Return codes
Register 15 contains a return code indicating the success or failure of the request. Possible return codes
(in decimal) are:
0

The environment was activated and the routine called.
4

The function code is not valid.
8

CEEPIPI was called from a Language Environment-conforming HLL.
12

The indicated environment was initialized for main routines. No routine was executed.
16

The token is not valid.
28

The enclave was terminated but the process level persists.

This value indicates the enclave was terminated while the process was retained. This can occur due to
a STOP or EXIT statement (or an exit() function) being issued or due to an unhandled condition. The
sub_ret_code, sub_reason_code, and sub_feedback_code indicate this action.

40
The subprogram was an XPLINK program and the preinitialized environment is non-XPLINK. This is
not valid.

41
Indicates the routine address could not be converted to a function descriptor.

Usage notes
• The enclave terminates if the subroutine issues a STOP or EXIT statement (or an exit() function), or if

there is an unhandled condition. However, the process level is not terminated. When the enclave level
is terminated, any subsequent invocation creates a new enclave using the same runtime options used
in the creation of the first enclave. Language Environment does not delete any user routines that were
loaded into the PreInit table.

However, if, the first valid entry in the PreInit table is different than when the enclave was last initialized,
the assembler user exit (CEEBXITA), HLL user exit (CEEBINT), and/or programmer default runtime
options (CEEUOPT) used during the enclave re-initialization might be different. PreInit subroutine
initialization uses these external references only when associated with the first valid entry in the
PreInit table. Therefore, when using PreInit subroutine environments and you want consistent enclave

Preinitialization services

Chapter 30. Using preinitialization services 447

initialization behavior across the stop semantics, you need to ensure the first valid entry in the PreInit
table does not change, especially when it contains the aforementioned external references.

(See “Stop semantics” on page 432.)
• Any subroutine that modifies external data cannot make assumptions about the initial state of that

external data. The initial state of the external data is influenced by previous instances of the same
subroutine and also by previous instances of any subroutine that caused enclave termination.

• C subroutines that are not naturally reentrant and C++ subroutines can be invoked using call_sub_addr
only in an XPLINK environment. In a non-XPLINK environment, they must be invoked using call_sub.

• If the first entry in the PreInit table contained a CEEBXITA, CEEBINIT or CEEUOPT when the
environment was initialized and is then deleted or changed, the results of subsequent enclave re-
initialization or termination is unpredictable. It is the responsibility of the user to ensure the first entry in
the PreInit table does not change, especially when it contains the aforementioned external references.

(end_seq) — end a sequence of calls
This invocation of CEEPIPI declares that a sequence of uninterrupted calls to subroutines by this driver
program has finished.

CALL CEEPIPI (end_seq , token)

end_seq (input)
A fullword function code (integer value = 8) containing the end_seq request

token (input)
A fullword with the value of the token returned by (init_sub_dp) when the common runtime
environment is initialized.

The token must identify a previously preinitialized environment that was prepared for multiple calls by
the (start_seq) call.

Return codes
Register 15 contains a return code indicating the success or failure of the request. Possible return codes
(in decimal) are:
0

The environment is no longer prepared for a sequence of calls.
4

The function code is not valid.
8

The indicated environment was already active; no action taken.
16

The token is not valid.
20

The token was not used in a start_seq call.

Usage notes
• (end_seq) can be used only in conjunction with a Language Environment environment initialized by

an (init_sub_dp) function code. A return code of 4 is set for environments initialized by other than
(init_sub_dp).

• Only (call_sub) or (call_sub_addr) invocations are allowed between the (start_seq) and (end_seq) calls.
• The driver program cannot cancel any STAE or ESPIE routines.
• This function can be called from an active environment if the Preinitialization environment indicated by

token was created with the (init_sub_dp) function.

Preinitialization services

448 z/OS: z/OS Language Environment Programming Guide

(start_seq) — start a sequence of calls
This invocation of CEEPIPI declares that a sequence of uninterrupted calls is made to a number of
subroutines by this driven program to the same preinitialized environment. This minimizes the overhead
between calls by performing as much activity as possible at the start of a sequence of calls.

CALL CEEPIPI (start_seq , token)

start_seq (input)
A fullword function code (integer value = 7) containing the start_seq request.

token (input)
A fullword with the value of the token returned by (init_sub_dp) when the common runtime
environment is initialized.

The token must identify a previously preinitialized environment for subroutines that are dormant at
the time of the call.

Return codes
Register 15 contains a return code indicating the success or failure of the request. Possible return codes
(in decimal) are:
0

The environment was prepared for a sequence of calls.
4

The function code is not valid.
8

The indicated environment was already active; no action taken.
16

The token is not valid.
20

Sequence already started using token.

Usage notes
• (start_seq) can be used only in conjunction with a Language Environment environment initialized by

(init_sub_dp) function code. A return code 4 is set for environments not initialized by (init_sub_dp).
• (start_seq) minimizes the overhead between calls by allowing Language Environment to perform as

much activity as possible at the start of the sequence of calls.
• Only (call_sub) or (call_sub_addr) invocations are allowed between the (start_seq) and (end_seq) calls.
• The same token must be passed for all invocations of (call_sub) or (call_sub_addr) between the

(start_seq) and (end_seq) function codes. You can vary the routine invoked.
• During a CEEPIPI call sequence, the user's CEEPIPI driver must insure that the Language Environment

recovery routines are never invoked when a program check or abend occurs in the user application
code. One way to do this is to run with Trap (ON,NOSPIE), and also establish an ESTAE to handle errors
when Language Environment is not active.

(term) — terminate environment
This invocation of CEEPIPI terminates the environment identified by the value given in token. This service
is used for terminating environments created for subroutines or main routines.

CALL CEEPIPI (term , token , env_return_code)

Preinitialization services

Chapter 30. Using preinitialization services 449

term (input)
A fullword function code (integer value = 5) containing the termination request.

token (input)
A fullword with the value of the token of the environment to be terminated. This token is returned by a
(init_main), (init_main_dp), (init_sub), or (init_sub_dp) request during the initialization call.

The token must identify a previously preinitialized environment that is dormant at the time of the call.

env_return_code (output)
A fullword integer which is set to the return code from the environment termination.

If the environment was initialized for a main routine or a subroutine, and the last (call_sub) or
(call_sub_addr) issued stop semantics, the value of env_return_code is zero.

If the environment was initialized for a subroutine and the last (call_sub) or (call_sub_addr) did not
terminate with stop semantics, env_return_code contains the same value as that in sub_ret_code from
the last (call_sub) or (call_sub_addr).

Return codes
Register 15 contains a return code indicating the success or failure of the request. Possible return codes
(in decimal) are:
0

The environment was activated and termination was requested.
4

Non-valid function code.
8

If token was initialized by (init_main) or (init_sub), CEEPIPI(term) was called from a Language
Environment-conforming routine.

If token was initialized by (init_main_dp), CEEPIPI(term) was called from a Language Environment-
conforming routine that is not running in a (main_dp) environment, or token is already in use for
another call to CEEPIPI

16
The token is not valid.

Usage notes
• All resources obtained are released when the environment terminates.
• All routines loaded by Language Environment are deleted when the environment terminates.
• Subsequent references to token by preinitialization services result in an error indicating the token is not

valid.

(add_entry) — add an entry to the PreInit table
This invocation of CEEPIPI adds an entry for the environment represented by token in the Language
Environment-maintained table. If a routine entry address is not provided, the routine name is used to
dynamically load the routine and add it to the PreInit table. The PreInit table index for the new entry is
returned to the calling routine.

CALL CEEPIPI (add_entry , token , routine_name , routine_entry

, ceexptbl_index)

add_entry (input)
A fullword function code (integer value = 6) containing the add_entry request.

Preinitialization services

450 z/OS: z/OS Language Environment Programming Guide

token (input)
A fullword with the value of the token associated with the environment that adds this new routine.
This token is returned by a (init_main), (init_main_dp), (init_sub), or (init_sub_dp) request.

The token must identify a previously preinitialized environment that is dormant at the time of the call.

routine_name (input)
A character string of length 8, left-justified and padded right with blanks, containing the name of the
routine. To indicate the absence of the name, this field should be blank. If routine_entry is zero, this is
used as the load name.

routine_entry (input/output)
The routine entry address that is added to the PreInit table. If routine_entry is zero on input,
routine_name is used as the load name. On output, routine_entry is set to the load address of
routine_name.

The high-order bit of the entry_point address must be set to indicate the addressing mode for the
routine. If the high-order bit is OFF, the routine is called in 24 bit addressing mode and the address
must be a valid 24 bit address. If the high-order bit is ON, the routine is called in 31 bit addressing
mode and the address must be a valid 31 bit address.

ceexptbl_index (output)
The index to the PreInit table where this routine was added. If the return code is nonzero, this value is
indeterminate. The index starts at zero.

Note: The environment that was preinitialized can be an XPLINK environment or a non-XPLINK
environment. If the routine being added is an XPLINK routine, then the previously initialized
environment must also be XPLINK.

Return codes
Register 15 contains a return code indicating the success or failure of the request. Possible return codes
(in decimal) are:
0

The routine was added to the PreInit table.
4

Non-valid function code.
8

If token was initialized by (init_main) or (init_sub), CEEPIPI(add_entry) was called from a Language
Environment-conforming routine.

If token was initialized by (init_main_dp), CEEPIPI(add_entry) was called from a Language
Environment-conforming routine that is not running in a (main_dp) environment, or token is already in
use for another call to CEEPIPI

12
The routine did not contain a valid Language Environment entry prolog. Ensure that the routine was
compiled with a current Language Environment enabled compiler. The PreInit table was not updated.

16
The token is not valid.

20
The routine_name contains only blanks and the routine_entry was zero. The PreInit table was not
updated.

24
The routine_name was not found or there was a load failure; the PreInit table was not updated.

28
The PreInit table is full. No routine was added to the table, nor was any routine loaded by Language
Environment.

Preinitialization services

Chapter 30. Using preinitialization services 451

32
An unhandled error condition was encountered. This error is a result of a program interrupt or other
abend that occurred that prevented the preinitialization services from completing.

38
Non-valid entry: A non-XPLINK subenvironment was preinitialized and the program that was being
added is an XPLINK program.

42
Non-valid entry: The routine_entry had the high-order bit off indicating this routine is a 24 bit
addressing mode routine but the environment is an XPLINK 31-bit environment. This is not valid.

Usage notes
• The PreInit table is built using the macros described in this topic. Therefore, its size is under the control

of your application, not Language Environment.
• None of the routines in the PreInit table can be nested routines. All routines must be external routines.
• Language Environment uses the high-order bit of the entry address to determine what AMODE to

use when calling the routine. If the routine_entry is zero, and the routine_name is supplied, Language
Environment uses the AMODE returned by the system loader. If the routine_entry is supplied, you must
provide the AMODE in the high-order bit of the address.

• An add_entry of an XPLINK program into a non-XPLINK preinitialized sub-environment will be not valid.
If the environment is non-XPLINK, then the subprogram added with the add_entry function must also
be non-XPLINK. However, you can do an add_entry of a main XPLINK program into a non-XPLINK
environment. When a call_main is done with this scenario the environment will switch to XPLINK in
order to allow the program to run.

(delete_entry) — delete an entry from the PreInit table
This function deletes an entry from the PreInit table. The entry is then available for subsequent
(add_entry) functions.

CALL CEEPIPI (delete_entry , token , ceexptbl_index)

delete_entry (input)
Fullword function code (integer value = 11) containing the delete_entry request

token (input)
A fullword with the value of the token of the environment. This is the token returned by a (init_main),
(init_main_dp), (init_sub), or (init_sub_dp) request.

ceexptbl_index (input)
The index into the PreInit table of the entry to delete.

Return codes
Register 15 contains a return code indicating the success or failure of the request. Possible return codes
(in decimal) are:
0

The routine was deleted from the PreInit table
4

The function code is not valid.
8

If token was initialized by (init_main) or (init_sub), CEEPIPI(delete_entry) was called from an active
environment.

If token was initialized by (init_main_dp), CEEPIPI(add_entry) was called from an active environment
other than a (main_dp) environment, or token is already in use for another call to CEEPIPI.

Preinitialization services

452 z/OS: z/OS Language Environment Programming Guide

No entries were deleted from the PreInit table.

16
The token is not valid

20
The PreInit table entry indicated by ceexptbl_index was empty.

24
The index passed is outside the range of the table.

28
The system request to delete the routine failed; the routine was not deleted from the PreInit table.

Usage notes
• The token must identify a previously preinitialized environment that is dormant at the time of the call.
• If the routine indicated by ceexptbl_index had been loaded by CEEPIPI, it will be deleted.
• (delete_entry) no longer issues return code 12 (the environment indicated by token was not created

with a (init_main) request; the routine was not deleted from the PreInit table).

(identify_entry) — identify an entry in the PreInit table
This invocation of CEEPIPI identifies the language of the entry point for a routine in the PreInit table.

CALL CEEPIPI (identify_entry , token , ceexptbl_index ,

programming language)

identify_entry (input)
A fullword containing the identify_entry function code (integer value=13).

token (input)
A fullword with the value of the token of the environment. This is the token returned by a (init_main),
(init_main_dp), (init_sub) or (init_sub_dp) request.

ceexptbl_index (input)
A fullword containing the index in the PreInit table of the entry to identify the programming language.

programming language (output)
A fullword with one of the following possible values:
3

C/C++
5

COBOL
10

PL/I
11

Enterprise PL/I for z/OS
15

Language Environment-enabled assembler
16

PL/X

Return codes
Register 15 contains a return code indicating the success or failure of the request. Possible return codes
(in decimal) are:

Preinitialization services

Chapter 30. Using preinitialization services 453

0
The programming language has been returned.

4
Non-valid function code.

8
CEEPIPI was called from an active environment.

16
The token is not valid.

20
The PreInit table entry indicated by ceexptbl_index was empty.

24
The index passed is outside the range of the table.

Usage notes
• The token must identify a previously preinitialized environment that is dormant at the time of the call

and was established with the (init_main), (init_main_dp), (init_sub) or (init_sub_dp) request.
• The programming language can be used by the driver to determine the format of the parameter list for

the routine in cases where the language of the entry is not known.
• When a PreInit table entry contains multiple languages, programming_language is the language of the

entry point for the entry.

(identify_environment) — identify the environment in the PreInit table
This invocation of CEEPIPI identifies the environment that was preinitialized.

CALL CEEPIPI (identify_environment , token , pipi_environment)

identify_environment (input)
A fullword containing the identify_environment function code (integer value=15).

token (input)
A fullword with the value of the token of the environment. This is the token returned by a (init_main),
(init_main_dp), (init_sub) or (init_sub_dp) request.

pipi_environment (output)
A fullword (32 Bit) mask value will be returned. For information about the mask value, see Table 76 on
page 454.

Table 76. Mask values for the pipi_environment

pipi_environment Mask value Action

ceepipi_main X'80000000' PreInit main environment is initialized.

ceepipi_enclave_initialized X'40000000' PreInit enclave is initialized.

ceepipi_dp_environment X'20000000' PreInit sub dp environment is initialized.

ceepipi_dp_seq_of_calls_active X'10000000' PreInit seq call function is active.

ceepipi_dp_exits_established X'08000000' PreInit sub dp exits is set.

ceepipi_sir_unregistered X'04000000' PreInit sir is registered.

ceepipi_sub_environment X'02000000' PreInit sub environment is initialized.

ceepipi_XPLINK_environment X'01000000' PreInit XPLINK environment is initialized.

ceepipi_init_main_dp_environment X'00200000' PreInit main dp environment is initialized.

Preinitialization services

454 z/OS: z/OS Language Environment Programming Guide

Note: Mask bits other than those listed in the table may be nonzero. The meaning of these bits is not
defined.

Return codes
Register 15 contains a return code indicating the success or failure of the request. Possible return codes
(in decimal) are:
0

The Preinitialization environment mask has been returned.
4

Non-valid function code.
8

CEEPIPI was called from an active environment.
16

The token is not valid.

(identify_attributes) — identify the program attributes in the PreInit table
This invocation of CEEPIPI identifies the program attributes of a program in the PreInit table.

CALL CEEPIPI (identify_attributes , token , ceexptbl_index(input)

program_attributes)

identify_attributes (input)
A fullword containing the identify_attributes function code (integer value=16).

token (input)
A fullword with the value of the token of the environment. This is the token returned by a (init_main),
(init_main_dp), (init_sub) or (init_sub_dp) request.

ceexptbl_index (input)
A fullword containing the index in the PreInit table of the entry to identify the programming attributes.

program_attributes (output)
A fullword (32–bit) mask value will be returned indicating the following:

Table 77. Mask values for program_attributes

program_attribute Mask value Action

loaded_by_pipi X'80000000' The Preinitialization entry was loaded by Language
Environment

XPLINK_program X'40000000' The Preinitialization entry loaded is an XPLINK
program

Address_not_resolved X'20000000' The Preinitialization entry could not be loaded

Return codes
Register 15 contains a return code indicating the success or failure of the request. Possible return codes
(in decimal) are:
0

The Preinitialization environment mask has been returned.
4

Non-valid function code.
8

CEEPIPI was called from an active environment.

Preinitialization services

Chapter 30. Using preinitialization services 455

16
The token is not valid.

20
The PreInit table entry indicated by ceexptbl_index was empty.

24
The index passed is outside the range of the table.

(set_user_word) -- set value to be used to initialize CAA user word

CALL CEEPIPI (set_user_word , token , value)

set_user_word (input)
A fullword containing the set_user_word function code (integer value = 17).

token (input)
A fullword with the value of the token of the environment. This is the token returned by a (init_main),
(init_main_dp), (init_sub) or (init_sub_dp) request.

value (input)
A fullword value that will be used to initialize the user word in the initial thread CAA when the
application is invoked using the (call_main), (call_sub), (call_sub_addr), (call_sub_addr_nochk), or
(call_sub_addr_nochk2) functions for the passed-in environment token.

Return codes
Register 15 contains a return code indicating the success or failure of the request. Possible return codes
(in decimal) are::
0

The User Word has been set.
4

Non-valid function code.
16

The token is not valid.

Usage notes
• This value is saved in an area associated with the passed-in environment token. It is copied into the

CAA for the initial thread when the next (call_main), (call_sub), (call_sub_addr), (call_sub_addr_nochk),
or (call_sub_addr_nochk2) function is done to start an application. The application can then examine or
update this user word in the CAA (CEECAA_USER_WORD). When the application ends, the final value in
CEECAA_USER_WORD is not copied back into the area associated with the environment token. When
the next application is started using a function such as (call_main), (call_sub), or(call_sub_addr), the
user word value last established by (set_user_word) is used again.

• The user word associated with the environment token is initialized to 0 when (init_main),
(init_main_dp), (init_sub), or (init_sub_dp) is done. The CAA for the initial process thread is initialized
with 0 if no (set_user_word) function call has been done before the application is started.

• The user word in all CAAs other than the initial thread CAA is set to 0. The user word in all CAAs in
nested enclaves is set to 0.

• When fork() is done, the user word in the CAA for the new process inherits the value that is in the CAA at
the time fork() is done.

• The use of the CAA user word is not supported in the assembler user exit routine (CEEBXITA and related
modules), or in the CEEPIPI service routines specified in the service routine vector (@LOAD, @DELETE,
@GETSTORE, @FREESTORE, @EXCEPRTN, @MSGRTN).

• Any user code that runs on a CEEPIPI environment before the first (call_main), (call_sub),
(call_sub_addr), (call_sub_addr_nochk), or (call_sub_addr_nochk2) request will see zero in the

Preinitialization services

456 z/OS: z/OS Language Environment Programming Guide

CAA_USER_WORD. Examples of this code include static constructors run for programs that get loaded
when a CEEPIPI environment is initialized. Any changes to the CAA_USER_WORD made by this
code are overlaid when the next (call_main), (call_sub), (call_sub_addr), (call_sub_addr_nochk), or
(call_sub_addr_nochk2) is done for that environment.

(get_user_word) -- get value to be used to initialize CAA user word

CALL CEEPIPI (get_user_word , token , value)

get_user_word (input)
A fullword containing the get_user_word function code (integer value = 18).

token (input)
A fullword with the value of the token of the environment. This is the token returned by a (init_main),
(init_main_dp), (init_sub) or (init_sub_dp) request.

value (output)
A fullword that will be returned containing the current value that will be used to initialize the CAA
user word when the next application is invoked using the (call_main), (call_sub), (call_sub_addr),
(call_sub_addr_nochk), or (call_sub_addr_nochk2) functions.

Return codes
Register 15 contains a return code indicating the success or failure of the request. Possible return codes
(in decimal) are:
0

The current value of the User Word has been returned.
4

Non-valid function code.
16

The token is not valid.

Usage notes
• The value returned will be the one previously set by the last (set_user_word) request for this token. If no

(set_user_word) has yet been done for this token, 0 will be returned.

Service routines
Under Language Environment, you can specify several service routines to execute a main routine or
subroutine in the preinitialized environment. To use the routines, specify a list of addresses of the routines
in a service routine vector as shown in Figure 108 on page 458.

Preinitialization services

Chapter 30. Using preinitialization services 457

SERV_RTNS Count

User Word

@WorkArea

@LOAD

@DELETE

@GETSTORE

@FREESTORE

@EXCEPRTN

reserved

@MSGRTN

Figure 108. Format of service routine vector

The service routine vector is composed of a list of fullword addresses of routines that are used instead of
Language Environment service routines. The list of addresses is preceded by the number of the addresses
in the list, as specified in the count field of the vector. The service_rtns parameter that you specify in calls
to (init_main) and (init_sub) contains the address of the vector itself. If this pointer is specified as zero
(0), Language Environment routines are used instead of the service routines shown in Figure 108 on page
458.

The @GETSTORE and @FREESTORE service routines must be specified together; if one is zero, the other
is automatically ignored. The same is true for the @LOAD and @DELETE service routines. If you specify
the @GETSTORE and @FREESTORE service routines, you do not have to specify the @LOAD and @DELETE
service routines and vice-versa.

When replacing only the storage management routines without the program management routines, the
user must be aware that they may not be accounting for all the storage obtained on behalf of the
application. Contents management obtains storage for the load module being loaded. This storage will not
be managed by the user storage management routines.

The service routines may be AMODE(31) / RMODE(ANY) if the application has no AMODE(24) programs.
Otherwise the service routines must be AMODE(ANY) / RMODE(24).
Count

A fullword binary number representing the number of fullwords that follow. The count does not
include itself. In Figure 108 on page 458, the count is 9. For each vector slot, a zero represents the
absence of the routine, a nonzero represents the presence of a routine.

User Word
A fullword that is passed to the service routines. The user word is provided as a means for your routine
to communicate to the service routines.

@WorkArea
An address of a work area of at least 256 bytes that is doubleword aligned. The first word of the area
contains the length of the area provided. This parameter is required if service routines are present in
the service routine vector. This length field must be initialized each time you bring up a new PreInit
environment.

@LOAD
This routine loads named routines for application management. The parameter that is passed
contains the following:

Preinitialization services

458 z/OS: z/OS Language Environment Programming Guide

Name_addr
The fullword address of the name of the module to load (input parameter).

Name_length
A fixed binary(31) length of the module name (input parameter).

User_word
A fullword user field (input parameter).

Load_point
Either zero (0), or the address where the @LOAD routine is to store the load point address of the
loaded routine (input and output parameter).

Entry_point
The fullword entry point address of the loaded routine (output parameter).

Module_size
The fixed binary(31) size of the module that was loaded (output parameter).

Return code
The fullword return code from load (output).

Reason code
The fullword reason code from load (output). The return and reason codes are listed in Table 78 on
page 459.

Table 78. Return and reason codes from load (output)

Return code Reason code Description

0 0 Successful

0 12 Successful; loaded using SVC8

4 4 Unsuccessful; module loaded above the line when in AMODE(24)

8 4 Unsuccessful; load failed

16 4 Unsuccessful; uncorrectable error occurred

@DELETE
This routine deletes routines for application management. The parameter that is passed contains the
following:
Name_addr

The fullword address of the module name to be deleted (input parameter).
Name_length

A fixed binary(31) length of module name (input parameter).
User_word

A fullword user field (input parameter).
Rsvd_word

A fullword reserved for future use (input parameter); must be zero.
Return code

The return code from delete service (output).
Reason code

The reason code from delete service (output). The return and reason codes are listed in Table 79
on page 459.

Table 79. Return and reason codes from delete service (output)

Return code Reason code Description

0 0 Successful

8 4 Unsuccessful; delete failed

16 4 Unsuccessful; uncorrectable error occurred

Preinitialization services

Chapter 30. Using preinitialization services 459

@GETSTORE
This routine allocates storage on behalf of the storage manager. This routine can rely on the caller
to provide a save area, which can be the @Workarea. The parameter list that is passed contains the
following:
Amount

A fixed binary(31) amount of storage requested (input parameter).
Subpool_no

A fixed binary(31) subpool number 0-127 (input parameter). Language Environment allocates
storage from the process-level storage pools.

User word
A fullword user field (input parameter).

Flags
A fullword flag area (input parameter), as shown in the following table. The remaining flag bits are
reserved for future use and must be zero.

Bit Setting Description

Zero ON The storage that is required must be allocated below the 16 MB line.

OFF The storage required can be allocated anywhere.

One ON The storage required was requested to be backed by 1 MB pages. This setting might be
ignored.

OFF The storage required was requested to be backed by the default 4 KB pages.

Stg_address
The fullword address of the storage that is obtained or zero (output parameter).

Obtained
A fixed binary(31) number of bytes obtained (output parameter).

Return code
The return code from @GETSTORE service (output parameter).

Reason code
The reason code from the @GETSTORE service (output parameter).

The return and reason codes are listed in Table 80 on page 460.

Table 80. Return and reason codes from the @GETSTORE service

Return code Reason code Description

0 0 Successful

16 0 Unsuccessful; uncorrectable error occurred

@FREESTORE
This routine frees storage on behalf of the storage manager. The parameter list passed contains the
following:
Amount

The fixed binary(31) amount of storage to free (input parameter).
Subpool_no

The fixed binary(31) subpool number 0-127 (input parameter). Language Environment allocates
storage from the process-level storage pools.

User word
A fullword user field (input parameter).

Stg_address
The fullword address of the storage to free (input parameter).

Preinitialization services

460 z/OS: z/OS Language Environment Programming Guide

Return code
The return code from the @FREESTORE service (output).

Reason code
The reason code from the @FREESTORE service (output).

The return and reason codes are listed in Table 81 on page 461.

Table 81. Return and reason codes from the @FREESTORE service

Return code Reason code Description

0 0 Successful

16 0 Unsuccessful; uncorrectable error occurred

@EXCEPRTN
This routine traps program interruptions and abends for condition management. The parameter list
passed contains the following:
Handler_addr

During an initialization call, this parameter contains the address of the Language Environment
condition handler. During a termination call, this parameter contains a pointer to a fullword field
containing zeroes.

Environment_token
A fullword Recovery Environment token (input). This token is different from the Preinitialization
environment token used with CEEPIPI calls.

User_word
A fullword user field (input parameter)

Abend_flags
A fullword flag area containing abend flags (input)

Check_flags
A fullword flag area containing program check flags (input)

Return code
The return code from the @EXCEPRTN service (output).

Reason code
The reason code from the @EXCEPRTN service (output).

The exception router is responsible for trapping and routing exceptions. These are the services
typically obtained via the ESTAE and ESPIE macros.

During initialization, Language Environment puts the address of the Language Environment condition
handler in the first field of the above parameter list, and sets the environment token field to a value
that must be passed on to the Language Environment condition handler. It also sets abend and check
flags as appropriate, and then calls your exception router to establish an exception handler.

The meaning of the bits in the abend flags are given by the following declare:

 dcl
 1 abendflags,
 2 system,
 3 abends bit(1), /* control for system abends desired */
 3 rsrv1 bit(15), /* reserved */
 2 user,
 3 abends bit(1), /* control for user abends desired */
 3 rsrv2 bit(15); /* reserved */

The meaning of the bits in the check flags is given by the following declare:

 1 checkflags,
 2 type,
 3 reserved3 bit(1),
 3 operation bit(1),
 3 privileged_operation bit(1),
 3 execute bit(1),

Preinitialization services

Chapter 30. Using preinitialization services 461

 3 protection bit(1),
 3 addressing bit(1),
 3 specification bit(1),
 3 data bit(1),
 3 fixed_overflow bit(1),
 3 fixed_divide bit(1),
 3 decimal_overflow bit(1),
 3 decimal_divide bit(1),
 3 exponent_overflow bit(1),
 3 exponent_underflow bit(1),
 3 significance bit(1),
 3 float_divide bit(1),
 2 reserved4 bit(16);

The return and reason codes that the exception router must use are listed in Table 82 on page 462.

Table 82. Return and reason codes for the exception router

Return code Reason code Description

0 0 Successful

4 4 Unsuccessful; the exit could not be established or removed

16 4 Unsuccessful; unrecoverable error occurred

When an exception occurs, the exception handler must determine if the Language Environment
condition handler is interested in the exception (by examining abend and check flags). If the condition
handler is not interested in the exception, the exception handler must treat the program as in error,
but can assume the environment for the thread to be functional and reusable. If the condition handler
is interested in the exception, the exception handler must invoke the condition handler, passing the
parameters listed in Table 83 on page 462.

Table 83. Parameters for Language Environment condition handler

Parameter Attributes Type

Environment Token Fixed Bin(31) Input

Address of SDWA Pointer Input

Return Code Fixed Bin(31) Output

Reason Code Fixed Bin(31) Output

The return and reason codes upon return from the Language Environment condition handler are listed
in Table 84 on page 462.

Table 84. Return and reason codes from the Language Environment condition handler

Return code Reason code Description

0 0 Continue with the exception.

Percolate the exception taking whatever action would have been taken
had it not been handled at all. In this case, your exception handler can
assume the environment for the thread to be functional and reusable.

0 4 Continue with the exception.

Percolate the exception taking whatever action would have been taken
had it not been handled at all. In this case, the environment for the
thread is probably unreliable and not reusable. A forced termination is
suggested.

4 0 Resume execution using the updated SDWA.

The invoked Language Environment condition handler will have already
used the SETRP RTM macro to set the SDWA for correct resumption.

Preinitialization services

462 z/OS: z/OS Language Environment Programming Guide

During termination, the exception router is invoked with the condition handler address (first
parameter) set to zero to de-establish the exit (if it was established during initialization).

When a nested enclave is created, Language Environment calls the exception router to establish
another exception handler exit, and then makes a call to de-establish it when the nested enclave
terminates. If an exception occurs while the second exit is active, special processing is performed.
Depending on what this second exception is, either the first exception will not be retried, or
processing will continue on the first exception by requesting retry for the second exception.

If the Language Environment condition handler determines that execution should resume for an
exception, it will set the SDWA with SETRP and return with return/reason codes 4/0. Execution will
resume in library code or in user code, depending on what the exception was.

The exception handler must be capable of restoring all the registers from the SDWA when control is
given to the retry routine. The ESPIE and ESTAE services are capable of accomplishing this.

In using the exception router service:

• The exception handler should not invoke the Language Environment condition handler if active I/O
has been halted and is not restorable.

• This service requires an XA or ESA environment.

If an exception occurs while the exception handler is in control before another exception handler exit
has been stacked, the exception handler should assume that the exception could not be handled and
that the environment for the program (thread) is damaged. In this case, the exception handler should
force termination of the preinitialized environment.

When @EXCEPRTN is specified, the following items are not supported:

• XPLINK applications
• POSIX(ON) applications
• DYNDUMP settings other than DYNDUMP(,NODYNAMIC)
• IMS applications
• Applications that use Binary Floating Point (BFP) or Decimal Floating Point (DFP) numbers
• Applications that use the Compare-and-Trap family of instructions

Notes:

1. If the passed-in SDWA from the exception handler to the Language Environment condition handler
does not contain valid high registers, the "HR_VALID" flag bit in the Machine State "FLAGS" field
will be off, indicating that the saved high registers are not valid.

2. If a nested enclave ends because of an unhandled condition and a 4094-40 ABEND is declared,
the high registers may not be valid in the Machine State that contains information about the
4094-40 ABEND.

3. If registers in the passed-in SDWA at the time of interrupt (in the SDWAGRSV field) are not
appropriate or recognizable, and Language Environment instead saves the registers from the
SDWASRSV field in the Machine State, the high registers may not be valid in the Machine State.

@MSGRTN
This routine allows error messages to be processed by the caller of the application.

If the message pointer is zero, your message routine is expected to return the size of the line to which
messages are written (in the line_length field). This allows messages to be formatted correctly; that is,
messages can be broken at places such as blanks.
Message

A pointer to the first byte of text that is printed, or zero (input parameter).
Msg_len

The fixed binary(31) length of the message (input parameter).
User word

A fullword user field (input parameter).

Preinitialization services

Chapter 30. Using preinitialization services 463

Line_length
The fixed binary(31) size of the output line length. This is used when Message is zero (output
parameter).

Return and reason codes
Two fullwords containing the return and reason codes listed in Table 85 on page 464 (output
parameters).

Table 85. Return and reason codes for the @MSGRTN service

Return code Reason code Description

0 0 Successful

16 4 Unsuccessful; uncorrectable error occurred

An example program invocation of CEEPIPI
This section includes a sample of a PreInit assembler driver program. This assembler program called
ASMPIPI invokes CEEPIPI to:

• Initialize a subroutine environment under Language Environment
• Load and call a reentrant HLL subroutine
• Terminate the Language Environment environment

Following the assembler program are examples of the program HLLPIPI written in C, COBOL, and
PL/I. HLLPIPI is called by an assembler program, ASMPIPI. ASMPIPI uses the Language Environment
preinitialized program subroutine call interface. You can use the assembler program to call the HLL
versions of HLLPIPI.

*COMPILATION UNIT: LEASMPIP

* *
* Function : CEEPIPI - Initialize the Preinit *
* environment, call a Preinit *
* HLL program, and terminate the environment. *
* *
* 1.Call CEEPIPI to initialize a subroutine environment. *
* 2.Call CEEPIPI to load and call a reentrant HLL subroutine. *
* 3.Call CEEPIPI to terminate the Preinit environment. *
* *
* Note: ASMPIPI is not reentrant. *
* *

*
* ===
* Standard program entry conventions.
* ===
ASMPIPI CSECT
 STM R14,R12,12(R13) Save caller's registers
 LR R12,R15 Get base address
 USING ASMPIPI,R12 Identify base register
 ST R13,SAVE+4 Back-chain the save area
 LA R15,SAVE Get addr of this routine's save area
 ST R15,8(R13) Forward-chain in caller's save area
 LR R13,R15 R13 -> save area of this routine
*
* Load CEEPIPI service routine into main storage.
*
 LOAD EP=CEEPIPI Load CEEPIPI routine dynamically
 ST R0,PPRTNPTR Save the addr of CEEPIPI routine
*
* Initialize a Preinit subroutine environment.
*
INIT_ENV EQU *
 LA R5,PPTBL Get address of Preinit Table
 ST R5,@CEXPTBL Ceexptbl-addr -> Preinit Table
 L R15,PPRTNPTR Get address of CEEPIPI routine
* Invoke CEEPIPI routine
 CALL (15),(INITSUB,@CEXPTBL,@SRVRTNS,RUNTMOPT,TOKEN)

Preinitialization services

464 z/OS: z/OS Language Environment Programming Guide

* Check return code:
 LTR R2,R15 Is R15 = zero?
 BZ CSUB Yes (success).. go to next section
* No (failure).. issue message
 WTO 'ASMPIPI : call to (INIT_SUB) failed',ROUTCDE=11
 C R2,=F'8' Check for partial initialization
 BE TSUB Yes.. go do Preinit termination
* No.. issue message & quit
 WTO 'ASMPIPI : INIT_SUB failure RC is not 8.',ROUTCDE=11
 ABEND (R2),DUMP Abend with bad RC and dump memory
*
* Call the subroutine, which is loaded by LE
*
CSUB EQU *
 L R15,PPRTNPTR Get address of CEEPIPI routine
 CALL (15),(CALLSUB,PTBINDEX,TOKEN,PARMPTR, X
 SUBRETC,SUBRSNC,SUBFBC) Invoke CEEPIPI routine
* Check return code:
 LTR R2,R15 Is R15 = zero?
 BZ TSUB Yes (success).. go to next section
* No (failure).. issue message & quit
 WTO 'ASMPIPI : call to (CALL_SUB) failed',ROUTCDE=11
 ABEND (R2),DUMP Abend with bad RC and dump memory
*
* Terminate the environment
*
TSUB EQU *
 L R15,PPRTNPTR Get address of CEEPIPI routine
 CALL (15),(TERM,TOKEN,ENV_RC) Invoke CEEPIPI routine
* Check return code:
 LTR R2,R15 Is R15 = zero ?
 BZ DONE Yes (success).. go to next section
* No (failure).. issue message & quit
 WTO 'ASMPIPI : call to (TERM) failed',ROUTCDE=11
 ABEND (R2),DUMP Abend with bad RC and dump memory
*
* Standard exit code.
*
DONE EQU *
 LA R15,0 Passed return code for system
 L R13,SAVE+4 Get address of caller's save area
 L R14,12(R13) Reload caller's register 14
 LM R0,R12,20(R13) Reload caller's registers 0-12
 BR R14 Branch back to caller
*
* ===
* CONSTANTS and SAVE AREA.
* ===
SAVE DC 18F'0'
PPRTNPTR DS A Save the address of CEEPIPI routine
*
* Parameters passed to a (INIT_SUB) call.
*
INITSUB DC F'3' Function code to initialize for subr
@CEXPTBL DC A(PPTBL) Address of Preinit Table
@SRVRTNS DC A(0) Addr of service-rtns vector, 0 = none
RUNTMOPT DC CL255' ' Fixed length string of runtime optns
TOKEN DS F Unique value returned (output)
*
* Parameters passed to a (CALL_SUB) call.
*
CALLSUB DC F'4' Function code to call subroutine
PTBINDEX DC F'0' The row number of Preinit Table entry
PARMPTR DC A(0) Pointer to @PARMLIST or zero if none
SUBRETC DS F Subroutine return code (output)
SUBRSNC DS F Subroutine reason code (output)
SUBFBC DS 3F Subroutine feedback token (output)
*
* Parameters passed to a (TERM) call.
*
TERM DC F'5' Function code to terminate
ENV_RC DS F Environment return code (output)
*
* ===
* Preinit Table.
* ===
PPTBL CEEXPIT , Preinit Table with index
 CEEXPITY HLLPIPI,0 0 = dynamically loaded routine
*
 CEEXPITS , End of PreInit table
*
*

Preinitialization services

Chapter 30. Using preinitialization services 465

 LTORG
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
 END ASMPIPI

HLLPIPI examples
Following is an example of a C subroutine called by ASMPIPI:

/*Module/File Name: EDCPIPI */
 /**/
 /* */
 /* HLLPIPI is called by an assembler program, ASMPIPI. */
 /* ASMPIPI uses the LE preinitialized program */
 /* subroutine call interface. HLLPIPI can be written */
 /* in COBOL, C, or PL/I. */
 /* */
 /**/
#include <stdio.h>
#include <string.h>
#include <time.h>
#pragma linkage(HLLPIPI, fetchable)
HLLPIPI ()
{
 printf ("C subroutine beginning\n");
 printf ("Called using LE PreInit call\n");
 printf ("Subroutine interface.\n");
 printf ("C subroutine returns to caller\n");
}

Following is an example of a COBOL program called by ASMPIPI:

CBL LIB,QUOTE
 *Module/File Name: IGZTPIPI

 * *
 * HLLPIPI is called by an assembler program, ASMPIPI. *
 * ASMPIPI uses the LE preinitialized program *
 * subroutine call interface. HLLPIPI can be written *
 * in COBOL, C, or PL/I. *
 * *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. HLLPIPI.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 PROCEDURE DIVISION.
 DISPLAY "COBOL subprogram beginning".
 DISPLAY "Called using LE Preinitialization ".
 DISPLAY "Call subroutine interface.".
 DISPLAY "COBOL subprogram returns to caller.".

 GOBACK.

Following is an example of a routine called by ASMPIPI:

 /*Module/File Name: IBMPIPI */
 /**/
 /* */
 /* HLLPIPI is called by an assembler program, ASMPIPI. */
 /* ASMPIPI uses the LE preinitialized program */
 /* subroutine call interface. HLLPIPI can be written */

Preinitialization services

466 z/OS: z/OS Language Environment Programming Guide

 /* in COBOL, C, or PL/I. */
 /* */
 /**/
 HLLPIPI: PROC OPTIONS(FETCHABLE);
 DCL RESULT FIXED BIN(31,0) INIT(0);
 PUT SKIP LIST
 ('HLLPIPI : PLI subroutine beginning.');
 PUT SKIP LIST
 ('HLLPIPI : Called LE PIPI Call ');
 PUT SKIP LIST
 ('HLLPIPI : Subroutine interface. ');
 PUT SKIP LIST
 ('HLLPIPI : PLI program returns to caller.');
 RETURN;
 END HLLPIPI;

Preinitialization services

Chapter 30. Using preinitialization services 467

Preinitialization services

468 z/OS: z/OS Language Environment Programming Guide

Chapter 31. Using nested enclaves

An enclave is a logical runtime structure that supports the execution of a collection of routines
(see Chapter 13, “Program management model,” on page 137 for a detailed description of Language
Environment enclaves).

Language Environment explicitly supports the execution of a single enclave within a Language
Environment process. However, by using the system services and language constructs described in this
topic, you can create an additional, or nested, enclave and initiate its execution within the same process.

The enclave that issues a call to system services or language constructs to create a nested enclave is
called the parent enclave. The nested enclave that is created is called the child enclave. The child must
be a main routine; a link to a subroutine by commands and language constructs is not supported under
Language Environment.

If a process contains nested enclaves, none or only one enclave can be running with POSIX(ON).

Creating child enclaves
In Language Environment, you can use the following methods to create a child enclave:

• Under CICS, the EXEC CICS LINK and EXEC CICS XCTL commands. For more information about these
commands, go to CICS Transaction Server for z/OS (www.ibm.com/docs/en/cics-ts).

• Under z/OS, the SVC LINK macro
• Under z/OS, the C system() function.
• Under z/OS, the PL/I FETCH and CALL to any of the following PL/I routines with PROC OPTIONS(MAIN)
specified:

– Enterprise PL/I for z/OS
– PL/I for MVS & VM
– OS PL/I Version 2
– OS PL/I Version 1 Release 5.1
– Relinked OS PL/I Version 1 Release 3.0 – 5.1

Such a routine, called a fetchable main in this section, can only be introduced by a FETCH and CALL from
a PL/I routine. COBOL cannot dynamically call a PL/I main and C cannot issue a fetch() against a PL/I
main. In addition, a fetchable main cannot be dynamically loaded using the CEELOAD macro.

The routine performing the FETCH and CALL must be compiled with the Enterprise PL/I for z/OS or the
PL/I for MVS & VM compiler, or be a relinked OS PL/I routine.

If the target routine of any of these commands is not written in a Language Environment-conforming HLL
or Language Environment-conforming assembler, no nested enclave is created.

XPLINK considerations
A nested enclave situation where the parent enclave is running in an XPLINK(OFF) environment and the
child enclave requires XPLINK(ON) is not supported. A parent enclave running XPLINK(ON) will support a
nested child enclave of either XPLINK(ON) or XPLINK(OFF). In the latter case, the application in the child
enclave will go through compatibility glue code when calling the C RTL (that is, the child enclave will run
with an environment with the XPLINK runtime option forced ON).

COBOL considerations
In a non-CICS environment, OS/VS COBOL programs are supported in a single enclave only.

Using nested enclaves

© Copyright IBM Corp. 1991, 2022 469

https://www.ibm.com/docs/en/cics-ts

PL/I considerations
PL/I MTF is supported in the initial enclave only. If PL/I MTF is found in a nested enclave, Language
Environment diagnoses it as an error. If a PL/I MTF application contains nested enclaves, the initial
enclave must contain a single task. Violation of this rule is not diagnosed and is likely to cause
unpredictable results.

Determining the behavior of child enclaves
If you want to create a child enclave, you need to consider the following factors:

• The language of the main routine in the child enclave
• The sources from which each type of child enclave gets runtime options
• The default condition handling behavior of each type of child enclave
• The setting of the TRAP runtime option in the parent and the child enclave

All of these interrelated factors affect the behavior, particularly the condition handling, of the created
enclave. The sections that follow describe how the child enclaves created by each method (EXEC CICS
LINK, EXEC CICS XCTL, SVC LINK, C system() function, and PL/I FETCH and CALL of a fetchable main)
will behave.

Creating child enclaves with EXEC CICS LINK or EXEC CICS XCTL
If your C, C++, COBOL, or PL/I application uses EXEC CICS commands, you must also link-edit the EXEC
CICS interface stub, DFHELII, with your application. To be link-edited with your application, DFHELII must
be available in the link-edit SYSLIB concatenation.

For more information about the EXEC CICS LINK and EXEC CICS XCTL commands, go to CICS Transaction
Server for z/OS (www.ibm.com/docs/en/cics-ts).

How runtime options affect child enclaves
The child enclave gets its runtime options from one of the sources discussed in “Specifying runtime
options under CICS” on page 352. The runtime options are completely independent of the creating
enclave, and can be set on an enclave-by-enclave basis.

Some of the methods for setting runtime options might slow down your transaction. Follow these
suggestions to improve performance:

• If you need to specify options in CEEUOPT specify only those options that are different from system
defaults.

• Before putting transactions into production, request a storage report (using the RPTSTG runtime option)
to minimize the number of GETMAINs and FREEMAINs required by the transactions.

• Ensure that VS COBOL II transactions are not link-edited with IGZETUN and IGZEOPT, which are no
longer supported and which cause an informational message to be logged. Logging this message for
every transaction inhibits system performance. The sample user condition handler CEEWUCHA can be
used to prevent this informational message from being logged. See the Enterprise COBOL for z/OS
library (www.ibm.com/support/docview.wss?uid=swg27036733). for more information.

How conditions arising in child enclaves are handled
This section describes the default condition handling for child enclaves created by EXEC CICS LINK or
EXEC CICS XCTL.

Condition handling varies depending on the source of the condition, and whether an EXEC CICS HANDLE
ABEND is active:

Using nested enclaves

470 z/OS: z/OS Language Environment Programming Guide

https://www.ibm.com/docs/en/cics-ts
https://www.ibm.com/docs/en/cics-ts
http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733

• If a Language Environment or CEEBXITA-initiated (generated by setting the CEEAUE_ABND field of
CEEBXITA) abend occurs, the CICS thread is terminated. This occurs even if a CICS HANDLE ABEND
is active, because CICS HANDLE ABEND does not gain control in the event of a Language Environment
abend.

• If a software condition of severity 2 or greater occurs, Language Environment condition handling takes
place. If the condition remains unhandled, the problem is not percolated to the parent enclave. The
CICS thread is terminated with an abend. These actions take place even if a CICS HANDLE ABEND is
active, because CICS HANDLE ABEND does not gain control in the event of a Language Environment
software condition.

• If a user abend or program check occurs, the following actions take place:

– If no EXEC CICS HANDLE ABEND is active, and TRAP(ON) is set in the child enclave, Language
Environment condition handling takes place. If the abend or program check remains unhandled, the
problem is not propagated to the parent enclave. The CICS thread is terminated with an abend.

– An active EXEC CICS HANDLE ABEND overrides the setting of TRAP. The action defined by the EXEC
CICS HANDLE ABEND takes place.

Creating child enclaves by calling a second main program
The behavior of a child enclave created by calling a second main program is determined by the language
of its main or initializing routine: C, C++, COBOL, Fortran, PL/I, or Language Environment-conforming
assembler (generated by use of the CEEENTRY and associated macros).

How runtime options affect child enclaves
Runtime options will be processed in the normal manner for enclaves created because of a call to a
second main, that is, programmer defaults present in the load module will be merged, options in the
command line equivalent will also be processed, as will options passed by the assembler user exit if
present.

How conditions arising in child enclaves are handled
The command-line equivalent is determined in the same manner as for a SVC LINK.

Creating child enclaves using SVC LINK
The behavior of a child enclave created by an SVC LINK is determined by the language of its main routine:
C, C++, COBOL, Fortran, PL/I, or Language Environment-conforming assembler (generated by use of the
CEEENTRY and associated macros).

When issuing a LINK to a routine, the high-order bit must be set on for the last word of the parameter list.
To do this, set VL=1 on the LINK assembler macro.

How runtime options affect child enclaves
Child enclaves created by an SVC LINK get runtime options differently, depending on the language that
the main routine of the child enclave is written in.

Child enclave has a C, C++, Fortran, PL/I, or Language Environment-conforming
assembler main routine
If the main routine of the child enclave is written in C, C++, Fortran, PL/I, or in Language Environment-
conforming assembler, the child enclave gets its runtime options through a merge from the usual sources
(see Chapter 9, “Using runtime options,” on page 99 for more information). Therefore, you can set runtime
options on an enclave-by-enclave basis.

Using nested enclaves

Chapter 31. Using nested enclaves 471

Child enclave has a COBOL main program
If the main program of the child enclave is written in COBOL, the child enclave inherits the runtime
options of the creating enclave. Therefore, you cannot set runtime options on an enclave-by-enclave
basis.

How conditions arising in child enclaves are handled
If a Language Environment or CEEBXITA-initiated (generated by setting the CEEAUE_ABND field of
CEEBXITA) abend occurs in a child enclave created by SVC LINK, regardless of the language of its main,
the entire process is terminated.

Condition handling in child enclaves created by SVC LINK varies, depending on the language of the child's
main routine, the setting of the TRAP runtime option in the parent and child enclaves, and the type of
condition. Refer to one of the following tables to see what happens when a condition remains unhandled
in a child enclave.

Table 86. Handling conditions in child enclaves

If the child enclave was created by: See:

An SVC LINK and has a C, C++, or Language Environment-conforming assembler
main routine

Table 87 on page
472

An SVC LINK and has a COBOL main program Table 88 on page
473

An SVC LINK and has a Fortran or PL/I main routine Table 89 on page
473

You should always run your applications with TRAP(ON) or your results might be unpredictable.

Child enclave has a C, C++, or Language Environment-conforming assembler main
routine
Table 87 on page 472 shows the unhandled condition behavior.

Table 87. Unhandled condition behavior in a C, C++, or assembler child enclave

Condition Parent enclave
TRAP(ON)

Child enclave
TRAP(ON)

Parent enclave
TRAP(ON)

Child enclave
TRAP(OFF)

Parent enclave
TRAP(OFF)

Child enclave
TRAP(ON)

Parent enclave
TRAP(OFF)

Child enclave
TRAP(OFF)

Unhandled condition severity 0
or 1

Resume child
enclave

Resume child
enclave

Resume child
enclave

Resume child
enclave

Unhandled condition severity 2
or above

Resume parent
enclave, and ignore
condition

Resume parent
enclave, and
ignore condition

Resume parent
enclave, and
ignore condition

Resume parent
enclave, and
ignore condition

Non-Language Environment
abend

Resume parent
enclave, and ignore
condition

Process
terminated with
original abend
code

Resume parent
enclave, and
ignore condition

Process
terminated with
original abend
code

Program check Resume parent
enclave, and ignore
condition

Process
terminated with
abend U4036,
Reason Code=2

Resume parent
enclave, and
ignore condition

Process
terminated with
abend S0Cx

Using nested enclaves

472 z/OS: z/OS Language Environment Programming Guide

Child enclave has a COBOL main program
Child enclaves created by SVC LINK that have a COBOL main program inherit the runtime options of the
parent enclave that created them. Therefore, the TRAP setting of the parent and child enclaves is always
the same.

Table 88. Unhandled condition behavior in a COBOL child enclave

Condition Parent enclave
TRAP(ON)

Child enclave
TRAP(ON)

Parent enclave
TRAP(OFF)

Child enclave
TRAP(OFF)

Unhandled condition severity 0 or 1 Resume child enclave Resume child enclave

Unhandled condition severity 2 or above Signal CEE391
(Severity=1, Message
Number=3361) in
parent enclave

Process terminated
with abend U4094
RC=40

Non-Language Environment abend Signal CEE391 in
parent enclave

Process terminated
with original abend
code

Program check Signal CEE391 in
parent enclave

Process terminated
with abend S0Cx

Child enclave has a Fortran or PL/I main routine
Table 89 on page 473 lists unhandled condition behavior.

Table 89. Unhandled condition behavior in a Fortran or PL/I child enclave

Condition Parent enclave
TRAP(ON)

Child enclave
TRAP(ON)

Parent enclave
TRAP(ON)

Child enclave
TRAP(OFF)

Parent enclave
TRAP(OFF)

Child enclave
TRAP(ON)

Parent enclave
TRAP(OFF)

Child enclave
TRAP(OFF)

Unhandled condition severity 0
or 1

Resume child
enclave

Resume child
enclave

Resume child
enclave

Resume child
enclave

Unhandled condition severity 2
or above

Signal CEE391
(Severity=1,
Message
Number=3361) in
parent enclave

Signal CEE391 in
parent enclave

Process
terminated with
abend U4094
RC=40

Process
terminated with
abend U4094
RC=40

Non-Language Environment
abend

Signal CEE391 in
parent enclave

Process
terminated with
original abend
code

Process
terminated with
abend U4094,
Reason Code=40

Process
terminated with
original abend
code

Program check Signal CEE391 in
parent enclave

Process
terminated with
abend U4036,
Reason Code=2

Process
terminated with
abend U4094
RC=40

Process
terminated with
abend S0Cx

Creating child enclaves using the C system() function
Child enclaves created by the C system() function get runtime options through a merge from the usual
sources. See Chapter 9, “Using runtime options,” on page 99 for more information. Therefore, you can

Using nested enclaves

Chapter 31. Using nested enclaves 473

set runtime options on an enclave-by-enclave basis. For more information about the system() function
when running with POSIX(ON). see system() - Execute a command in z/OS XL C/C++ Runtime
Library Reference.

When you perform a system() function to a COBOL program, in the form:

system("PGM=program_name,PARM='...'")

the runtime options specified in the PARM= portion of the system() function are ignored. However,
runtime options are merged from CEEDOPT, CEEUOPT, and the CEEAUE_A_OPTIONS from the assembler
user exit.

z/OS UNIX considerations
To create a nested enclave under z/OS UNIX, you must either:

• Be running with POSIX(OFF) and issue system(), or
• Be running with POSIX(ON) and have set the environment variables to signal that you want to establish

a nested enclave. You can use the __POSIX_SYSTEM environment variable to cause a system() to
establish a nested enclave instead of performing a spawn(). __POSIX_SYSTEM can be set to NO, No, or
no.

The system() function is not thread safe. It cannot be called simultaneously from more than one thread.
A multi-threaded application must ensure that no more than one system() call is ever outstanding from
the various threads. If this restriction is violated, unpredictable results may occur. In a multiple enclave
environment, the first enclave must be running with POSIX(ON) and all other nested enclaves must be
running with POSIX(OFF).

How conditions arising in child enclaves are handled
If a Language Environment- or CEEBXITA-initiated (generated by setting the CEEAUE_ABND field of
CEEBXITA) abend occurs in a child enclave created by a call to system(), the entire process is
terminated.

Depending on what the settings of the TRAP runtime option are in the parent and child enclave, the
following might cause the child enclave to terminate:

• Unhandled user abend
• Unhandled program check

TRAP(ON | OFF) effects for enclaves created by system()
Table 90 on page 474 describes the effects of TRAP(ON|OFF) for enclaves that are created by the
system() function.

Table 90. Unhandled condition behavior in a system()-created child enclave

Condition Parent enclave
TRAP(ON)

Child enclave
TRAP(ON)

Parent enclave
TRAP(ON)

Child enclave
TRAP(OFF)

Parent enclave
TRAP(OFF)

Child enclave
TRAP(ON)

Parent enclave
TRAP(OFF)

Child enclave
TRAP(OFF)

Unhandled condition severity 0
or 1

Resume child
enclave

Resume child
enclave

Resume child
enclave

Resume child
enclave

Unhandled condition severity 2
or above

Resume parent
enclave, and ignore
condition

Resume parent
enclave, and
ignore condition

Resume parent
enclave, and
ignore condition

Resume parent
enclave, and
ignore condition

Using nested enclaves

474 z/OS: z/OS Language Environment Programming Guide

Table 90. Unhandled condition behavior in a system()-created child enclave (continued)

Condition Parent enclave
TRAP(ON)

Child enclave
TRAP(ON)

Parent enclave
TRAP(ON)

Child enclave
TRAP(OFF)

Parent enclave
TRAP(OFF)

Child enclave
TRAP(ON)

Parent enclave
TRAP(OFF)

Child enclave
TRAP(OFF)

Non-Language Environment
abend

Resume parent
enclave, and ignore
condition

Process
terminated with
original abend
code

Resume parent
enclave, and
ignore condition

Process
terminated with
original abend
code

Program check Resume parent
enclave, and ignore
condition

Process
terminated with
abend U4036,
Reason Code=2

Resume parent
enclave, and
ignore condition

Process
terminated with
abend S0Cx

Creating child enclaves containing a PL/I fetchable main
Fetch and call considerations of PL/I fetchable mains are discussed in “Special fetch and call
considerations” on page 476.

How runtime options affect child enclaves
Child enclaves created when you issue a FETCH and CALL of a fetchable main get runtime options
through a merge from the usual sources (see Chapter 9, “Using runtime options,” on page 99 for more
information). Therefore, you can set runtime options on an enclave-by-enclave basis.

How conditions arising in child enclaves are handled
If a Language Environment or CEEBXITA-initiated (generated by setting the CEEAUE_ABND field of
CEEBXITA) abend occurs in a child enclave that contains a fetchable main, the entire process is
terminated.

Depending on what the settings of the TRAP runtime option are in the parent and child enclave, the
following might cause the child enclave to terminate:

• Unhandled user abend
• Unhandled program check

Table 91 on page 475 describes the unhandled condition behavior in a child enclave.

Table 91. Unhandled condition behavior in a child enclave that contains a PL/I fetchable main

Condition Parent enclave
TRAP(ON)

Child enclave
TRAP(ON)

Parent enclave
TRAP(ON)

Child enclave
TRAP(OFF)

Parent enclave
TRAP(OFF)

Child enclave
TRAP(ON)

Parent enclave
TRAP(OFF)

Child enclave
TRAP(OFF)

Unhandled condition severity 0
or 1

Resume child
enclave

Resume child
enclave

Resume child
enclave

Resume child
enclave

Unhandled condition severity 2
or above

Resume parent
enclave, and ignore
condition

Resume parent
enclave, and
ignore condition

Resume parent
enclave, and
ignore condition

Resume parent
enclave, and
ignore condition

Non-Language Environment
abend

Resume parent
enclave, and ignore
condition

Process
terminated with
original abend
code

Resume parent
enclave, and
ignore condition

Process
terminated with
original abend
code

Using nested enclaves

Chapter 31. Using nested enclaves 475

Table 91. Unhandled condition behavior in a child enclave that contains a PL/I fetchable main (continued)

Condition Parent enclave
TRAP(ON)

Child enclave
TRAP(ON)

Parent enclave
TRAP(ON)

Child enclave
TRAP(OFF)

Parent enclave
TRAP(OFF)

Child enclave
TRAP(ON)

Parent enclave
TRAP(OFF)

Child enclave
TRAP(OFF)

Program check Resume parent
enclave, and ignore
condition

Process
terminated with
abend U4036,
Reason code=2

Resume parent
enclave, and
ignore condition

Process
terminated with
abend S0Cx

Special fetch and call considerations
You should not recursively fetch and call the fetchable main from within the child enclave; results are
unpredictable if you do.

The load module that is the target of the FETCH and CALL is reentrant if all routines in the load module
are reentrant. (See Chapter 11, “Making your application reentrant,” on page 119 for more information on
reentrancy.)

Language Environment relies on the underlying operating system for the management of load module
attributes. In general, multiple calls of the same load module are supported for load modules that are any
of the following:

• Reentrant

It is recommended that your target load module be reentrant.
• Nonreentrant but serially reusable

You should ensure that the main procedure of a nonreentrant but serially reusable load module is
self-initializing. Results are unpredictable otherwise.

• Nonreentrant and non-serially reusable

If a nonreentrant and non-serially reusable load module is called multiple times, each new call brings
in a fresh copy of the load module. That is, there are two copies of the load module in storage: one
from FETCH and one from CALL. Even though there are two copies of the load module in storage, you
need only one PL/I RELEASE statement because upon return from the created enclave the load module
loaded by CALL is deleted by the operating system. You need only release the load module loaded by
FETCH.

Other nested enclave considerations
The following sections contain other information that you might need to know when you create nested
enclaves.

• The string that CEE3PRM and CEE3PR2 returns for each type of child enclave.
• The return and reason codes that are returned on termination of the child enclave.
• How the assembler user exit handles nested enclaves.
• Whether the message file is closed on return from a child enclave.
• z/OS UNIX considerations.
• AMODE considerations.

What the enclave returns from CEE3PRM and CEE3PR2
CEE3PRM and CEE3PR2 return to the calling routine the user parameter string that was specified at
program invocation. Only program arguments are returned.

Using nested enclaves

476 z/OS: z/OS Language Environment Programming Guide

See Table 92 on page 477 to determine whether a user parameter string was passed to your routine,
and where the user parameter string is found. This depends on the method you used to create the child
enclave, the language of the routine in the child enclave, and the PLIST, TARGET, or SYSTEM setting of
the main routine in the child enclave. If a user parameter string was passed to your routine, the user
parameter string is extracted from the command-line equivalent for your routine (shown in Table 93 on
page 477) and returned to you.

Note: Under CICS, CEE3PRM and CEE3PR2 always return a blank string.

Table 92. Determining the command-line equivalent

Language Option Suboption system() SVC LINK
FETCH/CALL of a PL/I
main

C #pragma
runopts(PLIST)

HOST, MVS PARM=, or the
parameter string from
the command string
passed to system()

Halfword length-
prefixed string pointed
to by R1

Not allowed

CICS, IMS, OS, or TSO Not available Not available Not allowed

C++ PLIST and TARGET
compiler options

Default PARM=, or the
parameter string from
the command string
passed to system()

Halfword length-
prefixed string pointed
to by R1

Not allowed

PLIST(OS) or
TARGET(IMS)

Not available Not available Not allowed

COBOL N/A N/A Null Not allowed

Fortran N/A Not available Halfword length-
prefixed string pointed
to by R1

Not allowed

PL/I SYSTEM compiler
option

MVS PARM=, or the
parameter string from
the command string
passed to system()

Halfword length-
prefixed string pointed
to by R1

User parameters passed
through CALL

CICS, IMS, TSO Not available Not available SYSTEM(CICS) not
supported; others not
available.

Language Environment-
conforming assembler

CEENTRY PLIST= HOST, MVS PARM=, or the
parameter string from
the command string
passed to system()

Halfword length-
prefixed string pointed
to by R1

Not allowed

CICS, IMS, OS, or TSO Not available Not available Not allowed

If Table 92 on page 477 indicates that a parameter string was passed to your routine at invocation, the
string is extracted from the command-line equivalent listed in the right-hand column of Table 93 on page
477. The command-line equivalent depends on the language of your routine and the runtime options
specified for it.

Table 93. Determining the order of runtime options and program arguments

Language of
routine Runtime options in effect?

Order of runtime options and program
arguments

C #pragma runopts(EXECOPS) runtime options / user parms

#pragma runopts(NOEXECOPS) entire string is user parms

C++ Compiled with EXECOPS (default) runtime options / user parms

Compiled with NOEXECOPS entire string is user parms

COBOL CBLOPTS(ON) user parms / runtime options

CBLOPTS(OFF) runtime options / user parms

Fortran runtime options / user parms

Using nested enclaves

Chapter 31. Using nested enclaves 477

Table 93. Determining the order of runtime options and program arguments (continued)

Language of
routine Runtime options in effect?

Order of runtime options and program
arguments

PL/I PROC OPTIONS(NOEXECOPS) or
SYSTEM(CICS | IMS | TSO) is not
specified.

runtime options / user parms

PROC OPTIONS(NOEXECOPS) is
specified, or NOEXECOPS is not
specified but SYSTEM (CICS | IMS |
TSO) is. See “PL/I main procedure
parameter passing considerations” on
page 512 for more information on the
SYSTEM compile option.

entire string is user parms

Language
Environment-
conforming
assembler

CEENTRY EXECOPS=ON runtime options / user parms

CEENTRY EXECOPS=OFF entire string is user parms

Finding the return and reason code from the enclave
The following list tells where to look for the return and reason codes that are returned to the parent
enclave when a child enclaves terminates:

• EXEC CICS LINK or EXEC CICS XCTL

If the CICS thread was not terminated, the return code is placed in the optional RESP2 field of EXEC
CICS LINK or EXEC CICS XCTL. The reason code is discarded.

• SVC LINK to a child enclave with a main routine written in any Language Environment-conforming
language

If the process was not terminated, the return code is reported in R15. (See “Managing return codes in
Language Environment” on page 130 for more information.) The reason code is discarded.

• C's system() function

If the target command or program of system() cannot be started, “-1” is returned as the function
value of system(). Otherwise, the return code of the child enclave is reported as the function value
of system(), and the reason code is discarded. (See z/OS XL C/C++ Programming Guide for more
information about the system() function.)

• FETCH and CALL of a fetchable main

Normally, the enclave return code and reason code are discarded when control returns to a parent
enclave from a child enclave. However, in the parent enclave, you can specify the OPTIONS(ASSEMBLER
RETCODE) option of the entry constant for the main procedure of the child enclave. This causes the
enclave return code of the child enclave to be saved in R15 as the PL/I return code. You can then
interrogate that value by using the PLIRETV built-in function in the parent enclave.

Assembler user exit
An assembler user exit (CEEBXITA) is driven for enclave initialization and enclave termination regardless
of whether the enclave is the first enclave created in the process or a nested enclave. The assembler user
exit differentiates between first and nested enclave initialization.

Message file
The message file is not closed when control returns from a child enclave.

Using nested enclaves

478 z/OS: z/OS Language Environment Programming Guide

COBOL multithreading considerations
When COBOL is run in a multithread environment or a PL/I multitasking environment, a nested enclave
cannot be created. An attempt to create a nested enclave results in a severity 3 condition being
generated.

C/C++ multithreading considerations
When C/C++ is running in a multithread environment, creating nested enclaves is not supported. Violation
of this rule is likely to cause unpredictable results.

z/OS UNIX considerations
The following restrictions must be considered when running with POSIX(OFF) or POSIX(ON):

• In Language Environment a process can have only one enclave that is running with POSIX(ON), and that
enclave must be the first enclave if that process contains multiple enclaves. All nested enclaves must
be enclaves with POSIX(OFF).

• C exec() can only be issued from a single-thread enclave.

Any violations of the above restrictions result in a severity 3 condition being generated.

AMODE considerations
In a non-CICS environment ALL31 should have the same setting for all enclaves within a process. You
cannot invoke a nested enclave that requires ALL31(OFF) from an enclave running with ALL31(ON).

Using nested enclaves

Chapter 31. Using nested enclaves 479

Using nested enclaves

480 z/OS: z/OS Language Environment Programming Guide

Chapter 32. Restrictions under SRB mode

Restrictions exist when running a routine in service request block (SRB) mode. For instance, SRB routines
cannot issue any supervisor calls (SVCs), except for abends.

Language Environment routines that invoke SVCs implicitly cannot be invoked successfully in SRB mode.
Some of those service routines include the following routines:

• Load a Module
• Delete a Module
• Get Storage
• Free Storage
• Handle Exception
• Process Message

© Copyright IBM Corp. 1991, 2022 481

482 z/OS: z/OS Language Environment Programming Guide

Appendix A. Prelinking an application

This topic describes how to prelink your programs under Language Environment. Unless otherwise
indicated, the prelinking process applies to C, C++, COBOL and Enterprise PL/I for z/OS.

The Language Environment prelinker performs mapping of names, manages writable static areas, collects
initialization information, and combines the object modules that form an application into a single object
module that can be link-edited or loaded for execution.

Note:

The prelink step in creating an executable program can be eliminated. The binder is able to directly
receive the output of the C, C++, COBOL, and Enterprise PL/I for z/OS compilers, thus eliminating the
requirement for the prelink step. The advantage of using the binder is that the resulting executable
program is fully rebindable.

IBM intends to stabilize the prelinker. The prelinker was designed to process long names and support
constructed reentrancy in earlier versions of the C, C++, COBOL, and PL/I compilers, and the Language
Environment-conforming assembler, on the MVS and OS/390 operating systems. The prelinker provides
output that is compatible with the linkage editor, shipped with the program management binder.

The program management binder is designed to include the function of the prelinker, the linkage editor,
the loader, and a number of APIs to manipulate the program object. Its functionality delivers a high level
of compatibility with the prelinker and linkage editor, but provides additional functionality in some areas.

Further enhancements will not be made to the prelinker utility. Enhancements will be made only to
the program management binder, to position the program management binder as the strategic tool for
program object manipulation.

For information on how to use the binder, see z/OS MVS Program Management: User's Guide and Reference
and z/OS MVS Program Management: Advanced Facilities.

For information on how to build and use DLLs, see Chapter 4, “Building and using dynamic link libraries
(DLLs),” on page 35.

Which programs need to be prelinked
The prelink step is required when an executable program is to reside in a PDS, or if it utilizes the system
programming facilities of C. When the executable is to reside in a PDSE or HFS, the prelink step may be
eliminated since the binder can handle the output of the C, C++, COBOL, and Enterprise PL/I for z/OS
compilers. If the link-edit process is performed by the linkage editor then the prelink step is required.

You should not use the pre-linker with XPLINK programs because XPLINK programs require the GOFF
binder format and GOFF is not supported by the pre-linker. Also, the z/OS XL C/C++ compiler creates
GOFF object code when the XPLINK compiler option is specified. When bound, the objects must reside in
PDSEs or the HFS.

The following list identifies programs which may need to be prelinked before the link-edit step of creating
an executable program.

• Modules which must be processed with the linkage editor rather than the binder
• Modules which must be stored in a PDS rather than in a PDSE
• Programs which utilize the system programming facilities of C.
• Non-XPLINK C programs compiled with any of the following compiler options:

– RENT
– LONGNAME
– DLL

Prelinking applications

© Copyright IBM Corp. 1991, 2022 483

• Non-XPLINK C++ programs
• COBOL programs compiled with any of the following compiler options:

– DLL
– PGMNAME(LONGMIXED)
– PGMNAME(LONGUPPER)

• COBOL programs that use object-oriented extensions
• COBOL programs containing class definitions or the INVOKE statement
• Enterprise PL/I for z/OS programs
• Programs compiled to run under z/OS UNIX

Only C object modules that do not refer to writable static, do not contain the LONGNAME option, and
do not contain DLL code can be processed by the linkage editor. You do not need to prelink naturally
reentrant programs. For more information, see “Making your C/C++ program reentrant” on page 119.

If you need to link-edit together object modules and load modules, prelink the object modules through
the prelinker in a single step, and then link-edit with the load modules in a separate link-edit step. This is
because the prelinking process can only process object modules.

What the prelinker does
The prelinker performs the following functions:

• Collects information for runtime initialization, including data initialization for C/C++, constructor/
destructor calls for static objects in C++, and DLL initialization information.

• For C object modules compiled with RENT, C++ programs, Enterprise PL/I for z/OS programs, or COBOL
programs with OO extensions, the prelinker:

– Combines writable static initialization information
– Assigns relative offsets to objects in writable static storage
– Removes writable static name and relocation information

• For programs containing longnames, such as C programs compiled with LONGNAME, C++ programs,
Enterprise PL/I for z/OS programs, and COBOL programs compiled with PGMNAME(LONGMIXED) or
PGMNAME(LONGUPPER), the prelinker maps LONGNAME option to SHORTNAME option on output.

• For programs that use DLLs, the prelinker:

– Generates a function descriptor in writable static for each DLL referenced function
– Generates a variable descriptor for each DLL referenced variable
– Generates an IMPORT control statement for each exported function and variable
– Generates internal information for the load module that describes symbols that are exported to and

imported from other load modules
– Combines static DLL initialization information
– Uses longnames to resolve exported and imported symbols

Prelinking process
Input to the prelinker includes the following:

• Primary input: those data sets and DLL definition sidedecks that are allocated to SYSIN. If you are
creating an application that imports symbols from DLLs, you must provide the definition sidedeck for
each DLL in SYSIN.

• Secondary input: input that is processed from SYSLIB, which contains object module libraries that are
used for automatic library calls.

Prelinking applications

484 z/OS: z/OS Language Environment Programming Guide

• Input that is specified in one or more INCLUDE control statements that are processed as primary and
secondary input.

An attempt is made to read the DD or member of the DD (whichever is specified). This request is
resolved if the read is successful.

If you are exporting symbols, the prelinker creates a definition sidedeck. After the prelinker processes all
its input, it puts the prelinked output object module into SYSMOD. If a definition sidedeck was generated,
it is put into SYSDEFSD and is a sequential data set or a PDS member. The linking process then begins
when the linkage editor takes its primary input from SYSLIN, which refers to the prelinked object module
data set.

The IBM-supplied cataloged procedures and REXX EXECs for C/C++ use the DLL versions of the IBM-
supplied class libraries by default; the IBM-supplied class libraries definition sidedeck data set, SCLBSID,
is included in the SYSIN concatenation.

If you are statically linking the relevant C/C++ class library object code, you must:

• Override the PLKED.SYSLIB concatenation to include the SCLBCPP data set, and
• Override the PLKED.SYSIN concatenation to exclude the SCLBSID data set.

Figure 109 on page 486 shows an overview of the basic prelinking process.

Prelinking applications

Appendix A. Prelinking an application 485

Figure 109. Basic prelinker and linkage editor processing

References to currently unresolved symbols (unresolved external
references)

If, during the automatic library call, a symbol is not the name of an existing member of an object data
set, the symbol can subsequently be defined if a function or variable with the same name is encountered.
Unresolved requests generate error or warning messages to the prelinker map.

Prelinking applications

486 z/OS: z/OS Language Environment Programming Guide

Writable static references that are not resolved by the prelinker cannot be resolved later. Only the
prelinker can be used to resolve writable static. The output object module of the prelinker should not be
used as input to another prelink.

If you are building an application that imports symbols from a DLL, you must include the definition
sidedeck produced by the prelinker when the DLL was built as input to the prelink step of your application.

If the symbol is an L-name that was not resolved by automatic library call and for which a RENAME
statement with the SEARCH option exists, the symbol is resolved under the S-name on the RENAME
statement by automatic library call. See “RENAME control statement” on page 491 for a complete
description of the RENAME control statement.

Unresolved references or undefined writable static objects often result if the prelinker is given input
object modules produced with a mixture of RENT/NORENT or LONGNAME/NOLONGNAME or DLL options.
For more information about avoiding unresolved references in a DLL or in an application that imports
symbols from a DLL, see z/OS XL C/C++ Programming Guide.

Processing the prelinker automatic library call
The following hierarchy is used to resolve a referenced and currently undefined symbol. In all cases, the
symbol is only defined if it is contained in the input from this process or in other future input:

• The undefined name is an S-name, for example SNAME.

If the NONCAL command option is in effect, the partitioned data sets concatenated to SYSLIB are
searched in order as follows:

– If the data set contains a C370LIB-directory created using the Object Library Utility, and the
C370LIB-directory shows that a defined symbol by that name exists, the member of the PDS
containing that symbol is read.

– If the data set does not contain a C370LIB-directory created using the Object Library Utility and the
reference is not to static external data, the member or alias, with the same name as SNAME, is read.

• The undefined name is an L-name.

If the NONCAL command option is in effect, the partitioned data sets concatenated to SYSLIB are
searched. If the data set contains a C370LIB-directory created using the Object Library Utility, and the
C370LIB-directory shows that a defined symbol by that name exists, the member of the PDS indicated
as containing that symbol is read.

For more information about the Object Library Utility, see Object library utility in z/OS XL C/C++ User's
Guide or Appendix E, “Object library utility,” on page 515.

Language Environment prelinker map
The Language Environment prelinker produces a listing file called the prelinker map when you use the
MAP prelinker option (which is the default). As the following example shows, the prelinker map contains
several individual sections that are only generated if they are applicable.

==
| Prelinker Map 1 |
| |
| CPLINK:5647A01 V2 R9 M00 IBM Language Environment 2000/01/20 13:45:16|
==

Command Options. : NONCAL NOMEMORY ER DUP MAP
 : NOOMVS NOUPCASE DYNAM

==
| Object Resolution Warnings 2 |
==

WARNING EDC4015: Unresolved references are detected:
CEESTART @@TRGLOR CEESG003

Prelinking applications

Appendix A. Prelinking an application 487

==
| File Map 3 |
==

*ORIGIN FILE ID FILE NAME

 P 00001 DD:SYSIN
 IN 00002 *** DESCRIPTORS ***

*ORIGIN: P=primary input PI=primary INCLUDE SI=secondary INCLUDE
 A=automatic call R=RENAME card L=C Library
 IN=internal

==
| Writable Static Map 4 |
==

 OFFSET LENGTH FILE ID INPUT NAME

 0 4 00001 this_int_is_in_writable_static
 8 10 00002 <year>

==
| Load Module Map 5 |
==

MODULE ID MODULE NAME

 00001 EXPONLY

==
| Import Symbol Map 6 |
==

*TYPE FILE ID MODULE ID NAME

 D 00001 00001 year

*TYPE: D=imported data C=imported code
==
| Export Symbol Map 7 |
==

*TYPE FILE ID NAME

 C 00001 get_year
 C 00001 next_year
 D 00001 this_int_is_in_writable_static
 C 00001 Name_Collision_In_First_Eight
 C 00001 Name_Collision_In_First8

*TYPE: D=exported data C=exported code

==
| ESD Map of Defined and Long Names 8 |
==

 OUTPUT
*REASON FILE ID ESD NAME INPUT NAME

 P CEESTART CEESTART
 D 00001 @ST00002 Name_Collision_In_First_Eight
 D 00001 @ST00001 Name_Collision_In_First8
 D 00001 NEXT@YEA next_year
 D 00001 GET@YEAR get_year
 D 00001 THIS@INT this_int_not_in_writable_static
 P @@TRGLOR @@TRGLOR
 P CEESG003 CEESG003

*REASON: P=#pragma or reserved S=matches short name R=RENAME card
 L=C Library U=UPCASE option D=Default

============ E N D O F P R E - L I N K A G E M A P =============

The numbers in the following text correspond to the numbers shown in the map.

Prelinking applications

488 z/OS: z/OS Language Environment Programming Guide

 1 Heading
The heading is always generated and contains the product number, the library release number, the
library version number, the date and the time the prelink step began, followed by a list of the prelinker
options in effect for the step.

 2 Object Resolution Warnings
This section is generated if objects remained undefined at the end of the prelink step or if duplicate
objects were detected during the step. The names of the applicable objects are listed.

 3 File Map
This section lists the object modules that were included in input. An object module consisting only of
RENAME control statements, for example, is not shown. Also provided in this section are source origin
(*ORIGIN), name (FILE NAME), and identifier (FILE ID) information. *ORIGIN indicates that the
object module came from primary input because of:

• An INCLUDE control statement in primary or secondary input.
• A RENAME control statement.
• The resolution of L-name library references.
• The object module was internal and self-generated by the prelink step.

The FILE ID can be found in other sections and is used as a cross-reference to the object module.

The FILE NAME can be either the data set name and, if applicable, the member name, or the ddname
and, if applicable, the member name.

If you are prelinking an application that imports variables or functions from a DLL, the variable
descriptors and function descriptors are defined in a file called *** DESCRIPTORS ***. This file has
an origin of internal.

 4 Writable Static Map
This section is generated if an object module was encountered that contains defined static external
data. This area also contains variable descriptors for any imported variables and, if required, function
descriptors. This section lists the names of such objects, their lengths, their relative offset within the
writable static area, and a FILE ID for the file containing the object's definition.

Imported variables and DLL-referenced functions have angular brackets (<>) around their names in
this section.

 5 Load Module Map
This section is generated if the application imports symbols from other load modules. This section
lists the names of the load modules.

 6 Import Symbol Map
This section lists the symbols that are imported from other load modules. These otherwise unresolved
DLL references are resolved through IMPORT control statements. It describes the type of symbol,
that is, D (variable) or C (function). It also lists the file ID of the object module containing the
corresponding IMPORT control statements, the module ID of the load module on that control
statement, and the symbol name.

A DLL application would generate this section.

 7 Export Symbol Map
This section lists the symbols generated by an object module that exports symbols. It describes the
type of symbol, that is, D (variable) or C (function). It also lists the file ID of the object where the
symbol is defined and the symbol name. Only externally defined data objects in writable static or
externally defined functions can be exported.

Code that is compiled with the C, C++, or COBOL EXPORTALL compiler option or C/C++ code
containing the #pragma export directive generates an object module that exports symbols.

Note: The export symbol map will NOT be produced if the NODYNAM option is in effect.

 8 ESD Map of Defined and Longnames
This section lists the names of external symbols that are not in writable static. It also shows a
mapping of input L-names to output S-names.

Prelinking applications

Appendix A. Prelinking an application 489

If the object is defined, the FILE ID indicates the file that contains the definition. Otherwise, this
field is left blank. For any name, the input name and output S-name are listed. If the input name is an
L-name, the rule used to map the L-name to the S-name is applied. If the name is not an L-name, this
field is left blank.

Control statement processing
The only control statements processed by the prelinker are IMPORT, INCLUDE, LIBRARY, and RENAME.
The remaining control statements are left unchanged until the link-edit step.

The control statements can be placed in the input stream or stored in a permanent data set.

Note: If you cannot fit all of the information on one control statement, you can use one or more
continuations. The L-name, for example, can be split across more than one statement. Continuations
are enabled by placing a nonblank character in column 72 of the statement that is to be continued. They
must begin in column 16 of the next statement.

IMPORT control statement
The prelinker processes IMPORT statements, but does not pass them on to the link step. The IMPORT
control statement has the following syntax:

IMPORT CODE dll-name function

DATA dll-name variable

dll-name
The name or alias of the load module for the DLL. The maximum length of an alias is 8 characters.
The dll-name can also be a z/OS UNIX name; it must be enclosed in apostrophes if special characters,
such as apostrophes or blanks, appear in the dll-name.

variable
An exported variable name; it is a mixed-case longname. Use a nonblank character in column 72 of
the card to indicate a continuation and begin the next line in column 16.

function
An exported function name; it is a mixed-case longname. Use a nonblank character in column 72 of
the card to indicate a continuation and begin the next line in column 16.

INCLUDE control statement
The INCLUDE control statement has the following syntax:

INCLUDE filename
,

ddname (member)

filename
The name of the file to be included.

ddname
A ddname associated with a file to be included.

member
The member of the DD to be included.

The prelinker processes INCLUDE statements like the DFSMS linkage editor does with the following
exceptions:

Prelinking applications

490 z/OS: z/OS Language Environment Programming Guide

• INCLUDEs of identical member names are not allowed.
• INCLUDEs of both a ddname and a member from the same ddname are not allowed. The prelinker

ignores the second INCLUDE.

LIBRARY control statement
The LIBRARY control statement has the following syntax:

LIBRARY name (

member

) (external)

name
The ddname defining a library. The ddname can point to an archive file in the z/OS UNIX file system
if the OE option is specified, or a PDS object library. The PDS object library can be a concatenation of
one or more libraries created with or without the Object Library Utility.

member
The name or alias of a member of the specified library. Because both S-names and L-names can be
specified, case distinction is significant.

Automatic library calls search the library and each subsequent library in the concatenation, if
necessary, for the name instead of searching the primary input.

If you specify the OMVS or OE prelinker option, the only form of the LIBRARY card accepted by the
prelinker is LIBRARY ddname, which specifies a library to search immediately for autocall.

external
An external reference that could be unresolved after primary input processing. This external reference
will not be resolved by an automatic library call. Because both S-names and L-names can be
specified, case distinction is significant.

The LIBRARY control statement is removed and not placed in the prelinker output object module; the
system linkage editor does not see the LIBRARY control statement.

RENAME control statement
The RENAME control statement has the following syntax:

RENAME L-name S-name

SEARCH

L-name
The name of the input L-name to be renamed on output. All occurrences of this L-name are renamed.

S-name
The name of the output S-name to which the L-name will be changed. This name can be at most 8
characters and case is respected.

SEARCH
An optional parameter specifying that if the S-name is undefined, the prelinker searches by an
automatic library call for the definition of the S-name. SEARCH is not supported under z/OS UNIX.

The RENAME control statement is processed by the prelinker and can be used for several purposes:

• To explicitly override the default name given to an L-name when an L-name is mapped to an S-name.

You can explicitly control the names presented to the system linkage editor so that external variable
and function names are consistent from one linkage editor run to the next. This consistency makes it

Prelinking applications

Appendix A. Prelinking an application 491

easier to recognize control section and label names that appear in system dumps and linkage editor
listings. Another mapping rule (described in “Mapping L-Names to S-Names” on page 492) can provide
the suitable name, but if you need to replace the linkage editor control section, you need to maintain
consistent names.

• To explicitly bind an L-name to an S-name. This binding might be necessary when communicating
with objects from other language and assembler processors, because these processors generate only
S-names.

• A RENAME control statement cannot be used to rename a writable static object because its name is not
contained in the output from the prelinker.

RENAME control statements can be placed before, between, or after other control statements or object
modules. An object module can contain only RENAME statements. Also, RENAME statements can be
placed in input that is included because of other RENAME statements.

Usage notes
• A RENAME statement is ignored if the L-name is not encountered in the input.
• A RENAME statement for an L-name is valid provided all of the following are true:

– The L-name was not already mapped because of a rule that preceded the RENAME statement rule in
the hierarchy described in “Mapping L-Names to S-Names” on page 492.

– The L-name was not already mapped because of a previous valid RENAME statement for the L-name.
– The S-name is not itself an L-name. This rule holds true even if the S-name has its own RENAME

statement.
– A previous valid RENAME statement did not rename another L-name to the same S-name.
– Either the L-name or the S-name is not defined. Either the L-name or the S-name can be defined, but

not both. This rule holds true even if the S-name has its own RENAME statement.

Mapping L-Names to S-Names
The output object module of the prelinker can be used as input to a system linkage editor.

Because system linkage editors accept only S-names, the Language Environment prelinker maps L-names
to S-names on output. S-names are not changed. L-names can be up to 160 (COBOL for OS/390 & VM and
COBOL for MVS & VM), 255 (z/OS XL C/C++), or 1024 (z/OS XL C++) characters in length; truncation of the
L-names to the 8-character S-name limit is therefore not sufficient because collisions can occur.

The Language Environment prelinker maps a given L-name to a S-name according to the following
hierarchy:

1. C/C++ only: If any occurrence of the L-name is a reserved runtime name, or was caused by a #pragma
map or #pragma CSECT directive, then that same name is chosen for all occurrences of the name.
This name must not be changed, even if a RENAME control statement for the name exists. For
information on the RENAME control statement, see “RENAME control statement” on page 491.

2. If the L-name was found to have a corresponding S-name, the same name is chosen. For example,
DOTOTALS is coded in both a C and assembler program. This name must not be changed, even if a
RENAME statement for the name exists. This rule binds the L-name to its S-name.

3. If a valid RENAME statement for the L-name is present, the S-name specified on the RENAME
statement is chosen.

4. If the name corresponds to a Language Environment function or library object for which you did not
supply a replacement, the name chosen is the truncated, uppercased version of the L-name library
name (with _ mapped to @).

The S-name is not chosen, if either:

• A valid RENAME statement renames another L-name to this S-name. For example, the RENAME
statement RENAME mybigname PRINTF would make the library printf() function unavailable if
mybigname is found in input.

Prelinking applications

492 z/OS: z/OS Language Environment Programming Guide

• Another L-name is found to have the same name as the S-name. For example, explicitly coding
and referencing SPRINTF in the C source program would make the library sprintf() function
unavailable.

Avoid such practices to ensure that the appropriate Language Environment function is chosen.
5. If the UPCASE option is specified, names that are 8 characters or fewer are changed to uppercase

(with _ mapped to @). Names that begin with IBM or CEE will be changed to IB$, and CE$,
respectively. Because of this rule, two different names can map to the same name. You should
therefore use the UPCASE option carefully. A warning message is issued if a collision is found, but the
names are still mapped.

6. If none of the above rules apply, a default mapping is performed. This mapping is the same as the one
the compiler option NOLONGNAME uses for external names, taking collisions into account. That is, the
name is truncated to 8 characters and changed to uppercase (with _ mapped to @). Names that begin
with IBM or CEE will be changed to IB$ and CE$, respectively. If this name is the same as the original
name, it is always chosen. This name is also chosen if a name collision does not occur. A name collision
occurs if either

• The S-name has already been seen in any input, that is, the name is not new.
• After applying this default mapping, the same name is generated for at least two, previously

unmapped, names.

If a collision occurs, a unique name is generated for the output name. For example, the name
@ST00033 is manufactured.

z/OS XL C/C++: A program that is compiled with the NOLONGNAME compiler option and link-edited,
except for collisions, library renames, and user renames, presents the linkage editor with the same names
as when the program is compiled with the LONGNAME option and processed by the prelinker.

Starting the prelinker under batch and TSO/E
The following topics describe how to start the prelinker under batch and TSO/E.

Under batch
The prelinker is invoked by the following cataloged procedures:
CBCCL

C++ compile, prelink, and link
CBCCLG

C++ compile, prelink, link, and run
CBCL

C++ prelink and link
CBCLG

C++ prelink, link, and run
EDCPL

C prelink and link
EDCCPLG

C compile, prelink, link, and run.
IGYWCPL

COBOL compile, prelink, link, and run
IGYWPL

COBOL prelink and link
IGYWCPG

COBOL compile, prelink, load, and run
IBMZCPG

Enterprise PL/I for z/OS compile, prelink, and load/run using the loader

Prelinking applications

Appendix A. Prelinking an application 493

IBMZCPL
Enterprise PL/I for z/OS compile, prelink, and link

IBMZCPLG
Enterprise PL/I for z/OS compile, prelink, link, and run

For more information about using these procedures, see z/OS XL C/C++ User's Guide, the appropriate
version of the COBOL programming guide in the COBOL library at Enterprise COBOL for z/OS library
(www.ibm.com/support/docview.wss?uid=swg27036733), or Enterprise PL/I for z/OS Programming Guide.

Under TSO/E
The Language Environment prelinker is started under TSO/E through an IBM-supplied CLIST called
CPLINK, which invokes the prelinker and creates an executable module. If you want to create a reentrant
C/C++ load module, link-edit C/C++ or COBOL object modules using long names, or create a DLL
application, you must use CPLINK instead of the TSO/E LINK command.

The CPLINK command has the following syntax:

CPLINK OBJ (

'

,

object '

)

POPT (

'

,

options '

)

PLIB (

'

,

libname '

)

LOPT (

'

,

options '

)

LIB (

'

,

libname '

)

LOAD (

'

,

object '

)

OBJ
Specifies an input data set name. This is a required parameter. Each input data set must be one of the
following:

Prelinking applications

494 z/OS: z/OS Language Environment Programming Guide

http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733

• A C object module compiled with the RENT or LONGNAME compiler options
• A C object module that has no static external data
• A COBOL object module

POPT
Specifies a string of prelink options. The prelinker options available for CPLINK are the same as for
batch. For example, if you want the MAP option to be used by the prelinker, specify the following:

CPLINK OBJ('dsname') POPT('MAP')...

When the prelink MAP option is specified (as opposed to the link option MAP), the prelinker produces
a file showing the mapping of static external data. This map shows name, length, and address
information. Any unresolved references or duplicate symbols during the prelink step are displayed in
the map.

PLIB
Specifies the library names used by the prelinker for the automatic library call facility.

LOPT
Specifies a string of linkage editor options. For example, if you want the prelink utility to use the MAP
option and the linkage editor to use the NOMAP option, use the following CLIST command:

CPLINK OBJ('dsname') POPT('MAP') LOPT('NOMAP...')

LIB
Specifies any additional library or libraries used by the TSO/E LINK command to resolve external
references. These libraries are appended to the default language library functions.

LOAD
Specifies an output data set name. If you do not specify an output data set name, a name is
generated for you. The name generated by the CLIST consists of your user prefix followed by
CPOBJ.LOAD(TEMPNAME).

Examples
In the following example, your user prefix is RYAN, and the data set containing the input object module
is a partitioned data set called RYAN.C.OBJ(INCCOMM). This example will generate a prelink listing
without using the automatic call library. After the call, the load module is placed in a partitioned data set
called RYAN.CPOBJ.LOAD(TEMPNAME) and the prelink listing is placed in a sequential data set called
RYAN.CPOBJ.RMAP.

CPLINK OBJ('C.OBJ(INCCOMM)')

In the following examples, assume that your user prefix is DAVE, and the data set containing the input
object module is a partitioned data set called DAVE.C.OBJ(INCPYRL). This example will not generate a
prelink listing, and the automatic call facility will use the library HOOVER.LIB.SUB. The load module is
placed in the partitioned data set DAVE.TBD.LOAD(MOD).

//*---
//* Prelink and link 'DAVE.C.OBJ(INCPYRL)'
//*---
//P0014001 EXEC EDCPL,
// INFILE='DAVE.C.OBJ(INCPYRL)',
// OUTFILE='DAVE.TBD.LOAD(MOD),DISP=SHR',
// PPARM='NOMAP,NONCAL',
// PLIB='HOOVER.LIB.SUB',
// LPARM='AMODE(31),RMODE(ANY) '
//*--

Figure 110. Example of prelinking under batch

Prelinking applications

Appendix A. Prelinking an application 495

CPLINK OBJ('''DAVE.C.OBJ(INCPYRL)''')
 POPT('NOMAP,NONCAL')
 PLIB('''HOOVER.LIB.SUB''')
 LOAD('TBD.LOAD(MOD)')

Figure 111. Example of prelinking under TSO/E

Using the CXXBIND EXEC under TSO/E
For a description of using the CXXBIND EXEC to build a C++ executable program without using the prelink
step, see Binding under z/OS UNIX in z/OS XL C/C++ User's Guide.

Using the CXXMOD EXEC under TSO/E
This topic describes how to prelink and link your C++ or COBOL program by invoking the CXXMOD EXEC.
This exec creates an executable module. The syntax for the CXXMOD EXEC is:

Prelinking applications

496 z/OS: z/OS Language Environment Programming Guide

CXXMOD OBJ (

,

object

' object '

)

POPT (

,

prelink-option)

PLIB (

,

libname

' libname '

)

LOPT (

,

link-option)

LIB (

,

libname

' libname '

)

PMOD (prelink-object

' prelink-object '

)

LOAD (module

' module '

)

PMAP (prelink-map

' prelink-map '

) LIST (listing

' listing '

)

PDEF (prelink-object

' prelink-object '

)

OBJ
You must always specify the input data set names on the OBJ keyword parameter. Each input data set
must be a C/C++, COBOL, or assembler object module.

If the high-level qualifier of an object data set is not the same as your user prefix, you must use the
fully qualified name of the data set and place single quotation marks around the entire name.

POPT
Prelinker options can be specified using the POPT keyword parameter. If the MAP prelink option is
specified, a prelink map will be written to the data set specified under the PMAP keyword parameter.
For more details on generating a prelink map, see the description of the PMAP option.

Prelinking applications

Appendix A. Prelinking an application 497

LOPT
Linkage editor options can be specified using the LOPT keyword parameter. For details on how to
generate a linkage editor listing, see the option LIST.

PLIB
The library names that are to be used by the automatic call library facility of the prelinker must
be specified on the PLIB keyword parameter. The default library used is the C++ base library,
CEE.SCEECPP.

The default library names are not added if library names are specified with the PLIB keyword
parameter.

If the high-level qualifier of a library data set is not the same as your user prefix, you must use the
fully qualified name of the data set and place single quotation marks around the entire name.

LIB
If you want to specify libraries for the link-edit step to resolve external references, use the LIB
keyword parameter. The default library used is the Language Environment library, CEE.SCEELKED.

The default library names are not added if library names are specified with the LIB keyword
parameter.

If the high-level qualifier of a library data set is not the same as your user prefix, you must use the
fully qualified name of the data set and place single quotation marks around the entire name.

PMOD
If you want to keep the output prelinked object module, specify the data set it should be placed in
using the PMOD keyword parameter. The default action is to create a temporary data set and erase it
after the link-edit is complete.

If the high-level qualifier of the output prelinked object module is not the same as your user prefix,
you must use the fully qualified name of the data set and place single quotation marks around the
entire name.

LOAD
To specify where the resultant load module should be placed, use the LOAD keyword parameter.

If the high-level qualifier of the load module is not the same as your user prefix, you must use the fully
qualified name of the data set and place single quotation marks around the entire name.

LIST
To specify where the linkage editor listing should be placed, use the LIST keyword parameter.

If the high-level qualifier of the linkage editor listing is not the same as your user prefix, you must use
the fully qualified name of the data set and place single quotation marks around the entire name.

PMAP
To specify where the prelinker map should be placed, use the PMAP keyword parameter.

If the high-level qualifier of the prelinker map is not the same as your user prefix, you must use the
fully qualified name of the data set and place single quotation marks around the entire name.

PDEF
To specify where the generated IMPORT control statements should be placed by the prelinker.

If the high-level qualifier of the prelinker map is not the same as your user prefix, you must use the
fully qualified name of the data set and place single quotation marks around the entire name.

Prelinker options
Table 94 on page 499 describes the prelinker options.

Prelinking applications

498 z/OS: z/OS Language Environment Programming Guide

Table 94. Prelinker options

Option Description

DLLNAME(dll-
name)

DLLNAME specifies the DLL name that appears on generated IMPORT control statements.
If you specify the DLLNAME option, the DLL name is set to the value listed on the option.

If you do not specify DLLNAME, the DLL name is set to the name that appeared on the last
NAME control statement that was processed. If there are no NAME control statements,
and the output object module of the prelinker is a PDS member, the DLL name is set to
the name of that member. Otherwise, the DLL name is set to the value TEMPNAME, and
the prelinker issues a warning.

The default is DLLNAME.

DUP | NODUP DUP specifies that if duplicate symbols are detected, the symbol names should be
directed to stdout and the return code is set to a warning level of at least 4. NODUP
does not affect the return code setting when duplicates are detected.

The default is DUP.

DYNAM | NODYNAM When NODYNAM option is in effect, export symbol processing is not performed by the
prelinker, even when export symbols are present in the input objects. The sidedeck is not
created and the resulting module will not be a DLL.

Specify NODYNAM for prelinked C/C++ programs that are involved in COBOL C/C++ ILC
calls.

The default is NODYNAM.

ER | NOER The ER option specifies that if there are unresolved references, a message, and list of
unresolved symbols are written to the console. For unresolved references, the return
code is set to at least a warning level 4. For unresolved writable static references, the
return code is set to an error level of at least 8.

NOER specifies that a list of unresolved symbols is not written to the console. For
unresolved references, the return code is unaffected. For unresolved writable static
references, the return code is set to at least warning level 4.

The default is ER.

MAP | NOMAP The MAP option specifies that the prelinker should generate a prelink listing. See
“Language Environment prelinker map” on page 487 for a description of the map.

The default is MAP.

MEMORY |
NOMEMORY

The MEMORY option specifies that the prelinker will buffer (retain in storage), for the
duration of the prelink step, those object modules that are read and processed.

The MEMORY option is used to increase prelinker speed. However, to use this option,
additional memory might be required. If you use this option and the prelink fails due
to a storage error, you must increase your storage size or use the prelinker without the
MEMORY option.

The default is NOMEMORY.

NCAL | NONCAL The NCAL option specifies that the prelinker should not use automatic library call to
resolve unresolved references.

NONCAL specifies that an automatic library call is performed, which applies to a library
of user routines. The data set must be partitioned and must contain object modules. An
automatic library call cannot apply to a library that contains load modules.

C++ only: If you are prelinking C++ object modules, you must use the NONCAL option
and include the CEE.SCEECPP data set in your SYSLIB concatenation.

Prelinking applications

Appendix A. Prelinking an application 499

Table 94. Prelinker options (continued)

Option Description

OE | NOOE The OE option causes the prelinker to change its processing of INCLUDE and LIBRARY
control statements. OE causes the prelinker to accept z/OS UNIX or BFS files and data set
names on INCLUDE and LIBRARY statements.

The default is NOOE.

OMVS | NOOMVS The OMVS option causes the prelinker to change its processing of INCLUDE and LIBRARY
control statements. OMVS causes the prelinker to accept files and data set names on
INCLUDE and LIBRARY statements. The OMVS option is a synonym for the OE option. Use
of the OE option is preferred.

The default is NOOMVS.

UPCASE |
NOUPCASE

The UPCASE option enforces the uppercase mapping of those L-names that are 8
characters or fewer and have not been explicitly mapped by another mechanism. These
L-names are converted to uppercase (with _ mapped to @), and names that begin with
IBM or CEE will be changed to IB$ and CE$, respectively.

The UPCASE option is useful if you are calling routines that are written in languages other
than C. For example, PL/I and assembler each converts to uppercase all of its external
names. If the names are coded in lowercase in the C program and the LONGNAME option
is used, the names will not match by default. The UPCASE option can be used to enforce
this matching. The RENAME control statement can also be used for this purpose.

The default is NOUPCASE.

Prelinking applications

500 z/OS: z/OS Language Environment Programming Guide

Appendix B. EXEC DLI and CALL IMS Interfaces

There are two major approaches to accessing DL/I databases on IMS. This topic describes the interfaces
that are supported in the various environments, specifically IMS, and CICS.

• The EXEC DLI approach.
• The CALL IMS approach, which includes interfaces, such as: PLITDLI, CBLTDLI, and CTDLI.

Either an IMS library or a CICS library should be present when linking an application. If both libraries are
available, link-edit errors might occur.

If you are using ILC in CICS DL/I applications, EXEC CICS DLI and CALL xxxTDLI can only be used in
programs with the same language as the main program. For details on using ILC under CICS, see CICS
Transaction Server for z/OS (www.ibm.com/docs/en/cics-ts).

The following table lists the IMS and CICS support for various user interfaces to DL/I databases.

Table 95. IMS and CICS support of user interfaces to DL/I databases

User interface IMS supported CICS supported

CALL CEETDLI Yes No

CALL AIBTDLI Yes No

CALL CBLTDLI (COBOL) Yes Yes

CALL PLITDLI (PL/I) Yes Yes

ctdli() (C) Yes No

CALL ASMTDLI (non-PL/I) Yes Yes

CALL ASMTDLI (PL/I) Yes Yes

EXEC DLI (non-C) Yes Yes

EXEC DLI (C) No Yes

EXEC DLI and CALL IMS interfaces

© Copyright IBM Corp. 1991, 2022 501

https://www.ibm.com/docs/en/cics-ts
https://www.ibm.com/docs/en/cics-ts

EXEC DLI and CALL IMS interfaces

502 z/OS: z/OS Language Environment Programming Guide

Appendix C. Guidelines for writing callable services

If you want to write services similar in form and description to Language Environment callable services,
follow the guidelines listed below.

• Callable service parameters must follow the data type descriptions outlined in z/OS Language
Environment Programming Reference.

• Argument passing is by one level of indirection, either “by reference” or “by value”. See “Passing
arguments between routines” on page 112 for these argument passing styles.

• Avoid the use of operating system services and macros. Use Language Environment services whenever
possible.

• Always use the prototype definition or the entry declaration whenever possible.
• Avoid using the CEE3SPM callable service. CEE3SPM can change the condition handling semantics of

the HLLs supported by Language Environment.
• Language Environment assumes the following defaults for character strings:

– For input arguments, a length-prefixed string (with the length of the 2-byte prefix not included in the
length value).

– For output arguments, a fixed-length string of 80 bytes, padded on the right with blanks as necessary.
• Allow a feedback code area to be optionally passed as the last parameter to the callable service. The

feedback code must be a FEED_BACK data type and conform to the layout described in Chapter 18,
“Using condition tokens,” on page 231.

• If omitted arguments are permitted by the HLL, a zero or NULL pointer must be used to indicate the
omitted parameter in the parameter list that is passed to the callable service. For example:

address of parm1

address of parm2

0

The last parameter passed in the list must have the high-order bit on to indicate that it is last. If the last
parameter is omitted, the zero value that the user passes in the parameter list must have the high-order
bit on, for example, X'80000000'. Therefore, you must allow the user of the callable service to check for
this bit when the last parameter passed to the service is omitted.

• When documenting callable services, follow the same general format used to document each of the
callable services in this information. Each callable service description should contain (in this order):

– A general description of what the service does.
– A diagram indicating the syntax of the call to the service.
– A complete description of each callable service parameter and an identification of the required data

type.
– A list of possible feedback codes that can be returned by the service to its caller.
– Usage notes that provide additional needed information to the user, such as a list of related callable

services.
– An example or examples of usage.

Writing callable services

© Copyright IBM Corp. 1991, 2022 503

Writing callable services

504 z/OS: z/OS Language Environment Programming Guide

Appendix D. Operating system and subsystem
parameter list formats

This topic describes the various formats of parameters passed to and from operating systems and
subsystems. In most cases, you do not need to know these formats in order to pass or receive parameters
in your application. For cases in which you want to directly access the parameter list that is passed, the
format and contents of the parameter list are shown later in this section.

There are additional considerations depending on whether the main routine is in the C, C++, COBOL, or
PL/I language.

C and C++ parameter passing considerations
C and C++ generally support a single character string as a parameter to a main routine. They parse the
string into tokens that are accessed by the argc and argv parameters of the main function.

In addition, there are alternate styles of passing a set of parameters to the main routine, for example: as
a single value, a pointer to a value, or a pointer to a list of values. In these cases, the set of parameters
is not parsed. It is assumed that the invoker of the application (for example, the operating system) has
stored the address of the set of parameters in register 1 before entry into the main routine. Depending on
how the parameters are passed, register 1 points on entry to the entities illustrated in Figure 112 on page
505:

Style 1:

Style 2:

Register 1 contains parameter value

Register 1 = parameter value

Register 1 contains pointer to parameter value

Register 1 = pointer parameter value

Style 3: Register 1 contains pointer to array

of pointers to parameter values

Register 1 = pointer (pointer0 value0)

(pointer1 value1)

(pointer2 value2)

(pointern valuen)

.

.

.

Figure 112. Alternate C/C++ parameter passing styles

The first arrangement in Figure 112 on page 505 can be used only for parameters that are integers.

A C main routine elects to use one of the styles shown in Figure 112 on page 505 by specifying the
PLIST(OS) runtime option in #pragma runopts (see “C PLIST and EXECOPS interactions” on page
506); a C++ routine elects to use one of the styles with the PLIST(OS) compiler option (see “C++ PLIST
and EXECOPS interactions” on page 509). The main routine must know which parameter style to expect.
When PLIST(OS) is specified, C or C++ makes the parameter list available through a pair of macros; code
them in your main routine to determine which parameter list style your routine receives:
__R1 of type void *

__R1 contains the value that is in register 1 on entry into the main routine. It provides access to the
parameters when they are passed according to the first two styles shown in Figure 112 on page 505.

Operating system and subsystem parameter lists

© Copyright IBM Corp. 1991, 2022 505

__osplist of type void **
__osplist acts as an array of pointers to parameters. It is derived from __R1 and provides access to
the parameters when they are passed according to the third style shown in Figure 112 on page 505.
You must include the header file stdlib.h when using __osplist.

The third style is also supported for certain macros and functions (for example, __pcblist and
__csplist for invokers IMS and Cross System Product). __osplist is a generalization of the more
specialized __pcblist and __csplist macros; it can be used in their place or in cases where they do
not apply.

Figure 113 on page 506 illustrates how these macros can be used to access items in the three alternate
parameter arrangements.

Style 1:

Style 2:

Register 1 = __R1

Register 1 = __R1 *__R1

Style 3:

Register 1 = __R1 (__osplist[0] *__osplist[0])

(__osplist[1] *__osplist[1])

(__osplist[2] *__osplist[2])

(__osplist[n] *__osplist[n])

.

.

.

Figure 113. Accessing parameters using macros __R1 and __osplist

Suitable casting and dereferencing are required when using these macros, as shown in Figure 114 on
page 506, according to the parameter passing style in use.

Style 1:

Style 2:

parm = (int) __R1; (restricted to integer types)

parm_ptr = (float *) __R1

parm = * ((float *) __R1);

Style 3:

parm0_ptr = (float *) __osplist[0];

parm0 = * ((float *) __osplist[0]);

Figure 114. Examples of casting and dereferencing

C PLIST and EXECOPS interactions
You can use C #pragma runopts to specify to the C compiler a list of options to be used at run time. Two
of the options of #pragma runopts affect the format of the argument list passed to the application on
initialization: EXECOPS and PLIST.

Operating system and subsystem parameter lists

506 z/OS: z/OS Language Environment Programming Guide

EXECOPS allows you to specify runtime options on the command line or in JCL at application invocation.
NOEXECOPS indicates that runtime options cannot be so specified. When the EXECOPS runtime option is
specified under MVS, Language Environment alters the MVS parameter list format: Language Environment
removes any runtime options that are present.

PLIST indicates in what form the invoked routine should expect the argument list. You can specify PLIST
with the following values under Language Environment:
HOST

The argument list is assumed to be a character string. The string is located differently under various
systems as follows:

• Under TSO, if a CPPL is detected, Language Environment gets the string from the command buffer.
• Under TSO, if a CPPL is not detected, Language Environment assumes a halfword-prefixed string in

the MVS format.
• Under MVS, Language Environment uses the halfword-prefixed string.

OS
The inbound parameter list is assumed to be in an MVS linkage format in which register 1 points to a
parameter address list. No runtime options are available. Register 1 is not interrogated by Language
Environment.

The PLIST(HOST) setting allows the object to execute under MVS (assuming a halfword-prefixed string),
or under TSO (using the CPPL or the MVS-format parameter list). Specify PLIST(HOST) to default to the
argument list format for the operating system under which your application is running.

Although Language Environment supports the MVS, IMS, and TSO suboptions of PLIST for compatibility,
use of PLIST(HOST) is recommended. There are some exceptions to this guideline:
Preinitialization

PLIST(MVS) is supported for compatibility with pre-Language Environment C preinitialization
programs.

CICS
If you are running a CICS application compiled under the pre-Language Environment-conforming
version of C, PLIST(HOST), the default, is assumed regardless of the actual PLIST setting. If you are
running a CICS application compiled with a Language Environment-conforming C compiler, specify
PLIST(OS).

TSO
TSO command processors that require access to the full CPPL must specify PLIST(OS).

The EXECOPS, NOEXECOPS, and PLIST options can alter the format of the argument list passed to your
application, depending on the combination of options specified. The setting of EXECOPS determines
whether Language Environment looks for runtime parameters in the inbound parameter list. The effects of
the interactions of these options under the various operating systems and subsystems are summarized in
Table 96 on page 507:

Table 96. Interactions of C PLIST and EXECOPS

Operating
system

Method of
invocation

PLIST
suboption

EXCECOPS
(default) arg/argv

__R1/__osplist and
PCBs

MVS EXEC PGM=,

PARM= <runtime
options> / <user
args>

HOST Yes. <runtime
options>
honored

argc = number of
tokenized args in
<user args>

argv[0…argc-1] =
tokenized args in
<user args>

Operating system and subsystem parameter lists

Appendix D. Operating system and subsystem parameter list formats 507

Table 96. Interactions of C PLIST and EXECOPS (continued)

Operating
system

Method of
invocation

PLIST
suboption

EXCECOPS
(default) arg/argv

__R1/__osplist and
PCBs

MVS EXEC PGM=,

PARM= <runtime
options> / <user
args>

HOST No. <runtime
options> ignored

argc = number of
tokenized args in the
entire PARM string,
that is, <runtime
options> / <user
args>

argv[0…argc-1] =
tokenized args in the
entire PARM string

MVS Assembler calls
C module with
pre-Language
Environment
preinitialization
PLIST with
runtime options
specified in the
PLIST

MVS Yes. <runtime
options>
honored

argc/argv =
<argc,argv> structure
specified in the
preinitialization PLIST

MVS Assembler calls
C module with
pre-Language
Environment
preinitialization
PLIST with
runtime options
specified in the
PLIST

MVS No. <runtime
options> ignored

argc/argv =
<argc,argv> structure
specified in the
preinitialization PLIST

MVS Driver link to C
main passing
noncharacter
parameter list

OS n/a argc=1

argv[0] = name of C
main program module

Access register 1
through __osplist
macro as defined in
stdlib.h

TSO CALL, LOADGO,
execute module
on TSO
command line
passing
<runtime
options> / <user
args>

HOST Yes. <runtime
options>
honored

argc = number of
tokenized args in
<user args>

argv[0…argc-1] =
tokenized args in
<user args>

TSO CALL, LOADGO,
execute module
on TSO
command line
passing
<runtime
options> / <user
args>

HOST No. <runtime
options> ignored

argc = number of
tokenized args in
<runtime options> /
<user args>

argv[0…argc-1] =
tokenized args in
<user args>

Operating system and subsystem parameter lists

508 z/OS: z/OS Language Environment Programming Guide

Table 96. Interactions of C PLIST and EXECOPS (continued)

Operating
system

Method of
invocation

PLIST
suboption

EXCECOPS
(default) arg/argv

__R1/__osplist and
PCBs

TSO CALL OS n/a argc=1

argv[0] = name of
module

Access CPPL through
__osplist as defined in
stdlib.h

IMS Invoke C main
module

OS or IMS

Specify
ENV(IMS)
also.

n/a argc=1

argv[0] = name of
C main module or
null if the #pragma
runopts(PLIST(IMS))
is present in the
source

Access PCBs through
C macros as defined
in ims.h

CICS Invoke C main
module

n/a n/a argc=1

argv[0] = transaction
id

C++ PLIST and EXECOPS interactions
The EXECOPS compiler option allows you to specify runtime options on the command line or in JCL
at application invocation. NOEXECOPS indicates that runtime options cannot be so specified. When the
EXECOPS compiler option is specified under MVS, Language Environment alters the MVS parameter list
format by removing any runtime options present.

The PLIST compiler option indicates in what form the invoked routine should expect the argument list.
You can only specify PLIST with the following value under Language Environment:
OS

The inbound parameter list is assumed to be in an MVS linkage format in which register 1 points to a
parameter address list. No runtime options are available. Register 1 is not interrogated by Language
Environment.

The EXECOPS, NOEXECOPS, and PLIST compiler options can alter the format of the argument list
passed to your application, depending on the combination of options specified. The setting of EXECOPS
determines whether Language Environment looks for runtime parameters in the inbound parameter
list. The effects of the interactions of these options under MVS, TSO, and the various subsystems are
summarized in Table 97 on page 509:

Table 97. Interactions of C/C++ PLIST and EXECOPS (compiler options)

Operating
system

Method of invocation Compiler
options

Runtime
options

honored?

argc/argv __R1/
__osplist
and PCBs

MVS EXEC PGM=,

PARM= <runtime
options> / <user args>

EXECOPS (or
default)

Yes argc = number of
tokenized args in <user
args>

argv[0…argc-1] =
tokenized args in <user
args>

Operating system and subsystem parameter lists

Appendix D. Operating system and subsystem parameter list formats 509

Table 97. Interactions of C/C++ PLIST and EXECOPS (compiler options) (continued)

Operating
system

Method of invocation Compiler
options

Runtime
options

honored?

argc/argv __R1/
__osplist
and PCBs

MVS EXEC PGM=,

PARM= <runtime
options> / <user args>

NOEXECOPS No argc = number of
tokenized args in the
entire PARM string,
that is, <runtime
options> / <user args>

argv[0…argc-1] =
tokenized args in the
entire PARM string

MVS Driver link to C++ main
passing noncharacter
parameter list

PLIST(OS) n/a argc=1

argv[0] = name of C++
main program module

Access
register 1
through
__osplist
macro as
defined in
stdlib.h

TSO CALL, LOADGO, execute
module on TSO
command line passing
<runtime options> /
<user args>

EXECOPS (or
default)

Yes argc = number of
tokenized args in <user
args>

argv[0…argc-1] =
tokenized args in <user
args>

TSO CALL, LOADGO, execute
module on TSO
command line passing
<runtime options> /
<user args>

NOEXECOPS No argc = number of
tokenized args in
<runtime options> /
<user args>

argv[0…argc-1] =
tokenized args in <user
args>

TSO CALL PLIST(OS) n/a argc=1

argv[0] = name of
module

Access CPPL
through
__osplist as
defined in
stdlib.h

IMS Invoke C/C++ main
module

PLIST(OS)

Specify
TARGET(IMS)
also.

n/a argc=1

argv[0] = name of C++
main module

Access PCBs
through C
macros as
defined in
ims.h

CICS Invoke C++ main module Any (or
default)

n/a argc=1

argv[0] = transaction
ID

Operating system and subsystem parameter lists

510 z/OS: z/OS Language Environment Programming Guide

Case sensitivity under TSO
When executing under TSO with the IBM-supplied default setting of PLIST(HOST), Language Environment
dynamically determines whether a command processor parameter list (CPPL) has been passed. If so, an
application with a C or C++ main routine receives the TSO parameter list in an argc, argv format.

If PLIST(TSO) is in effect, the inbound parameter list is a CPPL pointed to by R1. C treats PLIST(TSO) as
PLIST(HOST). A user can access the CPPL using the __osplist macro if the user specifies PLIST(OS).

Arguments passed in TSO might be case-sensitive, depending on how your C or C++ program is invoked.
Table 98 on page 511 shows when the arguments are case-sensitive, based on how the C or C++
program is invoked.

Table 98. Case sensitivity of arguments under TSO

How C or C++ program is invoked Example Case of argument

As TSO command cprogram args Mixed case (however, if you
pass the arguments entirely
in uppercase, the argument is
lowercase)

By CALL command CALL cprogram args Lowercase

By CALL command with control asis CALL cprogram args Mixed case (however, if you
pass the arguments entirely
in uppercase, the argument is
lowercase)

In a CLIST with control asis

As a literal passed to CLIST as a
parameter

cprogram args

cprogram &arg

Mixed case

Uppercase

Parameter passing considerations with XPLINK C and C++
C and C++ code compiled with the XPLINK option builds parameter lists using the same logical format.
However, the compiler might optimize some of the parameters into registers. For more information, see
Argument passing in z/OS Language Environment Vendor Interfaces.

COBOL parameter passing considerations
COBOL users cannot explicitly set the PLIST and EXECOPS runtime options for an enclave containing a
COBOL main program. When COBOL is the main program, Language Environment sets the argument list
passed to the application on initialization as follows:

• z/OS (non-CICS)

– If the COBOL main is invoked via the ATTACH SVC, a halfword-prefixed string is passed to the
application after runtime options have been removed. The source of this string is dependent on the
environment in which the ATTACH is issued, as follows:

- If the ATTACH is issued by z/OS to invoke a batch program, the string is specified via the EXEC
statement's PARM field.

- If the ATTACH is issued by TSO to attach a Command Processor (CP), the string is specified as part
of the command embedded within the CP parameter of the TSO ATTACH CP command.

- Otherwise, the string is specified via the PARM field of the ATTACH macro.

Note: The parameter list processing when COBOL is invoked with the ATTACH SVC can be altered
with the COBOL parameter list exit IGZEPSX so that register 1 and the argument list are passed
without change. If your program is not seeing the behavior mentioned previously, then see your
system programmer to determine what changes were made to the COBOL parameter list exit. For

Operating system and subsystem parameter lists

Appendix D. Operating system and subsystem parameter list formats 511

information about the COBOL parameter list exit, see Modifying the COBOL parameter list exit in z/OS
Language Environment Customization.

If changing IGZEPSX is not an approach that can be used in your environment, another approach is to
ATTACH to a Language Environment-conforming assembler routine with MAIN=YES and PLIST=OS on
the CEEENTRY macro. The Language Environment-conforming assembler routine can then invoke the
COBOL program, passing the unchanged contents of register 1 (the address of the parameter list) to
the COBOL program.

– If the COBOL main is not invoked by the ATTACH SVC, the halfword-prefixed string provided by the
caller is passed to the application after runtime options have been removed if the following linkage is
used:

- The caller of the COBOL program provides an RSA that contains a back chain (HSA) field of binary 0.
- Register 1 is nonzero.
- The word addressed by Register 1 (the first parameter pointer word) has the End of List (EOL) bit on

and the parameter it addresses is aligned on a halfword or greater boundary.
– Otherwise register 1 and the argument list are passed without change.

• TSO

– In addition to the previous z/OS (non-CICS) considerations, if the COBOL main is invoked from a REXX
clist, parameter list processing depends on the method used to invoke the COBOL program.

- If Address TSO (the default) or Address ATTCHMVS is used, the halfword-prefixed string provided
by the caller is passed to the application after runtime options have been removed. Runtime
options are processed. Updates made by COBOL to the parameter are not available to the calling
REXX.

- If Address LINKMVS is used, the parameter list provided by the caller is passed unchanged to the
application program. Runtime options, if provided are ignored. Updates made by COBOL to the
parameter are available to the calling REXX.

- Address LINK, Address ATTACH, Address LINKPGM, and Address ATTCHPGM are not supported
since they use a different convention for parameter lists and save area chaining.

• z/OS UNIX

– The parameter list consists of three parameters passed by reference:

- Argument-count: a binary fullword integer containing the number of elements in each of the arrays
that is passed as the second and third parameters.

- Argument-length-list: an array of pointers. The Nth entry in the array is the address of a fullword
binary integer containing the length of the Nth entry in the Argument-list (the third argument).

- Argument-list: an array of pointers. The Nth entry in the array is the address of the Nth character
string passed as an argument on the spawn(), exec(), or command invocation.

• CICS

– If the COBOL main is invoked in a CICS environment, register 1 is passed without change.

PL/I main procedure parameter passing considerations
The format of the parameter list passed to a PL/I main procedure from the operating system is controlled
by the SYSTEM compiler option and also by options on the main PROCEDURE statement.

The SYSTEM compiler option specifies the format used to pass parameters to the PL/I main procedure,
and indicates the host system under which the program runs: MVS, CICS, IMS, or TSO. The SYSTEM option
allows a program compiled under one system to run under another.

The NOEXECOPS procedure option indicates that runtime options are not present in the operating system
parameter list. The NOEXECOPS option can be explicitly specified or implicitly defaulted. Otherwise, it is
assumed that runtime options might be present in the operating system parameter list. If present, these
runtime options are removed by runtime initialization before the PL/I main procedure gains control.

Operating system and subsystem parameter lists

512 z/OS: z/OS Language Environment Programming Guide

In order for runtime options to be passed in the operating system parameter list for SYSTEM(MVS), the
PL/I main procedure must receive no parameters or receive a single parameter that is a varying character
string. If this is not the case, NOEXECOPS is always defaulted.

The OPTIONS(BYVALUE) or OPTIONS(BYADDR) procedure options indicate if the main procedure
parameters are passed directly or indirectly. If SYSTEM(IMS) or SYSTEM(CICS) is specified for an
Enterprise PL/I for z/OS or a PL/I for MVS & VM main procedure, the OPTIONS(BYVALUE) procedure
option is defaulted at compilation time, OPTIONS(BYADDR) is not permitted. When SYSTEM(CICS)
and SYSTEM(IMS) is specified, Language Environment remaps the parameters to match the OPTIONS
attribute BYADDR or BYVALUE of the main procedure. See “Passing arguments between routines” on page
112 for additional information about Language Environment parameter passing.

The following tables describe the interaction of the PL/I SYSTEM and NOEXECOPS options. Their effect
is described in terms of the parameters that are coded on the MAIN procedure statement and also the
incoming system, subsystem, or assembler parameter list as initially received by Language Environment.

Table 99. Interactions of SYSTEM and NOEXECOPS

SYSTEM setting No runtime options (NOEXECOPS) Runtime options can be present

SYSTEM(MVS) If the main procedure parameter is a
single varying character string, an MVS
parameter list is assumed and repackaged
so the main procedure receives a halfword-
prefixed string. The entire string is passed to
the main procedure without change.

Otherwise, the parameter list is passed
without change.

If the main procedure parameter is a single
varying character string, an MVS parameter
list is assumed and repackaged so the main
procedure receives a halfword-prefixed
string. Any runtime options are removed
from the string, and the (potentially) altered
string is passed.

Otherwise, the parameter list is passed
without change.

SYSTEM(IMS) The parameter list is passed without
change.

Not allowed

SYSTEM(CICS) The parameter list is passed without
change.

Not allowed

SYSTEM(TSO) Two levels of pointer indirection are added
to the parameter list. The main procedure
parameter should be a single pointer that
points to the CPPL.

Not allowed

Notes:

1. NOEXECOPS is always implied for SYSTEM(CICS), SYSTEM(IMS), and SYSTEM(TSO). NOEXECOPS is
also implied for SYSTEM(MVS), if the main procedure has more than one parameter or a single
parameter that is not a varying character string.

2. In an IMS environment, if an assembler program is driving a PL/I transaction where LANG is not
specified or LANG=NON-PLI (except Pascal) under IMS V4R1, the parameter passes through without
change. Otherwise, one level of indirection is removed from the parameter.

If an assembler program is driving a transaction program written in Enterprise PL/I for z/OS or PL/I
for MVS & VM, the main procedure of the transaction must be compiled with SYSTEM(MVS) option; the
main procedure receives the parameter list passed from the assembler program in MVS style.

Operating system and subsystem parameter lists

Appendix D. Operating system and subsystem parameter list formats 513

Operating system and subsystem parameter lists

514 z/OS: z/OS Language Environment Programming Guide

Appendix E. Object library utility

The object library utility is used to update libraries of object modules. A library is a partitioned data set
(PDS or PDSE) with object modules as members

Object libraries provide for convenient packaging of object modules. With the Object Library Utility, a
library can contain object modules with L-names, object modules with S-names, and object modules with
writable static data. The Object Library Utility is used to create information, such as which members
contain defined L-names, S-names, or writable static data. This information is stored in a special member
of the library that will be referred to as the Object Library Utility directory.

Commands to add object modules to a library, to delete object modules from a library, or to build the
Object Library Utility directory for a library are available. Use the DIR command to build the Object Library
Utility directory for a library of object modules. Use the MAP command to list the contents of the Object
Library Utility directory.

Creating an object library
You can create an object library under batch or TSO.

Under batch
Under MVS batch, the following cataloged procedures include an Object Library Utility step:
EDCLIB

Maintain an object library.
EDCCLIB

Compile and maintain an object library.

For more information about the data sets used with the Object Library Utility, see Object library utility in
z/OS XL C/C++ User's Guide.

You can specify options for the Object Library Utility step that generate a library directory, add or delete
members of a directory, or generate a map of library members and defined external symbols. This topic
shows you how to specify these options under MVS batch.

To compile the C program WALTER.SOURCE(SUB1) for L-names and add to
WALTER.SOURCE.OBJ(SUB1), use the following JCL. The Object Library Utility directory for the library,
WALTER.SOURCE.OBJ, is updated in the process.

//COMPILE EXEC EDCCLIB,INFILE='WALTER.SOURCE(SUB1)',CPARM='LO',
// LIBRARY='WALTER.SOURCE.OBJ',MEMBER='SUB1'

To request a map for the library WALTER.SOURCE.OBJ, use:

//OBJLIB EXEC EDCLIB,OPARM='MAP',LIBRARY='WALTER.SOURCE.OBJ'

The following example creates a new Object Library Utility directory. If the directory already exists, it is
updated:

//DIRDIR EXEC EDCLIB,
// LIBRARY='LUCKY13.CXX.OBJMATH',
// OPARM='DIR'

To create a map:

//MAPDIR EXEC EDCLIB,
// LIBRARY='LUCKY13.CXX.OBJMATH',
// OPARM='MAP'

Object library utility

© Copyright IBM Corp. 1991, 2022 515

To add new members to an object library, use the ADD option to update the directory. For example, to add
a new member named MA191, code:

//ADDDIR EXEC EDCLIB,
// LIBRARY='LUCKY13.CXX.OBJMATH',
// OPARM='ADD MA191',
// OBJECT='DSNAME=LUCKY13.CXX.OBJ(OBJ191),DISP=SHR'

To delete a member from an object library, use the DEL option to keep the directory up-to-date. For
example, to delete a member named OLDMEM, code:

//DELDIR EXEC EDCLIB,
// LIBRARY='LUCKY13.CXX.OBJMATH',
// OPARM='DEL OLDMEM'

Under TSO
The Object Library Utility has the following syntax:

C370LIB ADD LIB (─libname─(─membername─)─)

OBJ (─objname─)

DEL LIB (─libname─(─membername─)─)

MAP LIB (─libname─)

LIST (─map─)

DIR LIB (─libname─)

ADD
Adds (or replaces) an object module in an object library.

If the ADD function is used to insert an object module in a member of a library that already exists, the
previous member is deleted before the insert unless the source data set is the same as the target data
set, in which case the member is not deleted and only the Object Library Utility directory is updated as
appropriate.

DEL
Deletes an object module from an object library.

MAP
Lists the names (entry points) of object library members.

DIR
Builds the Object Library Utility directory member. The Object Library Utility directory contains the
names (entry points) of library members.

The DIR function is only necessary if object modules were previously added or deleted from the
library without using C370LIB.

LIB (libname(membername))
Specifies the target data set for the ADD and DEL functions. The data set name must contain a
member specification to indicate which member is to be created, replaced, or deleted.

OBJ (objname)
Specifies the source data set containing the object module that is to be added to the library. If you do
not specify a data set name, the target data set specified in LIB(libname(membername)) is used as
the source.

LIB (libname)
Specifies the object library for which a map is to be produced or for which a Object Library Utility
directory is to be built.

Object library utility

516 z/OS: z/OS Language Environment Programming Guide

LIST (map)
Specifies the data set that is to contain the library map. If an asterisk (*) is specified, the library map
is directed to your terminal. If you do not specify a data set name, a name is automatically generated
using the library name and the qualifier MAP. If the input library data set is called TEST.OBJ and your
user prefix is FRANK, the data set name generated for the map is FRANK.TEST.OBJ.MAP.

Under TSO, you can use either the C370LIB CLIST or the CC CLIST using the parameter C370LIB. The
C370LIB parameter of CC CLIST specifies that if the object module from the compile is directed to a
member of a PDS, then the Object Library Utility directory is to be updated. This step is the equivalent
to a compile and C370LIB ADD step. If the C370LIB parameter is specified and the object module is not
directed to a member of a PDS, the C370LIB parameter is ignored.

Object library utility map
The Object Library Utility produces a listing for a given library when the MAP command is specified. The
listing contains information on each member of the library. A representative example is shown in Figure
115 on page 517.

==
| Object Library Utility Map |
| 1 |
|C370LIB:5647A01 V2 R9 M00 IBM Language Environment 1999/12/16 16:22:43|
==

 Library Name: TS41949.A.OBJECT 1998/04/22 11:46:39

--
* Member Name: ASMSTUFF (D) 1998/04/22 11:46:39 *
* 2 569623400 R01 M01 *
--

 (S) External Name: CSECT1
 (S) External Name: ENTRY1

--
* Member Name: CSTUFF (D) 1998/04/22 11:46:39 *
* 2 5688216 R32 M00 *
--

 (L) Function Name: foo
 (WL) External Name: this_int_is_in_writable_static_and_its_name_will
 _wrap_because_it_is_too_long

--
* Member Name: CXXSTUFF (D) 1998/04/22 11:46:39 *
* 2 5688216 R32 M00 *
--
 3
 User Comment: This is a user comment in CXXSTUFF
 4
 (L) Function Name: testeh()
 (L) Function Name: f1()
 (L) Function Name: operator++(U&)
 (WL) External Name: i1
 (WL) External Name: i2

========= E N D O F O B J E C T L I B R A R Y M A P ==========

Figure 115. Object library utility map

 1 Map Heading
The heading contains the product number, the compiler release number, the compiler version number,
and the date and time the Object Library Utility step commenced. The name of the library immediately
follows the heading. To the right of the name of the library is the start time of the last Object Library
Utility step that updated the Object Library Utility directory.

Object library utility

Appendix E. Object library utility 517

 2 Member Heading
The name of the object module member is immediately followed by the ID of the processor that
produced the object module. The processor ID is based on the presence of an END record in the
object module having the processor information in the appropriate format. If this information is not
present, the Processor ID field is not listed.

The Timestamp field is presented in yy/mm/dd format. The meaning of the timestamp is enclosed in
parentheses. That is, the Object Library Utility retains a timestamp for each member and selects the
time according to the following hierarchy:
(P)

Indicates that the timestamp is extracted from the object module from the date form of #pragma
comment or from the timestamp form of #pragma comment, whichever comes first.

(D)
Indicates that the timestamp is based on the time that the Object Library Utility DIR command
was last issued.

(T)
Indicates that the timestamp is the time that the ADD command was issued for the member.

 3 User Comments
The user form of comments generated by #pragma comment is displayed. These comments are
extracted from the END record. It is possible to manually add such comments on multiple END
records and have them displayed in the listing. See z/OS XL C/C++ Language Reference for more
information on the END record.

 4 Symbol Information
Immediately following the Member Heading (and user comments, if any) is a list of the objects that
the member defines. Each symbol is prefixed by Type information, enclosed in parentheses, and
either External Name or Function Name. Function Name appears if the object module was
compiled with the LONGNAME option and the symbol is the name of a defined external function. In all
other cases, External Name is displayed. The symbol is the name of an external function defined in
the member. That is:
'L'

Indicates that the name is an L-name.
'S'

Indicates that the name is an S-name.
'W'

Indicates that this is a writable static object. If no 'W' is present, then this is not a writable static
object.

'WL'
Indicates that this is both an L-name and in writable static.

Object library utility

518 z/OS: z/OS Language Environment Programming Guide

Appendix F. Using the systems programming
environment

Restriction: This topic applies to C applications only.

As a C routine executes, facilities from the Language Environment common library are invoked to set up
the execution environment in order to handle termination activities and provide storage management,
error handling, runtime options parsing, ILC, and debugging support. In addition, the C library functions
are in the Language Environment common library.

For situations in which not all of these services are needed, the system programming facilities of C can
provide a limited environment.

System programming facilities allow you to run applications without using the Language Environment
common library, or with just the C library functions, and to:

• Develop C applications that do not require the Language Environment common library on the machines
on which they run.

• Use C as an assembler language substitute to, for example, write exit routines for MVS, TSO, or JES.
• Develop applications featuring:

– A persistent C environment, in which a C environment is created once and used repeatedly for C
function execution from any language.

– Co-routines that use a two-stack model, as in client-server style applications. In this style, the user
application calls on the applications server to perform services independently of the user and then
return to the user.

For more information on the system programming facilities of C, see z/OS XL C/C++ Programming Guide.

This topic discusses how to build these applications once you have compiled them with the C compiler.
You must compile these programs with the NOSTART option.

Building freestanding applications
Freestanding applications need to be linked with specific alternate initialization routines.

To explicitly include an alternative initialization routine under MVS, use the linkage editor INCLUDE
and ENTRY control statements. To include the alternate initialization routines, you must allocate
CEE.SCEESPC to the SYSLIB DD. For example, the following linkage editor control stream might be used to
specify EDCXSTRT as an alternate initialization routine (another example is shown in Figure 118 on page
520):

INCLUDE SYSLIB(EDCXSTRT)
ENTRY EDCXSTRT
INCLUDE SYSIN

Figure 116. Specifying alternate initialization at link-edit time

If you are building freestanding applications under MVS, CEE.SCEESPC must be included in the
link-edit SYSLIB concatenation. Also, if C library functions are needed, CEE.SCEESPC must precede
CEE.SCEELKED.

The routines to support this function (EDCXSTRT and EDCXSTRL) are CEESTART replacements in your
module. You must specify NOSTART compiler option when compiling the file that contains the main
function. Therefore, the appropriate EDCXSTRn routine must be explicitly included at link-edit.

A simple freestanding routine that requires a C library function is shown in Figure 117 on page 520.

Systems programming environment

© Copyright IBM Corp. 1991, 2022 519

#include <stdio.h>
main() {
 puts("Hello, World");
 return 3999;
}

Figure 117. Simple freestanding routine

This routine, RET3999, is compiled with nostart compiler option and link-edited using control
statements in Figure 118 on page 520. It is assumed that:

• The object module is available to the linkage-editor by using an OBJECT DD statement.
• CEE.SCEESPC and CEE.SCEELKED libraries are specified on a SYSLIB DD statement.
• The intended load module member name is specified on a SYSLMOD DD statement.

The CEE.SCEERUN runtime load library must be available at runtime because it contains the C library
function puts().

INCLUDE SYSLIB(EDCXSTRL)
INCLUDE OBJECT
ENTRY EDCXSTRL

Figure 118. Link-edit control statements used to build a freestanding MVS routine

Figure 119 on page 520 shows how to compile and link a freestanding program by using the cataloged
procedure EDCCL. See Building freestanding applicatons to run under z/OS in z/OS XL C/C++ Programming
Guide for more information about EDCCL.

//* Appropriate JOB card
//*---
//**
//*** COMPILE AND LINK USING EDCXSTRL AS ENTRY POINT
//**
//C106001 EXEC EDCCL,
// INFILE='ANDREW.SPC.SOURCE(C106000)',
// OUTFILE='ANDREW.SPC.LOAD(C106000),DISP=SHR',
// CPARM='OPT(2),NOSEQ,NOMAR,NOSTART',
// LPARM='RMODE=ANY,AMODE=31'
//LKED.SYSLIB DD DSN=CEE.SCEESPC,DISP=SHR
// DD DSN=CEE.SCEELKED,DISP=SHR
//LKED.SYSIN DD *
 INCLUDE SYSLIB(EDCXSTRL)
 ENTRY EDCXSTRL
/*

Figure 119. Compile and link by using the cataloged procedure EDCCL

Special considerations for reentrant modules
A simple freestanding routine that does not require C library functions is shown in Figure 120 on page
521. This routine uses the exit() function, which is normally part of the C library but (like sprintf())
is available to freestanding routines without requiring the dynamic library. This routine is not naturally
reentrant, but the resulting load module is reentrant.

Systems programming environment

520 z/OS: z/OS Language Environment Programming Guide

#include <stdlib.h>

int main() {
 static int i[5]={0,1,2,3,4};
 exit(320+i[1]);
}

Figure 120. Sample reentrant freestanding routine

The JCL required to build and execute this routine is shown in Figure 121 on page 521. The bracketed
numbers in the figure refer to the comments that follow.

//PRLK EXEC PGM=EDCPRLK,PARM='MAP,NCAL' [Figure 121 on page 521-1]
//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR
//SYSMSGS DD DSN=CEE.SCEEMSGP(EDCPMSGE),DISP=SHR
//SYSOUT DD SYSOUT=*
//SYSMOD DD DSN=&&OBJ,SPACE=(TRK,(1,1)),UNIT=SYSDA,
// DCB=(BLKSIZE=400,RECFM=FB,LRECL=80),
// DISP=(MOD,PASS)
//SYSIN DD DSN=RETS321.OBJ,DISP=SHR [Figure 121 on page 521-2]
//*
//*
//LKED EXEC PGM=HEWL,PARM='MAP,XREF,LIST'
//SYSUT1 DD SPACE=(CYL,1),UNIT=SYSDA
//PRELINK DD DSN=&&OBJ,DISP=(OLD,DELETE) [Figure 121 on page 521-3]
//SYSLIN DD *
 INCLUDE SYSLIB(EDCXSTRT) [Figure 121 on page 521-4]
 INCLUDE PRELINK [Figure 121 on page 521-5]
 INCLUDE SYSLIB(EDCXEXIT) [Figure 121 on page 521-6]
 INCLUDE SYSLIB(EDCRCINT) [Figure 121 on page 521-7]
/*
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DSN=&&GOSET(GO),
// UNIT=SYSDA,SPACE=(TRK,(1,1,1)),
// DISP=(NEW,PASS)
//SYSLIB DD DSN=CEE.SCEESPC,DISP=(SHR,PASS)
// DD DSN=CEE.SCEELKED,DISP=(SHR,PASS)
//GO EXEC PGM=*.LKED.SYSLMOD

Figure 121. Building and running a reentrant freestanding MVS routine

Notes
[Figure 121 on page 521-1]

The prelinker must be used for modules compiled with the RENT compiler option.
[Figure 121 on page 521-2]

This is the object module created by compiling the sample module with the RENT and NOSTART
compiler options.

[Figure 121 on page 521-3]
The output from the prelinker is made available to the linkage editor.

[Figure 121 on page 521-4]
The alternate initialization routine (EDCXSTRT in this example) must be explicitly included in the
module. If this is not the first CSECT in the module it must be explicitly named as the module entry
point.

[Figure 121 on page 521-5]
The prelinked output is included in the load module.

[Figure 121 on page 521-6]
EDCXEXIT must be explicitly included if the exit() function is used in the application.

Systems programming environment

Appendix F. Using the systems programming environment 521

[Figure 121 on page 521-7]
The routine EDCRCINT must be explicitly included in the module if the RENT compiler option is used.
No error is detected at load time if this routine is not explicitly included. At execution time, abend
2106, reason code 7205, results if EDCRCINT is required but not included.

Building system exit routines
There are no special considerations for building system exit routines. These routines can be linked with
their callers or dynamically loaded and invoked. CEE.SCEESPC must be available at link-edit. If C library
functions are required by the exit routines, the CEE.SCEELKED library must also be made available after
CEE.SCEESPC. If the routines were compiled with OPT(2), the entry point must be explicitly named in the
link-edit input.

Note: You must compile these programs with the NOSTART option.

Building persistent C environments
There are no special considerations for building applications that use persistent C environments. The data
set CEE.SCEESPC contains the object modules to be included.

If C library functions are required by any routine called in this environment, the library stub routines
should also be made available at link time after CEE.SCEESPC.

Note: You must compile these programs with the NOSTART option.

Building user-server environments
To build your server application, follow the rules for building a freestanding application as described in
“Building freestanding applications” on page 519.

There are no special considerations for building user applications. The automatic call facility causes the
right routines from SYSLIB to be included.

Note: You must compile servers with the NOSTART option.

Summary of types
Table 100. Summary of types

Type of application How it is called Module entry
point

Data sets
required at
execution time

Runtime options and
other considerations

A mainline function
that requires no
C-specific library
functions.

From the command
line, JCL, or an
EXEC or CLIST.

EDCXSTRT must be
explicitly included
at bind time.

None. Runtime options are
specified by #pragma
runopts in the
compilation unit for the
main() function. The
HEAP and STACK options
are honored. STACK
defaults to above the 16M
line.

Systems programming environment

522 z/OS: z/OS Language Environment Programming Guide

Table 100. Summary of types (continued)

Type of application How it is called Module entry
point

Data sets
required at
execution time

Runtime options and
other considerations

A mainline function
that requires C
library functions.

From the command
line, JCL, or an
EXEC or CLIST.

EDCXSTRL must be
explicitly included
at bind time.

C library
functions.

Runtime options are
specified by #pragma
runopts in the
compilation unit for the
main() function. The
TRAP, HEAP and STACK
options are honored, but
the stack defaults to
above the 16M line.

A mainline function
that uses storage
pre-allocated by the
caller.

From Assembler
code.

C library
functions are
optional; the
caller must load
these functions
and pass their
addresses to
EDCXSTRX, if
required to by
the application.

Runtime options are
specified by #pragma
runopts in the main()
function. The TRAP option
is honored if C library
functions are required.

An exit. Typically from
assembler code,
with a structured
parameter list.

C library
functions, if
required.

Runtime options are
specified by #pragma
runopts in the compile
unit for the entry point.
The HEAP and STACK
options are honored, but
the stack defaults to be
above the 16M line. The
TRAP option is honored
if C library functions are
required.

Systems programming environment

Appendix F. Using the systems programming environment 523

Table 100. Summary of types (continued)

Type of application How it is called Module entry
point

Data sets
required at
execution time

Runtime options and
other considerations

A C subroutine
called from
Assembler language
using a
pre-established
persistent
environment.

A handle, the
address of the
subroutine, and
a parameter list
are passed to
EDCXHOTU.

C library
functions are
optional,
depending on the
way the handle
was set up.

Runtime options are
specified by #pragma
runopts in any compile
unit. The HEAP and
STACK options are
honored, but the stack
defaults to above the 16M
line. The TRAP option
is honored if C library
functions are called for.
The runopts in the first
object module in the link-
edit that contains runopts
prevails, even if this
compilation unit is part of
the calling application.

The environment is
established by calling
EDCXHOTC or EDCXHOTL
(if library functions
are required). These
functions return a value
(the handle), which is
used to call functions that
use the environment.

A server. User code includes
a stub routine that
calls EDCXSRVI.
This causes the
server to be loaded
and control to be
passed to its entry
point.

EDCXSTRT or
EDCXSTRL,
depending on
whether the server
needs C library
functions.

C library
functions, if
required by the
server code.

Runtime options are the
same as for EDCXSTRL or
EDCXSTRT.

The author of the server
must supply stub routines
that call EDCXSRVI and
EDCXSRVN to initialize
and communicate with
the server. These are
bound with the user
application.

A user of an
application server.

The server and C
library functions,
if required by the
server.

The author of the server
must supply stub routines
which call EDCXSRVI and
EDCXSRVN to initialize
and communicate with
the server.

Systems programming environment

524 z/OS: z/OS Language Environment Programming Guide

Appendix G. Sort and merge considerations

This topic discusses the runtime aspects of sort and merge operations. For details on the compile-time
aspects of sort and merge, including instructions on coding the sort and merge procedures, see your
compiler programming guide.

Under Language Environment, you can invoke the sort facility to sort or merge records in a particular
sequence. A sort operation takes an unordered sequence of input data, arranges it according to a
specified key or pattern, and places it into an output file. A merge operation compares two or more
files that have already been sorted according to an identical key and combines them in a specified order in
an output file.

To invoke the sort facility in Language Environment, you can use either of the following:

• An HLL construct

– COBOL's SORT and MERGE statements. (The SORT and MERGE statements are not supported when
running under z/OS UNIX.)

– The PLISRTx interface of PL/I, where x is replaced by A, B, C, or D

You cannot call the PLISRTx interface under CICS.
• A method other than an HLL construct (for example, assembler routines, JCL, or ISPF).

Under Language Environment, your IBM sort/merge licensed program must be DFSORT or an equivalent
that honors the DFSORT extended parameter list. Whenever DFSORT is mentioned in this topic, you can
use any equivalent SORT product.

Restriction: SORT and MERGE is not supported in a POSIX(ON) environment.

Invoking DFSORT directly
For information about using the methods to run DFSORT directly with JCL or to invoke DFSORT
directly from an assembler program, see z/OS DFSORT Application Programming Guide, which also has
information about built-in features that you can use to eliminate the need for writing program logic (for
example, the INCLUDE, OMIT, OUTREC, and SUM statements).

Using the COBOL SORT and MERGE verbs
This topic contains a high-level overview of COBOL SORT and MERGE verbs. It is designed to introduce
you to concepts that help you understand some of the special considerations for using these COBOL
statements in Language Environment. For a detailed description of how to use SORT and MERGE, see the
appropriate version of the COBOL programming guide in the COBOL library at Enterprise COBOL for z/OS
library (www.ibm.com/support/docview.wss?uid=swg27036733).

A COBOL program that contains a sort operation can be organized so that an input procedure reads and
operates on one or more input files before the files are actually sorted. To specify the input procedure:

SORT...INPUT PROCEDURE

You can also specify an output procedure that processes the files after they are sorted:

SORT...OUTPUT PROCEDURE

These input and output procedures can be used to add, delete, alter, edit, or otherwise modify the
records.

You can also sort records under COBOL without any processing by the input and output procedures. For
example, to read records into a new file for sorting without any preliminary processing, specify:

Sort and merge considerations

© Copyright IBM Corp. 1991, 2022 525

http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733

SORT...USING

To transfer sorted records to a file without any further processing, specify:

SORT...GIVING

User exit considerations
SORT or MERGE COBOL verbs can trigger COBOL-generated user exits (E15 for sort, E35 for merge).
These exits include any input or output procedures. However, the exits are not triggered when a COBOL
USING or GIVING statement is in effect and the files qualify for FASTSRT.

Language Environment treats the COBOL-generated exits differently than those requested by a direct
invocation of DFSORT. Language Environment treats user exits triggered by COBOL SORT or MERGE as
part of the enclave of the routine that invoked DFSORT; the SVC LINK used to invoke DFSORT is not
considered by Language Environment to initiate a new implicit nested enclave. This is not the case for
direct invocations of DFSORT, which do result in the creation of a new nested enclave. See Chapter 31,
“Using nested enclaves,” on page 469 for more information on nested enclaves. For more information
about direct invocations of DFSORT, see Directly invoke DFSORT processing in z/OS DFSORT Application
Programming Guide.

Condition handling considerations
This topic summarizes how Language Environment condition handling behaves when a Enterprise COBOL
for z/OS, COBOL for OS/390 & VM, COBOL for MVS & VM, COBOL/370, or VS COBOL II routine is involved
in a SORT or MERGE operation.

Program interrupts
User handlers established by the routine that initiated the SORT/MERGE are able to handle program
interrupts as they are presented to the condition manager by a condition token. Normal condition
handling as described in Chapter 15, “Introduction to Language Environment condition handling ,” on
page 165 occurs.

Establishment of HLL-specific handlers and user handlers is not supported while in a SORT input or
output procedure. The results are unpredictable, and the condition handler does not attempt to diagnose
this case.

HLL-specific handlers and user handlers established by a routine called by an input or output procedure
are able to handle program interrupts. However, because these exits are typically invoked many times
(equivalent to the number of records being sorted for each exit), it is recommended that you register the
handler within the application that initiated the SORT/MERGE in order to avoid overhead.

Language Environment-signaled conditions
HLL-specific handlers and user handlers established by the routine that initiated the SORT/MERGE are
able to handle any condition signaled by Language Environment. Normal condition handling as described
in Chapter 15, “Introduction to Language Environment condition handling ,” on page 165 occurs.

Abends
When there is an abend, the DFSORT ESTAE exit intercepts the abend, and performs various cleanups
and recoveries. Informational dumps and messages are produced as appropriate. The abend is then
percolated and eventually intercepted by the Language Environment ESTAE exit. Condition handling then
continues as described in Chapter 15, “Introduction to Language Environment condition handling ,” on
page 165.

By the time the Language Environment ESTAE exit intercepts the abend, the SORT has been terminated.
Language Environment moves the current resume cursor to the return point where SORT was invoked and

Sort and merge considerations

526 z/OS: z/OS Language Environment Programming Guide

reflects the deletion of stack frames (and associated load modules) following the SORT invocation. Any
user condition handlers associated with these stack frames (those following the SORT invocation) do not
get control.

Using the PL/I PLISRTx interface
This topic contains a high-level overview of the PLISRTx interfaces to DFSORT. It is designed to introduce
you to concepts that help you understand some of the special considerations for using these PL/I
interfaces in Language Environment. For a detailed description of how to use PLISRTx, see the IBM
Enterprise PL/I for z/OS library (www.ibm.com/support/docview.wss?uid=swg27036735).

PL/I provides a SORT interface called PLISRTx. When you make a call to PLISRTx, you replace x with A, B,
C, or D, depending on whether your input comes from a data set or a PL/I subroutine, and whether your
output is to be written to a data set or processed by a PL/I subroutine:
PLISRTA

Unsorted input is read from a data set and then sorted. The sorted output is written to a data set.
PLISRTB

Unsorted input is provided and processed by a PL/I subroutine before sorting. The sorted output is
written to a data set.

PLISRTC
Unsorted input is read from a data set and then sorted. The sorted output is then processed by a PL/I
subroutine.

PLISRTD
Unsorted input is provided and processed by a PL/I subroutine before sorting. The sorted output is
then processed by a PL/I subroutine.

In the call to PLISRTx, you also pass information about your data, using the SORT and RECORD
arguments, and specify the maximum amount of storage you will allow DFSORT to use.

User exit considerations
Your input handling subroutine and output handling subroutine must be written in PL/I. PL/I generates
a DFSORT E15 exit for your input handling subroutine and a DFSORT E35 exit for your output handling
subroutine.

A call to one of the PLISRTx interfaces might trigger a call to user exit E15, E35, or both, depending on
whether a subroutine is to process your input before sorting, or your output after sorting, as shown in
Table 101 on page 527.

Table 101. DFSORT exit called as a function of a PLISRTx interface call

PL/I sort interface DFSORT exit

PLISRTA None

PLISRTB E15

PLISRTC E35

PLISRTD E15 and E35

Language Environment treats the generated E15 and E35 exits differently than those requested by a
direct invocation of DFSORT. Language Environment treats user exits triggered by PLISRTx as part of the
enclave of the routine that invoked DFSORT; the SVC LINK used to invoke DFSORT is not considered by
Language Environment to initiate a new implicit nested enclave. See Chapter 31, “Using nested enclaves,”
on page 469 for more information about nested enclaves. For more information about direct invocations
of DFSORT, see Directly invoke DFSORT processing in z/OS DFSORT Application Programming Guide.

Sort and merge considerations

Appendix G. Sort and merge considerations 527

http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735

Condition handling considerations
Input and output handling subroutines can issue GOTOs. If you need to deactivate the SORT program for
any reason while in one of these exits, issue a GOTO out of the subroutine.

Program interrupts and Language Environment-signaled conditions
PL/I ON-units can be established in any of the following:

• The routine that made a call to PLISRTx.
• The input(E15) or output(E35) procedure.
• A routine called by the input or output procedure.

These ON-units can handle program interrupts and Language Environment-signaled conditions. Normal
condition handling, as described in Chapter 15, “Introduction to Language Environment condition
handling ,” on page 165, occurs.

Abends
ON-units do not have the opportunity to handle abends that arise during a sort operation.

When there is an abend, the DFSORT ESTAE exit intercepts the abend and performs various clean-ups
and recoveries. Informational dumps and messages are produced as appropriate. The abend is then
percolated and eventually the Language Environment ESTAE exit intercepts it. Condition handling then
continues as described in Chapter 15, “Introduction to Language Environment condition handling ,” on
page 165.

By the time the Language Environment ESTAE exit intercepts the abend, the SORT has been terminated.
Language Environment moves the current resume cursor to the return point where SORT was invoked and
reflects the deletion of stack frames (and associated load modules) after the SORT invocation. Any user
condition handlers associated with these stack frames (those following the SORT invocation) do not get
control.

When running DFSORT (or an OEM SORT function), it is recommended that the TRAP(ON), or
TRAP(ON,SPIE) Language Environment runtime option be specified. This will ensure that the Language
Environment ESPIE is available to process expected internal Language Environment program interrupts.

Sort and merge considerations

528 z/OS: z/OS Language Environment Programming Guide

Appendix H. Running COBOL programs under ISPF

This topic applies to COBOL users only.

When you code your application using ISPF panels, you can gain interactive access to your COBOL
application.

1. If you attempt to pass runtime options to a COBOL program that is invoked from ISPF, the runtime
options will be treated as program arguments.

2. Enterprise COBOL for z/OS, COBOL for OS/390 & VM, COBOL for MVS & VM and COBOL/370 programs
are allowed to run concurrently in both screens of the ISPF split screen mode.

CAUTION: Prior versions of COBOL may not run concurrently in both screens of the ISPF split
screen mode.

Running COBOL programs under ISPF

© Copyright IBM Corp. 1991, 2022 529

Running COBOL programs under ISPF

530 z/OS: z/OS Language Environment Programming Guide

Appendix I. Language Environment macros

The macros identified in this topic are provided as programming interfaces for customers by Language
Environment.

Attention:

Do not use as programming interfaces any Language Environment macros other than those
identified in this topic.

All macros listed here are provided as General-Use Programming Interfaces.

• CEECAA (see “CEECAA macro — Generate a CAA mapping” on page 402)
• CEEDSA (see “CEEDSA macro — Generate a DSA mapping” on page 402)
• CEEENTRY (see “CEEENTRY macro— Generate a Language-Environment-conforming prolog” on page

397)
• CEEFETCH (see “CEEFETCH macro — Dynamically load a routine” on page 407)
• CEELOAD (see “CEELOAD macro — Dynamically load a Language Environment-conforming routine” on

page 405)
• CEEPPA (see “CEEPPA macro — Generate a PPA” on page 402)
• CEERELES (see “CEERELES macro — Dynamically delete a routine” on page 414)
• CEETERM (see “CEETERM macro — Terminate a Language Environment-conforming routine” on page

401)
• CEEXOPT (see Chapter 9, “Using runtime options,” on page 99)
• CEEXPIT (see “Macros that generate the PreInit table” on page 429)
• CEEXPITY (see “Macros that generate the PreInit table” on page 429)
• CEEXPITS (see “Macros that generate the PreInit table” on page 429)
• __csplist (see “C and C++ parameter passing considerations” on page 505)
• __osplist (see “C and C++ parameter passing considerations” on page 505)
• __pcblist (see “C and C++ parameter passing considerations” on page 505)
• __R1 (see “C and C++ parameter passing considerations” on page 505)

Language Environment macros

© Copyright IBM Corp. 1991, 2022 531

Language Environment macros

532 z/OS: z/OS Language Environment Programming Guide

Appendix J. PL/I macros that activate variables

Several PL/I macros shipped with Language Environment activate (%ACT) variables on behalf of the user
program. Using them, code developers can use common Language Environment data types. Use of these
variable names by a user program will result in a compile error. Table 102 on page 533 lists the macros
and the preprocessor variable names.

These PL/I preprocessor variables correspond with the Language Environment data types of the same
name. Use them much as you would standard PL/I attributes. They can be used in combination with:

• Storage class attributes (such as BASED)
• Scope attributes (such as EXTERNAL)
• Alignment attributes (such as ALIGNED)
• Aggregation attributes, including dimensions and structure level numbers; in fact, some of the data

types require the use of level numbers

The Language Environment data types must not be used in combination with:

• Arithmetic attributes, including BASE, SCALR, MODE, PRECISION and PICTURE
• String attributes, including BIT, CHAR, GRAPHIC, VARYING and PICTURE
• Program control data Attributes, including AREA, ENTRY, FILE, LABEL, OFFSET, POINTER, TASK and

VARIABLE
• The LIKE attribute, although you can LIKEn another identifier to one declared using the Language

Environment data types

It is strongly recommended that you always code the Language Environment data type as the last
attribute in any identifier's declaration. Unlike true PL/I attributes, order sometimes counts.

There is another difference between these Language Environment data types and true PL/I attributes:
some of them may not be used as parameter descriptors (in the parameter list of the ENTRY attribute).
Consequently, some of the data types are available in two forms: with and without a "_PARM" suffix. In
these cases, you must use the _PARM version when you specify a parameter descriptor, and the other
version in all other contexts.

One final difference between the Language Environment data types in the following tablet and true PL/I
attributes which you must be aware of is that the Language Environment data types must be treated
as reserved words. Whereas PL/I attribute names can also be used as identifier names, the Language
Environment data type names may not be used in any context other than that of an attribute.

Table 102. Variables activated by PL/I macros

PL/I macro Variables activated

CEEIBMAW INT2

 INT4

 FLOAT4

 FLOAT8

 FLOAT16

 COMPLEX4

 COMPLEX8

 COMPLEX16

 VSTRING

PL/I macros

© Copyright IBM Corp. 1991, 2022 533

Table 102. Variables activated by PL/I macros (continued)

PL/I macro Variables activated

 VSTRING_PARM

 CHAR80

 FEEDBACK

 FEED_BACK

 FEEDBACK_PARM

 FEED_BACK_PARM

 CEE_ENTRY

 CEE_ENTRY_PARM

CEEIBMCT FBCHECK

PL/I macros

534 z/OS: z/OS Language Environment Programming Guide

Appendix K. Accessibility

Accessible publications for this product are offered through IBM Documentation (www.ibm.com/docs/en/
zos).

If you experience difficulty with the accessibility of any z/OS information, send a detailed message to
the Contact the z/OS team web page (www.ibm.com/systems/campaignmail/z/zos/contact_z) or use the
following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

© Copyright IBM Corp. 1991, 2022 535

https://www.ibm.com/docs/en/zos
https://www.ibm.com/docs/en/zos
http://www.ibm.com/systems/campaignmail/z/zos/contact_z

536 z/OS: z/OS Language Environment Programming Guide

Notices

This information was developed for products and services that are offered in the USA or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

This information could include missing, incorrect, or broken hyperlinks. Hyperlinks are maintained in
only the HTML plug-in output for IBM Documentation. Use of hyperlinks in other output formats of this
information is at your own risk.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Site Counsel
2455 South Road

© Copyright IBM Corp. 1991, 2022 537

Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or

538 z/OS: z/OS Language Environment Programming Guide

reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies that collect
each user’s name, email address, phone number, or other personally identifiable information for purposes
of enhanced user usability and single sign-on configuration. These cookies can be disabled, but disabling
them will also eliminate the functionality they enable.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at ibm.com®/privacy and IBM’s Online Privacy Statement at ibm.com/privacy/details
in the section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM Software Products
and Software-as-a-Service Privacy Statement” at ibm.com/software/info/product-privacy.

Policy for unsupported hardware
Various z/OS elements, such as DFSMSdfp, JES2, JES3, and MVS, contain code that supports specific
hardware servers or devices. In some cases, this device-related element support remains in the product
even after the hardware devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported hardware devices. Software
problems related to these devices will not be accepted for service, and current service activity will cease
if a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be
issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently
change when service for particular servers or devices is withdrawn. Likewise, the levels of other software
products supported on a particular release of z/OS are subject to the service support lifecycle of those

Notices 539

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and
product documentation) can include references to hardware and software that is no longer supported.

• For information about software support lifecycle, see: IBM Lifecycle Support for z/OS (www.ibm.com/
software/support/systemsz/lifecycle)

• For information about currently-supported IBM hardware, contact your IBM representative.

Programming interface information
This book documents intended Programming Interfaces that allow the customer to write programs to
obtain the services of Language Environment in z/OS.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and Trademark information (www.ibm.com/legal/copytrade.shtml).

UNIX is a registered trademark of The Open Group in the United States and other countries.

540 z/OS: z/OS Language Environment Programming Guide

http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/legal/copytrade.shtml

Index

Special Characters
__csplist macro 506
__osplist macro 506
__pcblist macro 506
__R1 macro 505
_CEE_RUNOPTS environment variable

specifying runtime options at invocation 100
, (comma) 102
' (apostrophe) 105
@DELETE service routine for preinitialization

components of 459
return/reason codes for 459

@EXCEPRTN service routine for preinitialization
components of 461
return/reason codes for 462, 463

@FREESTORE service routine for preinitialization
components of 460
return/reason codes for 461

@GETSTORE service routine for preinitialization
components of 460
return/reason codes for 460

@LOAD service routine for preinitialization
components of 458
return/reason codes for 459

@MSGRTN service routine for preinitialization
components of 463
return/reason codes for 464

/ (slash)
specifying in PARM parameter 65

& (ampersand) 105
= (equal) 65

Numerics
16M line

COBOL programs that run above must be reentrant 119

A
abend codes

abend 4093, reason code 60 513
CEEAUE_RETC field of CEEBXITA and 378
generated by CEEBXITA and ABTERMENC(ABEND) 134
in CICS 359
short-on-storage condition and 356

ABEND command
CEE3ABD callable service and 422
CEESGL callable service and 422
table of equivalent Language Environment services 422

abends
ABEND command and 422
CEEPIPI interface to preinitialization 445
CICS

assembler user exit and EXEC CICS ABEND 379
EXEC CICS HANDLE ABEND and 358
forcing database rollback 360

abends (continued)
CICS (continued)

nested conditions and 471
short-on-storage condition and 356

dump, requesting in CEEBXITA assembler user exit 379
IMS, creating system abends under 367
Language Environment-generated 169
nested conditions and 205
nested enclaves and

created by C system() 475
created by EXEC CICS LINK or EXEC CICS XCTL 471
created by SVC LINK 472

percolating
in CEEBXITA 169, 376
methods of percolating 169

q_data_token and 242
short-on-storage condition can cause 356
sort and merge operations, occurring in

in COBOL 526
in PL/I 528

specifying in CEEBXITA 376
terminating with an abend 133
TRAP runtime option and CEEBXITA 376

abort() function
C condition handling semantics and 184
HLL user exit and 385
in a preinitialized environment 432
SIGABRT and 182

ABTERMENC runtime option
using to create system abends under MVS 367
using to terminate with abend code or return and reason
codes 133

ACCEPT statement 273
accessibility

contact IBM 535
add_entry

return codes from 451
syntax description 450

additional heap
tuning the heap 151

AFHWL cataloged procedure 93
AFHWLG cataloged procedure 93
AFHWN cataloged procedure 94
AFHWRLK — Fortran library replacement tool 12
AIB (application interface block) 365
AIBTDLI interface to IMS 501
ALLOCATE command

using with CALL command under TSO 72
using with LOADGO command under TSO 74

AMODE
assembler routines and 391
C applications and 351
C/C++AMODE considerations
10
for CEEBXITA user exit 376
heap storage 151
in preinitialized routines 428

Index 541

ampersand (&)
how to specify in CEEXOPT 105
using to pass by reference (indirect) 113

anywhere heap 148
apostrophe (')

using in CEEXOPT 105
application

invoking MVS executable programs from a z/OS UNIX
shell 79
link-editing using c89 78
placing MVS load modules in the z/OS UNIX file system
79
running

from the z/OS UNIX shell
79
under batch 80
under MVS batch 80

application interface block (AIB) 365
AREA storage for PL/I 148
argc parameter for C

C parameter passing styles and 507
ARGPARSE runtime option

possible combinations of runtime options and program
arguments 103

ARGSTR 108
argument

case sensitivity of arguments under TSO, for C
applications 511
distinguishing program arguments from runtime options
102
list format

EXECOPS compiler option and 509
EXECOPS runtime option and 506, 509
how interactions of EXECOPS and PLIST compiler
options affect 509
how interactions of EXECOPS and PLIST runtime
options affect 507
PLIST compiler option and 509
PLIST runtime option and 506

passing
by reference 112
by value 112
C passing for operating systems and subsystems
113, 505
directly 112
guidelines for writing callable services 503
indirectly 112

relationship to parameter list 111
specifying to an invoked routine which format to expect
(C) 506

argv parameter for C
C parameter passing styles and 507

arithmetic
date calculations

examples illustrating multiple calls to CEESECS
callable service 289, 291
overview 285

examples using 343
asis 511
ASMTDLI interface to IMS 365
ASSEMBLE file 255
assembler language

ASMTDLI interface 501
C as substitute for 519

assembler language (continued)
COBOL parameter list format 511
EXEC DLI interface 501
macros

CEECAA — generate a CAA mapping 402
CEEDSA — generate a DSA mapping 402
CEEENTRY — generate a Language Environment-
conforming prolog 397
CEEFETCH — macro to dynamically load a Language
Environment-conforming routine 407
CEELOAD — macro to dynamically load a Language
Environment routine 405
CEEPPA — generate a PPA 402
CEERELES — macro to dynamically release a
Language Environment-conforming routine 414
CEETERM — terminate a Language Environment-
conforming routine 401

routines
calling conventions for 391
calling IMS PL/I routines from 366
compatibility with Language Environment 389
condition handling for 392
equivalent callable services for 422
example 419
invoking callable services from 422
main routines 391
no support for assembler main routines under CICS
389
program check, handling 227
subroutines 392
system services available to 422

system programming C considerations 522–524
assigning

message insert data 266
assistive technologies 535
atexit list

CEEPIPI and 432
ATTACH macro 424
automatic data

definition 137
how used in enclave 139

B
below heap

what used for 151
binder interface

c89 utility 77
bit manipulation routines 341
BPXBATCH program

invoking from TSO/E 80
running an executable z/OS UNIX file under batch
80

building freestanding applications
including alternate initialization routines for 519
MVS 519

BYADDR compiler option 117
BYVALUE compiler option

functions 117
required if SYSTEM(CICS) specified 513

542 z/OS: z/OS Language Environment Programming Guide

C
C

AMODE/RMODE considerations 10
building linked list in 152
building system exit routines 522
calls to C under CICS 361
calls to C++ under CICS 361
case sensitivity of arguments under TSO 511
condition handling 181, 186
examples

CEE3CTY, CEEFMDT and CEEDATM 311, 312
CEE3CTY, CEEFMDT, CEE3MDS, CEE3MCS and
CEE3MTS 312
CEE3RPH, CEECRHP, CEEGTST, CEECZST, CEEFRST
and CEEDSHP 157
CEEDAYS, CEEDATE and CEEDYWK 301
CEEGTST and CEEFRST 152
CEEHDLR, CEEGTST, CEECZST and CEEMRCR 214,
215
CEEHDLR, CEESGL, CEEGQDT and CEEMRCR 221
CEEMOUT, CEENCOD, CEEMGET, CEEDCOD and
CEEMSG 276
CEEQCEN and CEESCEN 286
CEESECS and CEEDATM 292
CEESECS, CEESECI, CEEISEC and CEEDATM 296
CEESECS, multiple calls to 289
coding main routine to receive inbound parameter
list 114, 117
freestanding MVS routines 519, 521

global condition handling model 181
interfaces to IMS from

list of DLI interfaces 501
LONGNAME compiler option 483
OPTIMIZE(2) compiler option 522
parameter passing, for operating systems and

subsystems
PLIST and EXECOPS interactions 506, 509
styles 505

puts() function
freestanding routines and 520

RENT compiler option
making C routines reentrant with 120

specifying runtime options for
with _CEE_RUNOPTS 100

stderr
default destinations of 272
interleaving output with other output 272
redirecting output from 272

c89 utility
interface to the linkage editor 77
link-edit object modules 78

CALL command for TSO
case sensitivity of arguments when invoking C routine
with 511
example using 73
syntax description 72

CALL IMS interfaces 501
CALL statement

for COBOL
callable service feedback code and 233

callable services
CEE3ABD — terminate enclave with an abend 125

callable services (continued)
CEE3CIB — return pointer to condition information block
165
CEE3CTY — set default country 309
CEE3DLY 335
CEE3DMP 335
CEE3GRC — get the enclave return code 125
CEE3GRN — get name of routine that incurred condition
165
CEE3INF 335
CEE3LNG — set national language 309
CEE3MCS — get default currency symbol 309
CEE3MDS — get default decimal separator 309
CEE3MTS — get default thousands separator 309
CEE3PRM and CEE3PR2— query parameter string 125
CEE3SPM — query and modify Language Environment
hardware condition enablement 165
CEE3SRC — set the enclave return code 125
CEE3USR 335, 336
CEECBLDY — convert date to COBOL Lilian format 283
CEECMI — store and load message insert data 255
CEECRHP — create new additional heap 145
CEECZST — reallocate (change size of) storage 145
CEEDATE — convert Lilian date to character format 283
CEEDATM — convert seconds to character timestamp
283
CEEDAYS — convert date to Lilian format 283
CEEDCOD — decompose a condition token 231
CEEDLYM 335, 336
CEEDYWK — calculate day of week from Lilian date 283
CEEENV 335–337
CEEFMDA — get default date format 309
CEEFMDT — get default date and time format 309
CEEFMON — format monetary string 317
CEEFMTM — get default time format 309
CEEFRST — free heap storage 145
CEEFTDS — format date and time into character string
317
CEEGMT — get current Greenwich mean time 283
CEEGMTO — get offset from Greenwich mean time to
local time 283
CEEGPID 335
CEEGQDT — retrieve q_data_token 221
CEEGTJS 335, 337
CEEGTST — get heap storage 145
CEEHDLR — register user condition handler 165
CEEISEC — convert integers to seconds 283
CEELCNV — query locale numeric conventions 317
CEELOCT — get current local time 283
CEEMGET — get a message 255
CEEMICT 335, 337
CEEMOUT — dispatch a message 255
CEEMRCR — move resume cursor relative to handle
cursor 165
CEEMSG — get, format, and dispatch a message 255
CEENCOD — construct a condition token 231
CEEQCEN — query the century window 283
CEEQDTC — query locale, date, and time conventions
317
CEEQRYL — query active locale environment 317
CEERAN0 335
CEESCEN — set the century window 283
CEESCOL — compare string collation weight 317
CEESECI — convert seconds to integers 283

Index 543

callable services (continued)
CEESECS — convert timestamp to number of seconds
283
CEESETL — set locale operating environment 317
CEESGL — signal a condition 165
CEESTXF — transform string into collation weights 317
CEETEST 335, 337
CEEUSGD 335, 337
getting started with 337, 340
guidelines for writing 503
invoking under assembler 422

calloc() function 148
calls

dynamic call
C++calling C++ under CICS 361
calls between COBOL and VS COBOL II, under CICS
361
external references resolved at run time when
made 11

static call
external references resolved at run time when
made 11
in CICS COBOL applications 361

casting, when using R1 and osplist macros 506
cataloged procedure

AFHWL (link-edit a Fortran program) 88
AFHWLG (link-edit and run a Fortran program) 88
AFHWN (change external names in conflict between C
and Fortran) 88
AFHWRL (separate and link-edit Fortran object module)
88, 120
AFHWRLG (separate, link-edit and run object module)
89, 120
AFHXFSTA (Fortran reentrancy program) 120
CBCC (compile a C++ program) 87
CBCCL (compile, prelink, and link-edit a C++ program)
87
CBCCLG (compile, prelink, link-edit, and run a C++
program) 87
CBCG (run a C++ program) 87
CBCL (prelink and link-edit a C++ program) 87
CBCLG (prelink, link-edit, and run a C++ program) 87
CEEWG (load and run an HLL program) 89
CEEWL (link-edit an HLL program) 90
CEEWLG (link-edit and run an HLL program) 90, 91
CXXFILT (invoke the demangle mangled names utility)
87
data set names 86
EDCC (compile a C program) 87
EDCCL (compile and link-edit a C program)

comparison with other cataloged procedures 86
using with system programming facilities 520

EDCCLG (compile, link-edit, and run a C program) 87
EDCCLIB (compile and maintain an object library) 87
EDCCPLG (compile, prelink, link-edit, and run a C
program) 86
EDCDSECT (invoke the DSECT conversion utility) 87
EDCLDEF (invoke locale object utility) 87
EDCLIB (invoke object library utility) 87
EDCPL (prelink and link-edit a C program) 87
IBM-supplied

EDCLIB 515
IEL1C (compile a PL/I program) 89
IEL1CG (compile, load, and run a PL/I program) 89

cataloged procedure (continued)
IEL1CL (compile and link-edit a PL/I program) 89
IEL1CLG (compile, link-edit, and run a PL/I program) 89
IGYWCG (compile, load, and run a COBOL program) 86
IGYWCL (compile and link-edit a COBOL program) 86
IGYWCLG (compile, link-edit, and run a COBOL program)
86
IGYWPL (prelink and link-edit a COBOL program) 89
introduction to 85
invoking 85
JCL and 58, 64
modifying 95
overriding and adding DD statements

nullifying parameters of 95
rules for 95

overriding and adding to EXEC statements 95
overriding default options 85
quick reference of 86
specifying runtime options in 67
step names in 85
unit names 86

CBCC cataloged procedure 87
CBCCL cataloged procedure 87
CBCCLG cataloged procedure 87
CBCG cataloged procedure 87
CBCL cataloged procedure 87
CBCLG cataloged procedure 87
CBLOPTS runtime option

VS COBOL II compatibility and 107
CBLPSHPOP runtime option

EXEC CICS PUSH and EXEC CICS POP commands and
359

CBLTDLI interface to IMS
list of DLI interfaces 501

CC CLIST
C370LIB parameter 517

CEE Facility_ID 267, 268
CEE_RUNOPTS environment variable

specifying runtime options at invocation 100
CEE3ABD — terminate enclave with an abend

ABEND command and 422
CEE3CIB — return pointer to condition information block 166
CEE3CTY — set default country

examples using
CEE3CTY with CEEFMDT and CEEDATM 311, 313
CEE3CTY with CEEFMDT, CEE3MDS, CEE3MCS and
CEE3MTS 312

CEE3DLY callable service 335
CEE3DMP — generate dump

CESE transient data queue and 361
SNAP command and 424

CEE3DMP callable service 335
CEE3GRN — get name of routine that incurred condition

examples using 224, 226
CEE3INF callable service 335
CEE3LNG — set national language

messages and 268
CEE3MCS — get default currency symbol

examples using 312
CEE3MDS — get default decimal separator

examples using 312
CEE3MTS — get default thousands separator

examples using 312
CEE3PRM and CEE3PR2— query parameter string 125

544 z/OS: z/OS Language Environment Programming Guide

CEE3SPM — query and modify Language Environment
hardware condition enablement

advisory note regarding 503
condition handling, XUFLOW runtime option and 170
examples using 224, 226

CEE3USR callable service 335, 336
CEEAUE_A_AB_CODES

description 380
specifying abend codes in 376

CEEAUE_A_CC_PLIST 379
CEEAUE_A_OPTIONS 379
CEEAUE_A_WORK 379
CEEAUE_ABND 379
CEEAUE_ABTERM 378
CEEAUE_DUMP 379
CEEAUE_FBCODE 380
CEEAUE_FLAGS

CEEAUE_ABND field of 379
CEEAUE_ABTERM field of 378
CEEAUE_DUMP field of 379
CEEAUE_STEPS field of 379
format 378

CEEAUE_FUNC 377
CEEAUE_LEN 377
CEEAUE_RETC

description 378
relationship to CEEAUE_ABND 378, 379
relationship to CEEAUE_RSNC 378, 379

CEEAUE_RSNC
description 378
relationship to CEEAUE_ABND 379
relationship to CEEAUE_RETC 379

CEEAUE_STEPS 379
CEEBINT HLL user exit

description 125
functions 372
interactions with CEEPIPI 432
interface to 385
languages it can be coded in 384
terminating enclave created by 385
user word parameter of, and CEEAUE_USERWD 385
when invoked 373

CEEBLDTX utility
error messages 261
using to create message files 255

CEEBXITA assembler user exit
abends and

requesting 375
specifying codes to be percolated 376

actions taken if errors occur within the exit 376
AMODE/RMODE considerations 376
application-specific 371
behavior of

during enclave initialization 372, 373
during enclave termination 375
during process termination 376

description 125
EXEC CICS commands that cannot be used with 359
functions 371
IMS and 367
installation-wide 371
interactions with CEEPIPI 432
interface to

diagram of 376

CEEBXITA assembler user exit (continued)
modifications to, rules for making 376
PLIRETC and 359
specifying runtime options in 379
TRAP runtime option and 376
when invoked 373
work area for 379

CEECAA assembler macro
relationship to CEEENTRY 397
syntax description 402

CEECMI — store and load message insert data
assigning values to message insert 266

CEEDATE — convert Lilian date to character format
examples using 301

CEEDATM — convert seconds to character timestamp
examples using

examples with CEE3CTY and CEEFMDT 311, 313
examples with CEESECS 292, 295
examples with CEESECS, CEESECI and CEEISEC
296

CEEDAYS — convert date to Lilian format
examples using 301

CEEDCOD — decompose a condition token
examples using 276
testing equivalent tokens 233

CEEDLYM callable service 335, 336
CEEDOPT

specifying runtime options for MVS 67
CEEDSA assembler macro

relationship to CEEENTRY 397
syntax description 402

CEEDSASZ label 402
CEEDYWK — calculate day of week from Lilian date

examples using 301
CEEENTRY assembler macro

relationship to CEECAA 397
relationship to CEEDSA 399
relationship to CEEPPA 397, 398
relationship to CEETERM 397
syntax description 398

CEEENV callable service 335–337
CEEFETCH assembler macro 407
CEEFMDA — get default date format 309
CEEFMDT — get default date and time format

examples using
examples with CEE3CTY and CEEDATM 311, 313
examples with CEE3CTY, CEE3MDS, CEE3MCS and
CEE3MTS 312

CEEFMON — format monetary string
examples using 318, 319

CEEFMTM — get default time format 309
CEEFTDS — format date and time into character string

examples using 320, 321
CEEGMT — get current Greenwich mean time 284
CEEGMTO — get offset from Greenwich mean time to local
time 284
CEEGPID — retrieve the Language Environment version and
platform ID 337
CEEGPID callable service 335
CEEGQDT — retrieve q_data_token

examples using 221
CEEGTJS callable service 335, 337
CEEHDLR — register user condition handler

assembler routines and 392

Index 545

CEEHDLR — register user condition handler (continued)
condition handling example 186
condition handling model and 176
condition handling terminology 182
examples using

assembler example 227, 230
examples with CEE3SPM, CEE3GRN and CEEMOUT
224, 226
examples with CEEGTST, CEECZST and CEEMRCR
214, 216
examples with CEESGL, CEEGQDT and CEEMRCR
221

restrictions on using with various EXEC CICS commands
358, 422
SETRP command and 422
STAX command and 422
syntax description of user-written condition handlers
202, 204

CEEHDLU — unregister user condition handler
EXEC CICS HANDLE ABEND command and 422
SETRP command and 422
STAX command and 422
syntax description of user-written condition handlers
202, 204

CEEISEC — convert integers to seconds
examples using 296

CEELCNV — query locale numeric conventions
examples using 322, 324

CEELOAD assembler macro 405
CEELOCT — get current local time

examples using 285
CEELRR — initialize or terminate library routine retention 395
CEEMGET — get a message

examples using 276
relationship to condition tokens and other message
services 232

CEEMICT callable service 335, 337
CEEMOUT — dispatch a message

examples using
examples with CEEHDLR, CEE3SPM and CEE3GRN
223, 226
examples with CEENCOD, CEEMGET, CEEDCOD and
CEEMSG 276

relationship to condition tokens and other message
services 232
WTO command and 424

CEEMRCR — move resume cursor relative to handle cursor
examples using

examples with CEEHDLR, CEEGTST and CEECZST
214, 216
examples with CEEHDLR, CEESGL and CEEGQDT
221

resume action and 176
CEEMSG — get, format, and dispatch a message

examples using 276
relationship to condition tokens and other message
services 232

CEENCOD — construct a condition token
examples using 276

CEEOPTS DD 56, 69
CEEOPTS DD statement

restrictions 106
using 106

CEEPDDA macro 417

CEEPLDA macro 418
CEEPPA assembler macro

relationship to CEEENTRY 397
syntax description 402

CEEQCEN — query the century window
examples using 286, 288

CEEQDTC — query locale, date, and time conventions
examples using 325, 326

CEEQRYL — query active locale environment
examples using 329, 332

CEERAN0 callable service 335
CEERELES assembler macro 414
CEEROPT

specifying runtime options for MVS batch 67
CEESCEN — set the century window

examples using 286, 288
CEESCOL — compare string collation weight

examples using 327, 328
CEESECI — convert seconds to integers

examples using 296
CEESECS — convert timestamp to number of seconds

examples using CEESECS
C 289
COBOL 290
PL/I 291

examples with CEEDATM
C 292
COBOL 293
PL/I 295

examples with CEESECI, CEEISEC and CEEDATM
C 296
COBOL 297
PL/I 299

CEESETL — set locale operating environment
examples using 322, 326, 329, 330

CEESGL — signal a condition
ABEND command and 422
description of signals 167
examples using 221
EXEC CICS HANDLE ABEND command and 422
HLL-specific condition handlers and 169
relationship to condition tokens and message services
232
SETRP command and 422
STAX command and 422
TRAP runtime option does not affect 169
user-written condition handlers and 169

CEESTART
preinitialization and 427

CEESTXF — transform string into collation weights
examples using 331, 332

CEETDLI interface to IMS
list of DLI interfaces 501

CEETERM assembler macro
relationship to CEEENTRY 397
syntax description 401

CEETEST — invoke debug tool
condition handling and 175

CEETEST callable service 335, 337
CEEUOPT

CEEUOPT ASSEMBLE 100
CEEXOPT macro and 104
description 100
specifying runtime options for MVS 67

546 z/OS: z/OS Language Environment Programming Guide

CEEUSGD callable service
description 335

CEEWG cataloged procedure (load and run a program) 89
CEEWL cataloged procedure (link-edit a program) 90
CEEWLG cataloged procedure (link-edit and run a program)
90, 91
CEEXOPT macro

description 104
sample of CEEUOPT modified using 104
usage notes for 105

CEEXPIT macro 429
CEEXPITS macro 430
CEEXPITY macro 429
CESE transient data queue

CEEMOUT and CEE3DMP output directed here 355
format 360
message handling and 271

CHAP command 422
CICS

callable service behavior under
availability of callable services 355

CBLPSHPOP runtime option and 359
CESE transient data queue and 355
CICS region 349
CICS run unit

behavior in nested enclave 470
compared to Language Environment enclave 349

COBOL parameter list formats 511
coding main routines to receive parameters 116
condition handling for 357
I/O restrictions in 350
link-editing for 351
list of interfaces to IMS that work from 501
message and dump output file 355
message format 360
message handling for 360
multitasking for 350
OS/VS COBOL compatibility considerations 355
PLIRETC support 351, 359
PLIRETV support 351
PLIST and EXECOPS interactions 506, 509
processing program table (PPT) 350
program control table (PCT) 350
reentrancy and 119
relinking PL/I applications 20
required level of 349
run-time output file 360
specifying runtime options for 352
storage and 356
SYSTEM setting 512
terminology 349
transaction 349, 350
transaction rollback 360
translator 358

CLISTs for TSO
case sensitivity of args when invoking a C routine with
511
CMOD 71, 72

CLOSE command 424
CMOD CLIST 71, 72
COBOL

building a linked list in 152
can choose between static and dynamic calls under 11
condition handling 189, 192

COBOL (continued)
constructing and dispatching a message for the
significance condition 224, 226
examples

CEE3CTY, CEEFMDT and CEEDATM 312
CEE3RPH, CEECRHP, CEEGTST, CEECZST, CEEFRST
and CEEDSHP 157, 159
CEEDAYS, CEEDATE and CEEDYWK 301, 303
CEEFMON — format monetary string 318
CEEFTDS — format date and time into character
string 320
CEEGTST and CEEFRST 152
CEEHDLR, CEE3SPM, CEE3GRN and CEEMOUT 223,
226
CEEHDLR, CEEGTST, CEECZST and CEEMRCR 216
CEELCNV and CEESETL 322
CEEMOUT, CEENCOD, CEEMGET, CEEDCOD and
CEEMSG 278
CEEQCEN and CEESCEN 287, 288
CEEQDTC and CEESETL 325
CEESCOL — compare string collation weight 327
CEESECS and CEEDATM 293
CEESECS, CEESECI, CEEISEC and CEEDATM 297
CEESECS, multiple calls to 290
CEESETL and CEEQRYL 329
CEESTXF and CEEQRYL 331
coding main program to receive inbound
parameters 114, 117

GOBACK statement
generates return code 131

interfaces to IMS from
list of DLI interfaces 501

ISPF 529
non-CICS OS/VS COBOL programs supported in single
enclave only 469
order of program arguments and runtime options 107
OS/VS COBOL under CICS 355
parameter list formats 511
parameter passing style in Language Environment 113
preinitialization services 433
RENT compiler option 120
run-time options, specifying from 106
runtime options, specifying from 99
STOP RUN statement

CEEBXITA assembler user exit and 373
effect SVC LINK has on 426
preinitialized environment and 432
return codes and 131

SVC LINK considerations for RES routines 426
comma (,) 102
command

syntax diagrams xxviii
command processor parameter list (CPPL)

coding a main routine to receive 114
PLIST, EXECOPS and 507, 509

COMMAREA
COBOL user-written condition handlers and
358

common anchor area (CAA)
writing assembler routines 391

common environment, introduction 4
compatibility

assembler 389
CICS 351

Index 547

compatibility, downward 8
condition

callable service feedback code and 231, 233
definition 168
divide-by-zero

examples illustrating condition handling for 221
nested 470, 473
severity

CEEBXITA assembler user exit and 378
condition token and 234
ERRCOUNT runtime option and 172
how to determine in a message 172, 268
TERMTHDACT runtime option and 175
unhandled conditions and 133

condition handler
C signal handlers

description 183
TRAP runtime option and 169

description 176
HLL semantics

percolation and 177
SORT and MERGE operations 526

PL/I ON-units
CEESGL callable service and 169
SORT and MERGE operations 528
TRAP runtime option and 169

user-written
accessing a q_data structure and moving the
resume cursor from 221
C raise() function and 182, 183
C signal() function and 183
coding 201, 204
constructing message string when significance
condition occurs 223
EXEC CICS commands that cannot be used with
358
in ILC applications 205
in nested condition handling 205
introduction to user-written condition handlers 175
registering with CEEHDLR callable service 176
registering with USRHDLR runtime option 204
role in Language Environment condition handling
model of 175
sort and merge operations and 526, 528
syntax for 202

condition handling
assembler routines 392
basic condition handling scenarios 177, 180
C semantics

default actions for C conditions 181
example of 185, 186
global error table and 181
scenario of 184
signal() function and 183

callable service feedback code and 231, 233
callable services for

examples using CEEHDLR, CEEGTST, CEECZST and
CEEMRCR 214, 216
examples using CEEHDLR, CEESGL, CEEGQDT and
CEEMRCR 221
usage scenario 213

CICS, under 358
COBOL

ON SIZE ERROR clause 189

condition handling (continued)
COBOL (continued)

semantics of 189, 192
coding 201, 204
examples 206, 230
Fortran 193
Fprtram 192
global model provided by C 181
IMS, under 392
introduction to 165, 177
nested enclaves

created by C system() 474
created by EXEC CICS LINK or EXEC CICS XCTL 470
created by SVC LINK 472
with a PL/I fetchable main 475, 476

PL/I 193, 195
sort and merge considerations 526
stack frame-based model provided by Language

Environment
details of 177
overview 165, 177

terminology 167
user exits and 360
user-written condition handler 175
using symbolic feedback code in 234, 239
when to use 165

condition manager
C signal handler and 186
stack frame collapse and 191
symbolic feedback code and 235
thread initialization and 126

condition step 171, 172
condition token

callable service feedback code and 231, 233
condition handling model and 165
messages and 268
using 231

constructed reentrancy 119
contact

z/OS 535
continuations 105
control block

CAA 391
COPY file 255
critical error message (severity 4) 268
cross system product (CSP) 506
csplist macro 506
ctdli() interface to IMS 365
CXIT control block

CEEAUE_A_AB_CODES field of 376
CEEAUE_A_CC_PLIST field of 379
CEEAUE_A_OPTIONS field of 379
CEEAUE_A_WORK field of 379
CEEAUE_FBCODE field of 380
CEEAUE_FLAGS field of

CEEAUE_DUMP field of 379
CEEAUE_STEPS field of 379
format of the 378

CEEAUE_FUNC field of 377
CEEAUE_LEN field of 377
CEEAUE_USERWD field of

user word parameter of CEEBINT and 385
CXXBIND EXEC 496
CXXFILT cataloged procedure 87

548 z/OS: z/OS Language Environment Programming Guide

CXXMOD EXEC 496

D
data types

guidelines for, when writing callable services 503
database rollback

assembler user exit and Db2 363
assembler user exit and IMS 367
how CICS handles a 360

date and time
services, summary

TIME command and 424
Db2

AMODE/RMODE considerations 10
DD statement

data sets and
defining data sets for the linkage editor 58
defining data sets for the loader 66

overriding in cataloged procedures 95, 96
proper format in JCL 66

Debug Tool
C condition handling example of 186
CEEBXITA and 376

debugging
ABPERC runtime option and 169

definition sidedeck 46
DELETE command

EXEC CICS command 422
host service 424

DELETE service routine for preinitialization
components of 459
return/reason codes for 459

DEQ 422
dereferencing 505, 506
DETACH 422
DFHECI (EXEC CICS interface stub) 351
DFHELII (EXEC CICS interface stub) 351
DFHPL10I (replaced by DFHELII) 351
DFSORT (Data Facility Sort)

condition handling for 526, 528
native invocations of 525, 526
SVC LINK and 526
user exits associated with 526

DISPLAY statement
default file for 273

DL/I call 501
DLL code 36
DLLs (dynamic link libraries)

application 36
applications 36
binding a DLL 46
binding a DLL application 47
C or C++ example 38
calling explicitly 37
calling implicitly 37
COBOL/C example 40
complex

creating 54
creating

#pragma export 44
C 43
description 43
exporting functions 44

DLLs (dynamic link libraries) (continued)
entry point 52
example 51
freeing 43
function 35
load-on-call 37
loading 41
managing the use of 41
performance 53
restrictions 52
sharing among application executable files 43
using 48
variable 35

downward compatibility 8
DSA (dynamic save area)

register 13 and 391
dump

CEEBXITA assembler user exit and 375, 379
for CICS 355, 361
Language Environment

SNAP command and 424
dynamic call

C, under CICS 361
C++, under CICS 361
external references resolved at run time when made 11
VS COBOL II, under CICS 361

E
EDC facility ID 267, 268
EDCC cataloged procedure 87
EDCCL cataloged procedure

comparison with other cataloged procedures 86
using in system programming C 520

EDCCLG cataloged procedure (compile, link-edit and run a C
program) 86
EDCCLIB cataloged procedure (compile C program and
invoke object library utility) 87, 515
EDCCPLG cataloged procedure (compile, prelink, link-edit
and run a C program) 86
EDCDSECT cataloged procedure 87
EDCLDEF cataloged procedure (invoke locale object utility)
87
EDCLIB cataloged procedure (invoke object library utility)
87, 515
EIB (exec interface block)

calls within same HLL and 361
user-written condition handlers, EXEC CICS commands
and 358

enablement
condition handling step

definition of exceptions 168
discussion of 168, 170
TRAP runtime option and 169

enclave
definition 139
HLLs and 139, 140
main routines and 139
management of Language Environment resources 140
multiple 140
nested

created by C system() function 469, 473
created by EXEC CICS LINK or EXEC CICS XCTL
469, 470

Index 549

enclave (continued)
nested (continued)

created by SVC LINK 469, 471
DFSORT and SVC LINK 526
enclave with a PL/I fetchable main routine 475, 476
MSGFILE ddnames and 271

relationship with C main functions 139
relationship with COBOL run units 139
relationship with processes 138
role in Language Environment program management
model 140
subroutines and 139
termination

behavior 133
with abend 379
with assembler routine 392
with HLL user exit 385

ENQ 422
Enterprise PL/I for z/OS

z/OS UNIX support same as for C++
77

entry point
defining, when link-editing a fetchable load module 20

ENV runtime option
C interface to IMS 365

ENVAR runtime option
using to pass switches and tagged information into
applications 353

environment, common 4
equality, testing a condition token for 233
equivalence, testing a condition token for 232
ERRCOUNT runtime option

condition handling model and 172
error message (severity 2) 268
ESD map of defined and longnames 488
ESTAE

sort and merge condition handling 526
Euro support 310
EVENTS command 424
examples

building a condition token, in C 221
CALL command for TSO 72
CEE3CTY — set default country

with CEEFMDT 311, 313
with CEEFMDT and CEEDATM 311, 313
with CEEFMDT, CEE3MDS, CEE3MCS, and CEE3MTS
312

CEEDATE — convert Lilian date to character format
with CEEDAYS and CEEDYWK 301

CEEDATM — convert seconds to character format
with CEE3CTY and CEEFMDT 311, 313
with CEESECS callable service 292, 295
with CEESECS, CEESECI, and CEEISEC 296

CEEDAYS — convert date to Lilian format
with CEEDATE and CEEDYWK 301

CEEDCOD — decompose a condition token
with CEEMOUT, CEENCOD, CEEMGET, and CEEMSG
224, 226

CEEDYWK — calculate day of week from Lilian date
with CEEDATE and CEEDAYS 301

CEEFMDT — get default date and time format
with CEE3CTY and CEEDATM 311, 313

CEEFMON — format monetary string 318, 319

examples (continued)
CEEFTDS — format date and time into character string
320, 321
CEEHDLR — register user-written condition handler

calling from assembler 227, 230
with CEE3SPM, CEE3GRN, and CEEMOUT 223, 224
with CEEGTST, CEECZST and CEEMRCR 214, 216
with CEESGL, CEEGQDT, and CEEMRCR 221

CEEISEC — convert integers to seconds
with CEESECS, CEESECI, and CEEDATM 296

CEELCNV — query locale numeric conventions
with CEESETL 322, 324

CEEMGET — get a message
with CEEMOUT, CEENCOD, CEEDCOD, and CEEMSG
224, 226

CEEMOUT — dispatch a message
with CEEHDLR, CEE3SPM, and CEE3GRN 224, 226
with CEENCOD, CEEMGET, CEEDCOD, and CEEMSG
223, 224

CEEMSG — get, format, and dispatch a message
with CEEMOUT, CEENCOD, CEEMGET, and
CEEDCOD 224, 226

CEENCOD — construct a condition token
with CEEMOUT, CEEMGET, CEEDCOD, and CEEMSG
224, 226

CEEQCEN — query century window 286
CEEQDTC — query locale, date, and time conventions

with CEESETL 325, 326
CEEQRYL — query active locale environment

with CEESETL 329, 330
with CEESTXF 331, 332

CEESCEN — set century window 286
CEESCOL — compare string collation weight 327, 328
CEESECI — convert seconds to integers

with CEESECS, CEEISEC, and CEEDATM 296
CEESECS — convert timestamp to number of seconds

multiple calls to 289, 291
using CEEDATM with 292, 295
with CEESECI, CEEISEC, and CEEDATM 296

CEESETL — set locale operating environment
with CEELCNV 322, 324
with CEEQDTC 325, 326

CEESIMOD — perform modular arithmetic 343
CEESSLOG — calculate logarithm base e 345
CEESTXF — transform string into collation weights

with CEEQRYL 331, 332
ENTRY statement for MVS 519
INCLUDE statement for MVS

building freestanding MVS routine 520
including alternate initialization routines

MVS 519
invoking the prelinker

from TSO 494
LINK command 70
link-editing a fetchable load module 20
linking and running under TSO 69
LOADGO command 73
math services 343
overriding parameters in CEEWLG cataloged procedure
95
querying and setting the century window 286
relinking PL/I applications 19

EXCEPRTN service routine for preinitialization
components of 461

550 z/OS: z/OS Language Environment Programming Guide

EXCEPRTN service routine for preinitialization (continued)
return/reason codes for 462, 463

exceptions
historical definition 168
Language Environment definition 168

EXEC CICS command
ABEND 358, 359, 379
DELETE 422
FREEMAIN 356, 424
GETMAIN 356, 424
HANDLE ABEND

assembler user exit and 359
CEEHDLR callable service and 422
CEEHDLU callable service and 422
CEESGL callable service and 422
table of equivalent Language Environment services
422
TRAP runtime option and 358
user-written condition handlers and 358

HANDLE AID
assembler user exit and 359
user-written condition handlers and
358

HANDLE CONDITION
assembler user exit and 359
user-written condition handlers and
358

IGNORE CONDITION 358, 359
LINK

assembler routines and 424
behavior of nested enclaves created by 470
C and 361
C++ and 361
OS/VS COBOLand 362
program management model and 350
run-time options and 470

LOAD 422
POP HANDLE

assembler user exit and 359
user-written condition handlers and
358

PUSH HANDLE
assembler user exit and 359
user-written condition handlers and
358

RETURN 362
XCTL

assembler routines and 424
behavior of nested enclaves created by 470
C and 361
C++ and 361
OS/VS COBOLand 362
program management model and 350
run-time options and 470

EXEC statement for MVS
EXECOPS runtime option and 57
invoking linkage editor 58
invoking loader 64
overriding, in cataloged procedures 95
syntax for executing an application 66
syntax for specifying runtime options 56

EXECOPS compiler option
MVS argument list format and 509

EXECOPS runtime option

EXECOPS runtime option (continued)
CEENTRY macro and 400
EXEC statements in JCL and 57
MVS argument list format and 506

EXECs, IBM-supplied
CXXMOD 496

executable files
invoking MVS executable programs from a z/OS UNIX
shell 79
placing MVS load modules in the z/OS UNIX file system
79
running

from the z/OS UNIX shell
79
under batch 80
under MVS batch 80

EXHIBIT for OS/VS COBOL
default output file of 273
no support for, under CICS 273

EXIT PROGRAM statement 424, 426
exit() function

C condition handling scenario and 184
CEEBINT HLL user exit and 385
in a preinitialized environment 432

exporting functions 36
external data

constructed reentrancy and 119
preinitialization and 430
scope of, in Language Environment program
management model 139, 140

Extra Performance Linkage (XPLINK) 23

F
facility ID

each language component has a 267
part of condition token 234, 267
part of messages 268

feedback xxxiii
feedback code

condition manager and 232
condition token and 231, 233
guidelines for writing callable services and 503
in callable services 231
omitting 233
symbolic feedback code in condition handling 234, 239

fetch
C fetching C 361

FETCH statement
fetchable main

discussion of 475, 476
reentrancy considerations of 476

link-editing fetchable load modules 20
file

executable
placing MVS load modules in the z/OS UNIX file
system 79
running 78

fix-up and resume action
compared to percolate, promote and resume actions
177

fork()
MSGFILE runtime option and 271

Fortran

Index 551

Fortran (continued)
AFHWL — link a Fortran program 93
AFHWLG — link and run a Fortran program 93
AFHWN — resolve Fortran and C name conflicts 94
AFHWRLK — Fortran library replacement tool 12
ARGSTR 108
condition handling 193
error message unit and Language Environment 274
I/O statements, using 274
library module replacement tool 12
making Fortran programs reentrant 120
order of program arguments and runtime options 108
parameter passing style in Language Environment 108
replacing Fortran modules 12
resolving Fortran and C name conflicts 94
run-time options, specifying 106
runtime options, specifying 99
setting user return codes 132
vector instruction exceptions 192

fprintf function 272
Fprtram

condition handling 192
FREEMAIN 424
freestanding application

alternate initialization routines for 519
building

MVS 519, 522
FREESTORE service routine for preinitialization

components of 460
return/reason codes for 461

freopen 272
function call for C 167
functions

exported 36
imported 36

G
gencat utility 76
GET command 424
GETMAIN 424
GETSTORE service routine for preinitialization

components of 460
return/reason codes for 460

global assembler user exit 371
global error table 181
guidelines for mixing PL/I and Language Environment
storage services 148

H
HANDLE ABEND EXEC CICS command

assembler user exit and 359
CEEHDLR and 422
CEEHDLU and 422
CEESGL and 422
table of equivalent Language Environment services 422
TRAP runtime option and 358
user-written condition handlers and 358

handle cursor
promote action and 203

header files
stdlib.h and the __R1 and __osplist macros 506

header files (continued)
symbolic feedback code files and 235, 237

heap pool
improve performance of heap storage allocation 149

heap pools
applications which should use 150
IBM-supplied defaults for CICS 354
IBM-supplied defaults for non-CICS 103
tuning heap storage 151

heap storage
AMODE considerations of 151
callable services for

relationship to GETMAIN/FREEMAIN host services
422, 424

examples of HLL data stored in 148
heap element

heap storage model and 148, 151, 160
heap increment

when allocated 148
heap storage model 148, 151
initial heap segment

heap storage model and 151
performance and 151
when allocated 148

leaks 149
lifetime of 148
program management model and 140
RPTSTG runtime option and 151
threads and 148
tuning 151

HEAPCHK runtime option
use to identify storage leaks 149

I
IBM Facility_ID 267
iconv

utility 75
IEL1C cataloged procedure (compile a PL/I program) 89
IEL1CG cataloged procedure (compile, load and run a PL/I
program) 89
IEL1CL cataloged procedure (compile and link-edit a PL/I
program) 89
IEL1CLG cataloged procedure (compile, link-edit and run a
PL/I program) 89
IGYWPL cataloged procedure (prelink and link-edit a COBOL
program) 89
IGZ facility ID

part of message 267, 268
IGZERRE 427
ILBOSTP0 427
ILC (interlanguage communication)

benefits of Language Environment support 165
link-editing ILC applications 7
overlay programs and 393

IMS (Information Management System)
assembler calling PL/I under 366
C considerations 365, 506
CEETDLI interface 365
coding a main routine to run under 115
condition handling under 367
link-edit considerations 366
list of DLI interfaces 501
OPTIONS(BYADDR) and 366

552 z/OS: z/OS Language Environment Programming Guide

IMS (Information Management System) (continued)
OPTIONS(BYVALUE) and 366
PLIST considerations

PLIST and EXECOPS interactions 509
PLIST(IMS) 115

requirement for preloaded routines 119
SYSTEM(IMS) compiler option and

how parameters are passed under 512, 513
table listing interfaces to 501

INCLUDE file 255
INCLUDE statement

for MVS
alternate initialization routines and 519
application-specific assembler user exit and 371
cannot use with loader 63
freestanding applications and 520
SYSLIB data set and 60
SYSLIN data set and 58
using linkage editor with 62

informational messages 268
initial heap

heap storage model and 151
initial stack segment

performance and 147
initializing

alternate initialization routines 519
initialization routines 5, 60
nested enclave

CEEBXITA's function code for 378
using CEEBXITA assembler user exit for

CEEBXITA behavior 372
function code for 377

input/output
CICS restrictions 350
Language Environment default message file attributes
270, 271

insert data, message
user-created

assigning values to 266
installation-wide assembler user exit 371
instance-specific information (ISI 231
interface validation exit 14
interleaved

output 272
intrinsic functions 150
ISI (instance specific information)

callable service feedback code and 234
description 231
q_data_token 242

ISI (instance-specific information) 231
ISPF (Interactive System Productivity Facility)

C/C++ AMODE/RMODE considerations 10

K
keyboard

navigation 535
PF keys 535
shortcut keys 535

L
L-names

L-names (continued)
LIBRARY control statement and 491
mapping to S-names 492
RENAME control statement and 491
UPCASE prelink option and 498

Language Environment
running

applications under Language Environment 3
summary of changes for V2R3 xxxvi
using Language Environment services 3

library call processing
data sets required by the linkage editor and 60
LIBRARY statement and 62
linkage editor options and 63
NCAL link-edit option and 60, 62

library module replacement tool, Fortran 12
library routine retention 393
Library Search Order 67
LIBRARY statement

cannot use with loader 63
prelinker and 491
using with linkage editor 62

Lilian date
calculate day of week from (CEEDYWK) 283
convert date to (CEEDAYS) 283
convert to character format (CEEDATE) 283
return current local date as a (CEELOCT) 283
return GMT as a (CEEGMT) 283

LINK command for TSO
example using 71
how handled by Language Environment 424
options for 74
syntax description 70

link-editing
application programs using c89 78
for MVS

CICS considerations 351
diagram of linkage editor processing 57
example of 60, 62
IMS considerations 366
input to the linkage editor 57
options 62
using AFHWL cataloged procedure to link a Fortran
program 93
using AFHWLG cataloged procedure to link and run
a Fortran program 93
using CEEWL cataloged procedure to link a program
90
using CEEWLG cataloged procedure to link and run
a program 90
using INCLUDE statement to include additional
modules as input 62
using LIBRARY statement to specify additional
libraries to be searched 62
writing JCL for the linkage editor 58

for TSO
CMOD CLIST invokes LINK command 71, 72
CXXMOD EXEC prelinks and links 496
invoking the linkage editor using the LINK command
70
LINK-and-CALL method of processing 70

linkage editor
cross-reference variables 62
generate listing of control statements 62

Index 553

linkage editor (continued)
generating a module map 62
input to 57
invoking with the CMOD CLIST (TSO) 71, 72
messages, where they go 62
module name 61
options for MVS

LIST | NOLIST 62
PRINT | NOPRINT 62
RENT | NORENT 62, 120
XREF | NOXREF 62

options for TSO
CALL | NOCALL 74
LET | NOLET 74
PRINT(dat_set_name) 74
RES | NORES 74
SIZE(integer) 74

writing JCL for 58
LOAD service routine for preinitialization

components of 458
return/reason codes for 459

LOADGO command for TSO
ALLOCATE command and 74
example using 74
options for 74
specifying runtime options in 73
syntax description 73

loading
for MVS

diagram of loader processing 63
example of 66
input to the loader 63
options 64, 65
standard data sets for 66
using CEEWG to load and run a program 89
writing JCL for the loader 64

for TSO
LINK command syntax description 70, 71
LOADGO command syntax description 74
necessary data sets 74
options 74

library call processing
data sets required by the loader and 66

local
data 140

locale callable services 317
LONGNAME compiler option 483
longname support 515
LPA (link pack area)

reentrancy considerations 121
RES loader option and 65, 75

M
macro

__csplist 506
__osplist 506
__pcblist 506
__R1 505
CEECAA

relationship to CEEENTRY 397
syntax description 402

CEEDSA
relationship to CEEENTRY 397

macro (continued)
CEEDSA (continued)

syntax description 402
CEEENTRY

relationship to CEECAA 397
relationship to CEEDSA 399
relationship to CEEPPA 397, 398
relationship to CEETERM 397
syntax description 398

CEEFETCH 407
CEELOAD 405
CEEPPA

relationship to CEEENTRY 397
syntax description 402

CEERELES 414
CEETERM

relationship to CEEENTRY 397
syntax description 401

CEEXOPT
sample of CEEUOPT modified using 104
usage notes for 105

CEEXPIT 429
CEEXPITS 430
CEEXPITY 429

main routine
assembler main

example of a simple 419
example of main calling a sub 420
register values on entry to 391

determining 139
nested enclave considerations 469
position in Language Environment program
management model 139
preinitialization of 428, 435, 436

management of resources 140
management, program 137, 140
map heading 517
mapping

L-names to S-names 492
math services

about 341
OS PL/I V2R3 21

member heading 518
MERGE (COBOL verb)

condition handling considerations 526, 528
overview 525
user exit triggered by 526

message
condition token and 267, 268
directing to an I/O device
271
example 268
facility ID 267
message prefixes 268
severity

codes and values 268
using in your application 271

message file
CICS considerations 271
Fortran I/O statements 274
Language Environment's default destinations 270
nested enclave considerations 271, 478
PL/I I/O statements 275
specifying ddname of 271

554 z/OS: z/OS Language Environment Programming Guide

message file (continued)
using CEEBLDTX to assemble 255

message handling
CESE transient data queue and 360
relationship to fc parm of callable services 231, 233
specifying ddname of message file 271

message module table 255
models, architectural

program management 137, 140
MSGFILE runtime option

default destinations under different operating systems
271
different treatment under CICS 355
POSIX runtime option and 271
specifying ddnames across nested enclaves 271
under z/OS UNIX 271

MSGRTN service routine for preinitialization
components of 463
return/reason codes for 464

multiple
enclaves 140
processes 139

MVS (Multiple Virtual System)
running for

specifying runtime options for 67
writing JCL to run an application 66

N
NAB (next available byte)

assembler main routine and 391
assembler subroutine and 391
CEEENTRY macro and 399

name conflicts, resolving
between Fortran and C 13
between static common blocks 13
using AFHWN cataloged procedure 94

national language support (NLS)
message handling and 268

natural reentrancy 119
navigation

keyboard 535
nested conditions 205
nonoverrideable 380

O
object library utility

adding object modules 515
deleting object modules 515
example under MVS batch 515
listing the contents 515
under batch 515
under TSO 517

omitted parameter
condition manager reaction to 233
considerations when writing a callable service 503

ON EXCEPTION clause 189
ON SIZE ERROR clause 189, 192
OPEN command 424
OPTIONS(BYADDR)

assembler calling PL/I under IMS 366, 513
description 117

OPTIONS(BYADDR) (continued)
specifying with OPTIONS(BYVALUE) is an error 118
SYSTEM(CICS) and 513
when it is the default 118

OPTIONS(BYVALUE)
description 117
IMS considerations 366, 513
OPTIONS(NOEXECOPS) and 118
rules for specifying 118
specifying with OPTIONS(BYADDR) is an error 118
SYSTEM(CICS) and 513
when it is the default 118

OS ATTACH macro 424
osplist macro 506
overflow

condition
C SIGFPE condition and 181
COBOL ON SIZE ERROR clause and 192

overlay
programs 393

overrideable/nonoverrideable 380

P
parallel processing 140
parameter

list
accessing by using macros 505
assembler 393
relationship to argument list 111

list format
effect of EXECOPS compiler option on 509
effect of EXECOPS runtime option on 506, 509
how interaction of EXECOPS and PLIST compiler
options affects 509
how interaction of EXECOPS and PLIST runtime
options affects 507, 509
PLIST runtime option and 506, 509

list pointer 113
nullifying in cataloged procedures 95
passing

by reference 112
by value 112
C passing styles 505
directly 112
indirectly 112
passing styles permitted by Language Environment
503

PARM statement 63
pcblist macro 506
PCT (Program Control Table) 356
percolate action

C condition handling and 184
compared to promote and resume actions 177
condition handling model and 171
user-written condition handler syntax for 203

persistent C environment 522
picture character terms 285
picture strings 285
PL/I

ALLOCATE statement 148
BYADDR

functions 117
BYVALUE

Index 555

PL/I (continued)
BYVALUE (continued)

functions 117
must be specified if SYSTEM(IMS) or SYSTEM(CICS)
specified 513

condition handling 193, 195
Enterprise PL/I for z/OS

z/OS UNIX support same as for C++
77

examples
CEE3CTY and CEEFMDT 159
CEE3CTY, CEEFMDT, CEEDATM 313
CEEDAYS, CEEDATE, CEEDYWK 303
CEEFMON — format monetary string 319
CEEFTDS — format date and time into character
string 321
CEEGTST and CEEFRST 156
CEELCNV and CEESETL 324
CEEMOUT, CEENCOD, CEEMGET, CEEDCOD,
CEEMSG 280
CEEQCEN and CEESCEN 288
CEEQDTC and CEESETL 326
CEESCOL — compare string collation weight 328
CEESECS and CEEDATM 295
CEESECS, CEESECI, CEEISEC, CEEDATM 299
CEESECS, multiple calls to 291
CEESETL and CEEQRYL 330
CEESTXF and CEEQRYL 332
coding main routines to receive inbound parm list
114, 117

FREE statement 148
interfaces to IMS from

list of DLI interfaces 501
link-editing fetchable load modules 20, 21
linked list, building 156
MSGFILE considerations 276
OS PL/I V2R3 math services, using 21
parameter passing style 113
PLIBASE has been replaced 21
PLITASK no longer supported 21
REFER option 148
run-time options, specifying from 106
running in a non-IPT environment 82
runtime options, specifying from 99
SIBMBASE has been replaced 21
SIBMMATH library has been added 21
sysprint 361
SYSTEM compiler option

interactions with NOEXECOPS 512, 513
variables, where stored 148

PLIRETC subroutine
CICS support for 350, 359

PLIRETV intrinsic function
CICS support for 351

PLIST compiler option
argument list format and 509

PLIST runtime option
argument list format and 506, 509
C interface to IMS 365
MVS setting and compatibility 507

POSIX
assembler user exit and 372
asynchronous interrupts 197
communication

POSIX (continued)
communication (continued)

with COBOL or PL/I 197
condition token

for C-defined signals 240
for POSIX-defined signals 241

default signal action 130
EDC messages 256, 269
facility ID 269
IMS and 365
mapping

Language Environment abends to POSIX signals
188
S/370 exceptions to POSIX signals 187

messages 5201 to 5209 257
MSGFILE runtime option and 271
nested enclaves 469
position in Language Environment environment 4
process termination 130
running applications under Language Environment 3
signal handling

enabling or disabling signals 198, 199
handling, in the condition step 199
ILC considerations 197
signals that bypass condition handling 200
termination step for POSIX signals 200

synchronous interrupts 198
TERMTHDACT application 125
TERMTHDACT behavior under z/OS UNIX 200
using Language Environment services 3

POSIX runtime option 152
POST command 424
PPA (Program Prolog Area) 397, 402
PPT (Processing Program Table) 350
pragma

#pragma runopts
affecting argument list format with 506, 509
CICS and 352
IMS and 365
syntax description 101

preinitialization facility
benefits of 427
CEEPIPI(add_entry)

function code for 428
return codes from 451
syntax description 450

CEEPIPI(call_main)
assembler user exits and 442
CEEPIPI(init_main) and 442, 443
COBOL STOP RUN and 442
function code for 428
return codes from 443

CEEPIPI(call_sub_addr)
function code for 428
return codes from 447

CEEPIPI(call_sub)
CEEPIPI(init_sub) and 442, 444
CEEPIPI(term) and 450
COBOL STOP RUN and 444, 445
function code for 428
return codes from 445
syntax description 444

CEEPIPI(delete_main_entry)
function code for 433

556 z/OS: z/OS Language Environment Programming Guide

preinitialization facility (continued)
CEEPIPI(delete_main_entry) (continued)

return codes from 452
syntax description 452

CEEPIPI(end_seq)
function code for 428
return codes from 448
syntax description 448

CEEPIPI(identify_entry)
function code for 433
return codes from 453, 455
syntax description 453–455

CEEPIPI(init_main)
CEEPIPI(call_main) and 442, 443
CEEPIPI(term) 450
function code for 428
return codes from 436, 437
specifying service routines in 435, 437
syntax description 435, 436

CEEPIPI(init_sub_dp)
function code for 428
return codes from 441
syntax description 441

CEEPIPI(init_sub)
CEEPIPI(call_sub) and 442, 444
CEEPIPI(term) and 450
function code for 428
return codes from 439
specifying service routines in 439
syntax description 439

CEEPIPI(start_seq)
function code for 428
return codes from 449
syntax description 449

CEEPIPI(term)
CEEPIPI(call_sub) and 450
CEEPIPI(init_main) and 450
CEEPIPI(init_sub) and 450
function code for 428
return codes from 450
syntax description 449

CEESTART 427, 428
CEEXPIT macro 429
CEEXPITS macro 430
CEEXPITY macro 429
IGZERRE (COBOL interface to preinitialization) 427
ILBOSTP0 (COBOL interface to preinitialization) 427
old C interface to preinitialization and PLIST(MVS) 507
PIPI table

add entry to 450
CEEPIPI(call_main) and 443
CEEPIPI(call_sub_addr) and 446
CEEPIPI(call_sub) and 444, 446
CEEPIPI(end_seq) and 448
CEEPIPI(init_main) and 435, 437
CEEPIPI(init_sub_dp) and 440
CEEPIPI(init_sub) and 439
CEEPIPI(start_seq) and 449
generate entry within 429
generate heading for 429
identify end of 430
introduction to 428
restrictions against nested routines in 452

service routines for

preinitialization facility (continued)
service routines for (continued)

allocating storage for 460
AMODE/RMODE requirements of 458
freeing storage of 460
in CEEPIPI(init_main) 435, 437, 458
in CEEPIPI(init_sub) 439, 458
relationship to each other 458
trapping program interruptions and abends 461
vector format 457

prelinker
CEEXMOD EXEC and 496
constructed reentrancy 119
freestanding MVS routine and 521
functions 484
how it maps L-names to S-names 492
INCLUDE statement and 490
invoking

for TSO 494
LIBRARY statement and 491
prelink options 498
prelinker map 487
RENAME statement and 491
when it has to be used 483

prelinking process 484
printf() function

default destination 272
interspersing messages into an application 272

process
assembler user exit for termination of 378
current support for 139
definition 138
relationship to enclaves 138
role in Language Environment program management
model 140
termination of assembler routines and 392

Processing Program Table (PPT) 350
program

link-editing using c89 78
management model

diagram of 140
terminology of 138, 140

placing MVS load modules in the z/OS UNIX file system
79
running under z/OS UNIX 78

program argument
specifying with runtime options 102

program interrupts
abend codes and return codes 134
condition handling and 167, 169, 170
q_data for 245
SORT/MERGE and 526
under CICS 358, 360
under SORT/MERGE 526
user exits and 376

Program Prolog Area (PPA) 397, 402
program specification block (PSB) 365, 366
prolog 397
promote action

compared to percolate and resume actions 177
condition handling model and 171
user-written condition handler syntax for 203

PSB (Program Specification Block) 365
PUT command 424

Index 557

Q
q_data

abends 242
arithmetic program interruptions 245
descriptor 252
math and bit-manipulation condition 248
square-root exception 248

R
R1 macro 505
raise() function for C

how C terminology differs from that of Language
Environment 183
SIGTERM

HLL user exit and 385
READ command 424
reason code

CEEPIPI(call_main) and 443
CEEPIPI(call_sub) and 445
in user exits 376, 378
summary of Language Environment codes 133
under CICS 359

recursion
allowed in user-written condition handlers 204
Language Environment program management model
and 139

reentrancy
advantages of 119
C routines and

constructed reentrancy 119
natural reentrancy 119
procedure for generating reentrant load modules in
120
reentrant routines split into two parts 119

C Systems Programming Environment and 520
CEEPIPI(call_main) and 430
CICS routines and 119
COBOL RENT compiler option and 120
Fortranreentrancy separation tool 120
IMS and 367
making Fortran programs reentrant 120
modified CEEBXITA must be reentrant 376
MVS link pack area (LPA) and 121
PL/I REENTRANT compiler option and 121
prelinker and 119
preloaded IMS routines and 119
routines that must be reentrant 119

region (CICS) 349
RENAME control statement

how prelinkage utility maps L-names to S-names 492
syntax and usage notes 491

RENT compiler option
making C routines reentrant with 120
making COBOL programs reentrant with 120
prelinker must be used when C source file compiled with
483

resume
action

definition 176
user-written condition handlers and
203

cursor

resume (continued)
cursor (continued)

nested conditions and 205
return code

calculation 131
CEEAUE_RETC field of CEEBXITA and 378
CEEPIPI(call_main) and 443
CEEPIPI(call_sub) and 445
Fortran considerations 131
in user exits 378
possible C enclave return code incompatibility 131
RETURN-CODE special register 131

Return Code= nnn 265
Return Code=-1 261
Return Code=0005 261
Return Code=0006 262
Return Code=0007 262
Return Code=0008 262
Return Code=0009 262
Return Code=0010 262
Return Code=0011 262
Return Code=0020 262
Return Code=0021 262
Return Code=0028 262
Return Code=0040 262
Return Code=0044 263
Return Code=0048 263
Return Code=0052 263
Return Code=0056 263
Return Code=0060 263
Return Code=0064 263
Return Code=0068 263
Return Code=0072 263
Return Code=0076 263
Return Code=0080 263
Return Code=0084 264
Return Code=0088 264
Return Code=0092 264
Return Code=0096 264
Return Code=0098 264
Return Code=0100 264
Return Code=0104 264
Return Code=0108 264
Return Code=0112 264
return() 432
RMODE

C/C++ considerations
10

root
segment 393

RPTSTG runtime option
storage report generated by

using to tune the stacks 147
RTEREUS runtime option

preinitialization and 427
run unit

for CICS 349
for COBOL

relationship to Language Environment enclave 139
runtime environment, introduction 4
runtime options

how nested enclaves get
enclaves created by C system() 473
enclaves created by EXEC CICS commands 470

558 z/OS: z/OS Language Environment Programming Guide

runtime options (continued)
how nested enclaves get (continued)

enclaves created by SVC LINK 471
in the CEEPIPI interface to preinitialization 439, 443
in the user exit 375, 379
specifying

order of precedence 101
with program arguments 102

S
S-names

prelinker and
how L-names are mapped to S-names 492

saved segments
CEEPIPI and 435, 437, 439

SCEELKED link library
automatic call library and 60
cataloged procedures and

CEEWG 89
CEEWL 90
CEEWLG 90

changing library prefix of 96
MVS linkage editor procedures and 57, 60
MVS load procedures and 63, 66
TSO load/run procedures and 74

SCEERUN load library
CEEWG cataloged procedure and 89
CEEWLG cataloged procedure and 90
MVS load procedures and 63
TSO run procedures and 72

search order
library for MVS 67

Search Order 67
sending to IBM

reader comments xxxiii
service routines

allocating storage for 460
AMODE/RMODE requirements of 458
freeing storage of 460
in CEEPIPI(init_main) 435, 437, 458
in CEEPIPI(init_sub) 439, 458
relationship to each other 458
trapping program interruptions and abends 461
vector format 457

SETRP command
CEEHDLR callable service and 422
CEEHDLU callable service and 422
CEESGL callable service and 422
table of equivalent Language Environment services 422

severe
error message 268

severity
of a condition

CEEBXITA assembler user exit and 378
condition token and 234
ERRCOUNT runtime option and 172
how to determine in a message 172, 268
TERMTHDACT runtime option and 175
unhandled conditions and 133, 172

short-on-storage condition 356
shortcut keys 535
SIGABRT

HLL user exit and 385

SIGTERM
HLL user exit and 385

slash (/)
specifying in PARM parameter 65

SNAP
CEE3DMP callable service and 424
table of equivalent Language Environment services 424

SORT/MERGE
condition handling within 526, 528
overview of sort/merge operations 525–527
user exits triggered by 526

SRB mode
restrictions 481

stack
frame

condition management model and 171
differentiated from Global Error Table model of
condition handling 181
getting 167
HLL-specific condition handlers and 176
stack frame zero 171, 175
user-written condition handlers and 175

storage
Language Environment program management
model and 140
Language Environment stack storage model 146
RPTSTG runtime option and 147

tuning 147
stack and heap storage 145
STACK runtime option

using with RPTSTG to tune the stack 147
static data 393
STAX command

CEEHDLR and 422
CEEHDLU and 422
CEESGL and 422
table of equivalent Language Environment services 422

stderr
default destinations of 272

STIMER command 424
STOP RUN

effect SVC LINK has on 424, 426
in a preinitialized environment 432
relationship to CEEPIPI(call_main) 442

STOP statement
for COBOL

CEEPIPI(call_sub) and 444, 445
in a preinitialized environment 432

storage
management model

heap storage 148, 160
heap storage leaks 149
stack storage 146, 148

manager 145
operating system services for 422, 424
service routines for 458

STORAGE built-in functions 357
storage in PL/I AREA 148
storage tuning user exit 100, 101
subroutine

assembler
examples using 420
register values of 391

Index 559

subroutine (continued)
position in Language Environment program
management model 139
preinitialization and 428
restriction regarding nested enclaves 469

success, testing a condition token for 232
summary of changes

Language Environment
V2R3 xxxvi

z/OS Language Environment Programming Guide
xxxv

SVC LINK 424, 426, 469, 471
symbol information 518
symbolic feedback code 234, 240
syntax diagrams

how to read xxviii
SYSLIB

linkage-editor and 57, 59, 60
loader and 63, 66

SYSLIN
linkage-editor and 57, 58
loader and 63, 66

SYSLMOD 57–59
SYSLOUT

linkage-editor options and 62
loader and 65, 66

SYSOUT
default destinations of MSGFILE runtime option 270

SYSPRINT
linkage editor and 58, 59
loader and 65, 66

SYSRCS 132
SYSRCT 132
SYSRCX 132
system programming facility, C

building freestanding applications 519, 522
persistent C environments 522
reentrant modules 520
summary of functions 522
system exit routines 522
user-server environments 522

SYSUT1 58, 59

T
T_I_U condition

processing the 173
TCB

driven
initialization of first enclave 372
termination of first enclave 372

nested enclaves and 372
termination

causes under Language Environment 128
CEETERM macro and 401
enclave

as indicated in CEEAUE_ABND field of
CEEAUE_FLAGS 379
as indicated in CEEAUE_ABTERM field of
CEEAUE_FLAGS 378
CEEBXITA behavior during 375
CEEBXITA function codes for 378
terminating enclave created by an assembler
routine 392

termination (continued)
enclave (continued)

terminating enclave created by CEEBINT HLL user
exit 385

preinitialized routines and 427
process

CEEBXITA behavior during 376
CEEBXITA function code for 378
terminating process created by assembler routine
392

TERMTHDACT runtime option and 175
termination imminent step

discussion of 173, 175
TERMTHDACT runtime option

condition message and 172
POSIX runtime option and 200
termination imminent step and 175

TEST runtime option
condition handling model and 175

thread
IMS and 365
role in Language Environment program management
model 140

TIME command
Language Environment date/time services and 424
table of equivalent Language Environment services 424

trademarks 540
translator (CICS) 358
TRAP runtime option

ABPERC runtime option and 170
CEEBXITA assembler user exit and

abends that occur in CEEBXITA and 376
using with CEEAUE_A_AB_CODES to percolate a list
of abend codes 376

CICS condition handling and 358
errors occurring in CEEBXITA and 376
how CEEAUE_ABND is affected by 379
nested enclaves and

enclaves created by C system() 474
enclaves created by EXEC CICS LINK or EXEC CICS
XCTL 470
enclaves with a C or assembler main, created by
SVC LINK 472
enclaves with a COBOL main, created by SVC LINK
473
enclaves with a PL/I fetchable main 475, 476

TSO (Time Sharing Option)
running for

ALLOCATE command and 72, 74
CALL command and 72, 73
LOADGO command and 73, 74
specifying runtime options for 73, 74, 100

U
user

exit
assembler 376
for initialization 375, 432
for termination 375, 376, 432
HLL 384
system exits in C Systems Programming
Environment 522
under CICS 378, 379

560 z/OS: z/OS Language Environment Programming Guide

user (continued)
exit (continued)

under SORT/MERGE 526
heap (initial heap)

heap storage model and 151
return code

C language constructs that generate 131
COBOL language constructs that generate 131
Fortran language constructs that generate 132
PL/I language constructs that generate 132

user comments 518
user interface

ISPF 535
TSO/E 535

user-server environment 522
user-written condition handler

allowing nested conditions in 205
as opposed to condition manager 175
C raise() function and 182, 183
C signal() function and

terminology differences between C and Language
Environment 183

CEESGL callable service and 169
coding 201, 204
examples 206, 230
EXEC CICS commands that cannot be used with 358
in ILC applications 205
in nested condition handling 205
in SORT/MERGE condition handling 526
registering with CEEHDLR 176
role in Language Environment condition management
model 175
syntax for 202
USRHDLR runtime option and 204

USRHDLR runtime option
description 204

V
variables

exported 36
vector instruction exceptions 192

W
WAIT command 424
warning error message (severity 1) 268
working storage 140
writable static

handled by prelinker 484
writable static map 487

WRITE command 424
WTO command

CEEMOUT callable service and 424
table of equivalent Language Environment services 424

X
XCTL command 424
XITPTR 376
XPLINK (Extra Performance Linkage)

CEEXR cataluged procedure 91
definition 23

XPLINK (Extra Performance Linkage) (continued)
downward-growing stack 24
glue code 25
guard page 25
how to enable 31
libraries

SCEEBIND 6
non-XPLINK application 24
register conventions 29
runtime option 31
stack overflow 28
when it should be used 30
XPLINK application 24
XPLINK environment 24
XPLINK stack 25
XPLINK stack frame layout 26

XPLINK (XPLINK)
libraries

SCEELIB 6
when it should not be used 30

XUFLOW runtime option
using to manipulate the PSW 170

Z
z/OS Debugger

CEEBINT and 385
condition handling model and 175

z/OS Language Environment Programming
Guide

content, new xxxv
summary of changes xxxv

z/OS UNIX
24-bit AMODE programs, restriction on using 79
c89 utility

-c option 78
-o option 78
using 78

environments supported 77
environments, application program

shells through MVS batch 78
TSO/E 78

link-editing
C applications 77
Fortran applications 77

linking and running, basic 77
MVS application program load module

placing in file system 79
shells through MVS batch 79

parent and child processes 130
PL/I MTF application support 84
PL/I support in a non-IPT environment 82
position in Language Environment environment 4
POSIX default signal action 130
POSIX process termination mapping 130
prelinking under 77
process termination 130
running

C application program for MVS batch 79
C applications 78
Fortran applications 77
from the z/OS UNIX shell 79
PL/Iapplications in a non-IPT environment
82

Index 561

z/OS UNIX (continued)
running (continued)

PL/IMTF applications 84
using BPXBATCH program 79

services 77
storage considerations 152
TERMTHDACT application 125

562 z/OS: z/OS Language Environment Programming Guide

IBM®

Product Number: 5650-ZOS

SA38-0682-50

	Contents
	Figures
	Tables
	About this document
	Using your documentation
	How to read syntax diagrams
	Symbols
	Syntax items
	Syntax examples

	This Programming Guide

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Summary of changes for z/OS Language Environment Programming Guide for Version 2 Release 5 (V2R5)
	Summary of changes for z/OS Language Environment Programming Guide for Version 2 Release 4 (V2R4)
	Summary of changes for Language Environment for z/OS Version 2 Release 3 (V2R3)

	Part 1. Creating applications with Language Environment
	Chapter 1. Introduction to Language Environment
	Components of Language Environment
	Common runtime environment of Language Environment

	Chapter 2. Preparing to link-edit and run under Language Environment
	Understanding Language Environment library routines
	Planning to link-edit and run
	Link-editing single-language applications
	Link-editing ILC applications

	Downward compatibility considerations
	Checking which runtime options are in effect
	HLL compatibility considerations
	C/C++ AMODE/RMODE considerations
	COBOL considerations
	Replacing COBOL library routines in a COBOL load module
	Using Language Environment resident routines for callable services

	Fortran considerations
	Replacing Fortran runtime library modules in a Fortran executable program
	Using the Language Environment library module replacement tool
	Resolving static common block name conflicts
	Resolving library module name conflicts between Fortran and C
	Conditions under which your application does not have a name conflict
	Determining if your application has a name conflict
	Removing Fortran conflicting references
	Changing one module per step (MVS)
	Changing one module per step (TSO/E)
	Changing multiple modules per step (MVS)
	Changing multiple modules per step (TSO/E)

	Relink-editing a pre-Language Environment executable program

	PL/I considerations
	Link-editing PL/I subroutines for later use
	Replacing PL/I library routines in an OS PL/I executable program
	Link-editing fetchable executable programs
	PL/I link-time considerations
	Fetching modules with different AMODEs

	Chapter 3. Using Extra Performance Linkage (XPLINK)
	What is XPLINK?
	Objectives
	Support for XPLINK
	XPLINK concepts and terms
	The XPLINK stack
	The XPLINK stack frame layout
	Save area (48 bytes)
	Reserved (8 bytes)
	Argument area prefix (4 bytes)
	Argument area (minimum 16 bytes)
	Local storage
	Total stack frame size

	Stack overflow
	XPLINK register conventions
	XPLINK parameter passing and return code conventions

	When XPLINK should be used
	When XPLINK should not be used

	How is XPLINK enabled?
	XPLINK compiler option
	XPLINK runtime option
	Related runtime options

	Building and running an XPLINK application
	Other considerations

	XPLINK / non-XPLINK compatibility
	XPLINK restrictions

	Chapter 4. Building and using dynamic link libraries (DLLs)
	Support for DLLs
	DLL concepts and terms
	Loading a DLL
	Loading a DLL implicitly
	Loading a DLL explicitly
	Explicit use of a DLL in a C application
	Explicit use of a DLL in a COBOL/C application

	Managing the use of DLLs when running DLL applications
	Loading DLLs
	Sharing DLLs
	Freeing DLLs

	Creating a DLL or a DLL application
	Building a simple DLL
	Writing DLL code
	Writing your C DLL code
	Writing your C++ DLL code
	Writing your COBOL DLL code
	Writing your Enterprise PL/I DLL code
	Writing your Language Environment-conforming assembler DLL code

	Compiling your DLL code
	Binding your DLL code
	Binding C
	Binding C++
	Binding COBOL
	Binding Enterprise PL/I
	Binding Assembler

	Building a simple DLL application
	Creating and using DLLs
	DLL restrictions
	Improving performance

	Building complex DLLs

	Chapter 5. Link-editing, loading, and running under batch
	Basic link-editing and running under batch
	Accepting the default runtime options
	Overriding the default runtime options
	Specifying runtime options with the CEEOPTS DD card
	Specifying runtime options in the EXEC statement

	Providing link-edit input
	Writing JCL for the link-edit process
	Binder control statements
	Using the INCLUDE statement
	Using the LIBRARY statement

	Link-edit options
	Loading your application using the loader
	Writing JCL for the loader
	Invoking the loader with the EXEC statement
	Using the PARM parameter for loader options
	Requesting loader options
	Passing parameters through the loader
	Using DD statements for the standard loader data sets

	Running an application under batch
	Program library definition and search order

	Specifying runtime options under batch

	Chapter 6. Creating and executing programs under TSO/E
	Basic link-editing and running under TSO/E
	Accepting the default runtime options
	Overriding the default runtime options
	Specifying runtime options with the CEEOPTS DD card

	Link-editing and running
	Link-editing your application using the LINK command
	Using CMOD CLIST to invoke the TSO/E LINK command
	Using the CALL command to run your application
	TSO/E parameter list format

	Loading and running using the LOADGO command
	Allocating data sets under TSO/E
	Example of using LOADGO
	Link-edit and loader options

	Using the iconv utility and ICONV CLIST for C/C++
	Using the genxlt utility and GENXLT CLIST for C/C++
	Running your application under TSO/E

	Chapter 7. Creating and executing programs using z/OS UNIX System Services
	Basic link-editing and running C/C++ applications under
	Invoking a shell from TSO/E
	Using the z/OS UNIX c89 utility to link-edit and create executable files
	Running z/OS UNIX C/C++ application programs
	z/OS UNIX application program environments
	Placing an MVS application executable program in the file system
	Restriction on using 24-Bit AMODE programs
	Running an MVS executable program from a z/OS UNIX shell
	Running POSIX-enabled programs
	Running POSIX-enabled programs using a z/OS UNIX shell
	Issuing the executable from a shell
	Issuing a setup shell script from a shell

	Running an MVS batch z/OS UNIX C/C++ application file
	Running POSIX-enabled programs outside the z/OS UNIX shells
	Invoking BPXBATCH from TSO/E
	Invoking BPXBATCH using JCL
	Invoking the spawn syscall in a REXX EXEC from TSO/E
	Running a z/OS UNIX C/C++ application program that is not HFS-resident

	Running COBOL programs under z/OS UNIX
	Basic link-editing and running PL/I routines under z/OS UNIX with POSIX(ON)
	Basic link-editing and running PL/I MTF applications under z/OS UNIX

	Chapter 8. Using IBM-supplied cataloged procedures
	Invoking cataloged procedures
	Step names in cataloged procedures
	Unit names in cataloged procedures
	Data set names in cataloged procedures

	IBM-supplied cataloged procedures
	CEEWG — Load and run a Language Environment conforming non XPLINK program
	CEEWL — Link a Language Environment conforming non XPLINK program
	CEEWLG — Link and run a Language Environment conforming non-XPLINK program
	CEEXR — Load and run a Language Environment conforming XPLINK program
	CEEXL — Link-edit a Language Environment conforming XPLINK program
	CEEXLR — Link and run a Language Environment conforming XPLINK program
	AFHWL — Link a program written in Fortran
	AFHWLG — Link and run a program written in Fortran
	AFHWN — Resolving name conflicts between C and Fortran

	Modifying cataloged procedures
	Overriding and adding to EXEC statements
	Overriding and adding DD statements
	Overriding generic link-edit procedures for constructed reentrant programs

	Chapter 9. Using runtime options
	Methods available for specifying runtime options
	Order of precedence
	Order of precedence examples

	Specifying suboptions in runtime options
	Specifying runtime options and program arguments
	Creating application-specific runtime option defaults with CEEXOPT
	CEEXOPT invocation for CEEUOPT
	CEEXOPT coding guidelines for CEEUOPT
	Performance considerations

	Using the CEEOPTS DD statement
	Runtime compatibility considerations
	C and C++ compatibility considerations
	COBOL compatibility considerations
	Fortran compatibility considerations
	PL/I compatibility considerations
	IMS compatibility considerations

	Part 2. Preparing an application to run with Language Environment
	Chapter 10. Using Language Environment parameter list formats
	Argument lists and parameter lists
	Passing arguments between routines
	Preparing your main routine to receive parameters
	PL/I argument passing considerations

	Chapter 11. Making your application reentrant
	Making your C/C++ program reentrant
	Natural reentrancy
	Constructed reentrancy
	Generating a reentrant program executable for C or C++

	Making your COBOL program reentrant
	Making your Fortran program reentrant
	Making your PL/I program reentrant
	Installing a reentrant load module

	Part 3. Language Environment concepts, services, and models
	Chapter 12. Initialization and termination under Language Environment
	The basics of initialization and termination
	Language Environment initialization
	What happens during initialization

	Language Environment termination
	What causes termination
	What happens during termination
	Thread termination
	POSIX thread termination

	Enclave termination
	Process termination
	POSIX process termination

	Managing return codes in Language Environment
	How the Language Environment enclave return code is calculated
	C considerations
	Fortran considerations
	PL/I considerations

	Setting and altering user return codes
	For C and C++
	For COBOL
	For Fortran
	For PL/I
	How the enclave reason code is calculated

	Termination behavior for unhandled conditions
	Determining the abend code
	Abend codes generated by CEEBXITA
	Abend codes generated by ABTERMENC(ABEND) runtime option
	Program interrupt abend and reason codes

	Chapter 13. Program management model
	Model terminology for Language Environment program management
	Language Environment terms and their HLL equivalents
	Terminology for data

	Processes
	Enclaves
	The enclave defines the scope of language semantics
	The enclave defines the scope of the definition of the main routine and subroutines
	The enclave defines the scope and visibility of the following types of data
	The enclave defines the scope of language statements

	Additional enclave characteristics
	Management of resources
	Multiple enclaves

	Threads
	The full Language Environment program management model
	Mapping the POSIX program management model to the Language Environment program management model
	Key POSIX program entities and Language Environment counterparts
	Scope of POSIX semantics

	Chapter 14. Stack and heap storage
	How Language Environment-conforming languages uses stack and heap storage
	Stack storage overview
	Tuning stack storage
	COBOL storage considerations
	PL/I storage considerations

	Heap storage overview
	Using heap pools to improve performance
	Applications that should use heap pools
	Heap pools modes of operation
	Choosing the number of pools for a cell size

	Heap IDs recognized by the Language Environment heap manager
	AMODE considerations for heap storage
	Tuning heap storage

	Storage performance considerations
	Dynamic storage services
	Examples of callable storage services
	C example of building a linked list
	COBOL example of building a linked list
	PL/I example of building a linked list
	C example of storage management
	COBOL example of storage management
	PL/I example of storage management

	User-created heap storage
	Alternative Vendor Heap Manager
	Using _CEE_HEAP_MANAGER to invoke the alternative Vendor Heap Manager

	Chapter 15. Introduction to Language Environment condition handling
	Concepts of Language Environment condition handling
	The stack frame model
	Handle cursor
	Resume cursor

	What is a condition in Language Environment?
	Steps in condition handling
	Enablement step
	TRAP effects on the condition handling process
	CEESGL and TRAP

	Language Environment abends and the enablement step
	Using CEE3SPM and XUFLOW to enable and disable hardware conditions
	C and C++ considerations
	COBOL considerations
	Fortran considerations
	PL/I considerations

	Condition step
	Influencing condition handling with the ERRCOUNT runtime option

	Termination imminent step
	Processing the T_I_U condition
	Processing the T_I_S condition
	Termination imminent step and the TERMTHDACT runtime option
	PL/I considerations

	CEESGL and the termination imminent step

	Invoking condition handlers
	Responses to conditions
	Condition handling scenarios
	Scenario 1: Simple condition handling
	Scenario 2: User-written condition handler present for T_I_U
	Scenario 3: Condition handler present for divide-by-zero

	Chapter 16. Language Environment and HLL condition handling interactions
	C condition handling semantics
	Comparison of C-Language Environment terminology
	Controlling condition handling in C
	Using the signal() function
	Using the raise() function
	C atexit() considerations

	C condition handling actions
	C condition handling examples
	Condition occurs with no signal handler present
	Condition occurs with signal handler present

	C signal representation of S/370 exceptions

	C++ condition handling semantics
	COBOL condition handling semantics
	COBOL condition handling examples
	Resuming execution after an IGZ condition occurs
	Resuming execution after a COBOL STOP RUN statement
	Reentering COBOL programs after stack frame collapse
	Handling fixed-point and decimal overflow conditions

	Fortran condition handling semantics
	Arithmetic program interruptions from vector instructions
	Restrictions on using vector instructions in user-written condition handlers

	PL/I condition handling semantics
	PL/I condition handling actions
	Promoting conditions to the PL/I ERROR condition
	Mapping non-PL/I conditions to PL/I conditions
	Additional PL/I condition handling considerations
	PL/I condition handling example

	Language Environment and POSIX signal handling interactions
	Synchronous POSIX signal and Language Environment condition handling interactions
	Enablement step for signals under z/OS UNIX
	Condition step for POSIX signals under Language Environment
	Termination imminent step under z/OS UNIX
	POSIX signals that do not enter condition handling

	Chapter 17. Coding a user-written condition handler
	PL/I considerations
	Invocation of a procedure registered as a user handler

	Types of conditions you can handle
	User-written condition handler interface
	Registering user-written condition handlers using USRHDLR
	Nested conditions
	Nested conditions in applications containing a COBOL program
	Using Language Environment condition handling with nested COBOL programs

	Examples with a registered user-written condition handler
	Handling a divide-by-zero condition in C, C++, COBOL, or PL/I
	C or C++ handling a divide-by-zero condition
	COBOL handling a divide-by-zero condition
	USRHDLR program (COBOL)

	PL/I handling a divide-by-zero condition

	Handling an out-of-storage condition in C, C++, COBOL, or PL/I
	C/C++ examples using CEEHDLR, CEEGTST, CEECZST, and CEEMRCR
	COBOL examples using CEEHDLR, CEEGTST, CEECZST, and CEEMRCR
	PL/I examples using CEEHDLR, CEEGTST, CEECZST, and CEEMRCR

	Signaling and handling a condition in a C/C++ routine
	Handling a divide-by-zero condition in a COBOL program
	Handling a program check in an assembler routine

	Chapter 18. Using condition tokens
	The basics of using condition tokens
	The effect of coding the fc parameter
	Testing a condition token for success
	Testing condition tokens for equivalence
	Testing condition tokens for equality

	Effects of omitting the fc parameter
	Understanding the structure of the condition token
	Using symbolic feedback codes
	Locating symbolic feedback codes for conditions
	Including symbolic feedback code files
	Examples using symbolic feedback codes
	C and C++
	COBOL
	PL/I

	Condition tokens for C signals under C and C++
	q_data structure for abends
	Usage notes
	Example illustrating retrieval of q_data

	q_data structure for arithmetic program interruptions
	Usage notes

	q_data structure for square-root exception
	q_data structure for math and bit-manipulation conditions
	Usage notes

	Format of q_data descriptors

	Chapter 19. Using and handling messages
	How Language Environment messages are handled
	Creating messages
	Creating a message source file
	Using the CEEBLDTX utility
	z/OS UNIX interface
	TSO/E interface

	Files created by CEEBLDTX
	CEEBLDTX error messages

	Creating a message module table
	Assigning values to message inserts

	Interpreting runtime messages
	Specifying national languages
	Runtime messages with POSIX
	Handling message output
	Using Language Environment MSGFILE
	Using MSGFILE under z/OS UNIX
	Using C or C++ I/O functions
	Using COBOL I/O statements
	Non-CICS considerations
	CICS considerations

	Using Fortran I/O statements
	Using PL/I I/O statements
	MSGFILE considerations when using PL/I

	Examples using multiple message handling callable services
	C/C++ example calls to CEEMOUT, CEENCOD, CEEMGET, CEEDCOD, and CEEMSG
	COBOL example calls to CEEMOUT, CEENCOD, CEEMGET, CEEDCOD, and CEEMSG
	PL/I example calls to CEEMOUT, CEENCOD, CEEMGET, CEEDCOD, and CEEMSG

	Chapter 20. Using date and time services
	The basics of using date and time services
	Working with date and time services
	Date limits
	Picture character terms and picture strings
	Notation for eras

	Performing calculations on date and time values
	Century window routines
	National Language Support for date and time services
	Examples using date and time callable services
	Examples illustrating calls to CEEQCEN and CEESCEN
	Calls to CEEQCEN and CEESCEN in C or C++
	Calls to CEEQCEN and CEESCEN in COBOL
	Calls to CEEQCEN and CEESCEN in PL/I

	Examples illustrating calls to CEESECS
	Calls to CEESECS in C or C++
	Calls to CEESECS in COBOL
	Calls to CEESECS in PL/I

	Examples illustrating calls to CEESECS and CEEDATM
	Calls to CEESECS and CEEDATM in C or C++
	Calls to CEESECS and CEEDATM in COBOL
	Calls to CEESECS and CEEDATM in PL/I

	Examples illustrating calls to CEESECS, CEESECI, CEEISEC, and CEEDATM
	Calls to CEESECS, CEESECI, CEEISEC, and CEEDATM in C or C++
	Calls to CEESECS, CEESECI, CEEISEC, and CEEDATM in COBOL
	Calls to CEESECS, CEESECI, CEEISEC, and CEEDATM in PL/I

	Examples illustrating calls to CEEDAYS, CEEDATE, and CEEDYWK
	Calls to CEEDAYS, CEEDATE, and CEEDYWK for C or C++
	Calls to CEEDAYS, CEEDATE, and CEEDYWK in COBOL
	Calls to CEEDAYS, CEEDATE, and CEEDYWK in PL/I

	Calls to CEECBLDY in COBOL

	Chapter 21. National language support
	Customizing Language Environment output for a given country
	Setting the national language
	Setting the country code
	Euro support
	Combining national language support and date and time services
	Calls to CEE3CTY, CEEFMDT, and CEEDATM in C
	Calls to CEE3CTY, CEEFMDT, and CEEDATM in COBOL
	Example using CEE3CTY, CEEFMDT, and CEEDATM in PL/I

	Chapter 22. Locale callable services
	Customizing Language Environment locale callable services
	Developing internationalized applications
	Examples of using locale callable services
	Example calls to CEEFMON
	Calls to CEEFMON in COBOL
	Calls to CEEFMON in PL/I

	Example calls to CEEFTDS
	Calls to CEEFTDS in COBOL
	Calls to CEEFTDS in PL/I

	Example calls to CEELCNV and CEESETL
	Calls to CEELCNV and CEESETL in COBOL
	Calls to CEELCNV and CEESETL in PL/I

	Example calls to CEEQDTC and CEESETL
	Calls to CEEQDTC and CEESETL in COBOL
	Calls to CEEQTDC and CEESETL in PL/I

	Example calls to CEESCOL
	Calls to CEESCOL in COBOL
	Calls to CEESCOL in PL/I

	Example calls to CEESETL and CEEQRYL
	Calls to CEESETL and CEEQRYL in COBOL
	Calls to CEESETL and CEEQRYL in PL/I

	Example calls to CEEQRYL and CEESTXF
	Calls to CEEQRYL and CEESTXF in COBOL
	Calls to CEEQRYL and CEESTXF in PL/I

	Chapter 23. General callable services
	List of general callable services
	CEE3DLY callable service
	CEE3DMP callable service
	Specifying a target directory for CEEDUMPs

	CEE3USR callable service
	CEEDLYM callable service
	CEEENV callable service
	CEEGPID callable service
	CEEGTJS callable service
	CEEMICT callable service
	CEERAN0 callable service
	CEETEST callable service
	CEEUSGD callable service

	Using basic callable services

	Chapter 24. Math services
	What Language Environment math services does
	Related services

	Call interface to math services
	Parameter types: parm1 type and parm2 type

	Examples of calling math services
	Calling CEESSLOG in C and C++
	Calling CEESSLOG in COBOL
	Calling CEESSLOG in PL/I

	Part 4. Using interfaces to other products
	Chapter 25. Running applications under CICS
	Terminology used in the Language Environment program model
	CICS region
	CICS transaction
	CICS run unit
	Running Language Environment applications under CICS

	Developing an application under CICS
	PL/I coding considerations under CICS
	Assembler considerations
	Link-edit considerations under CICS
	C and C++ considerations
	COBOL considerations
	PL/I considerations

	CICS processing program table (PPT) considerations
	Specifying runtime options under CICS
	Accessing DLI databases from CICS
	Using callable services under CICS
	OS/VS COBOL compatibility considerations under CICS
	Using math services in PL/I under CICS
	Coding program termination in PL/I under CICS

	Storage management under CICS
	CICS short-on-storage condition
	CICS storage protect facility
	PL/I storage considerations under CICS
	Initializing static external data
	PL/I object program size
	Using CICS storage constructs instead of PL/I language statements
	PL/I storage classes
	Using PUT DATA with BASED storage

	Using STORAGE built-in functions

	Condition handling under CICS
	PL/I considerations for using the CICS HANDLE ABEND command
	Effect of the CICS HANDLE ABEND command
	Effect of the CICS HANDLE CONDITION and CICS HANDLE AID
	Restrictions on user-written condition handlers under CICS
	COBOL considerations

	CICS transaction abend codes
	Using the CBLPSHPOP runtime option under CICS
	Restrictions on assembler user exits under CICS
	PL/I considerations

	Ensuring transaction rollback under CICS

	Runtime output under CICS
	Message handling under CICS
	PL/I SYSPRINT
	CICS XPLINK SYSPRINT

	Dump services under CICS
	PL/I considerations

	Support for calls within the same HLL under CICS
	C
	C++
	COBOL
	Language Environment-conforming COBOL
	VS COBOL II
	OS/VS COBOL

	PL/I

	Chapter 26. Running applications under Db2
	Language Environment support for Db2 applications
	Condition handling under Db2
	PL/I consideration for Db2 applications

	Chapter 27. Running applications under IMS
	Using the interface between Language Environment and IMS
	z/OS XL C/C++ considerations under IMS
	C++ considerations under IMS
	PL/I considerations under IMS
	IMS communication with your application
	Link-edit considerations under IMS

	Making your IMS application reentrant
	Condition handling under IMS
	Coordinated condition handling under IMS
	Diagnosing abends with the IMS dump

	Part 5. Specialized programming tasks
	Chapter 28. Using runtime user exits
	User exits supported under Language Environment
	Using the assembler user exit CEEBXITA
	Using the HLL initialization exit CEEBINT
	PL/I and C compatibility
	Using sample assembler user exits

	When user exits are invoked
	CEEBXITA behavior during enclave initialization
	CEEBXITA behavior during enclave termination
	CEEBXITA behavior during process termination
	Specifying abend codes to be percolated by Language Environment
	Actions taken for errors that occur within the exit

	CEEBXITA assembler user exit interface
	Guidelines for using CEEBXITA
	Parameter values in the assembler user exit

	CEEBINT high-level language user exit interface

	Chapter 29. Assembler considerations
	Compatibility considerations
	Control blocks
	Save areas
	CICS
	C and Fortran duplicate names

	Register conventions
	Language Environment-conforming assembler
	Non-Language Environment conforming assembler routines

	Considerations for coding or running assembler routines
	Asynchronous interrupts
	Condition handling
	Access to the inbound parameter string
	Overlay programs
	CEESTART, CEEMAIN, and CEEFMAIN
	Mode considerations

	Language Environment library routine retention (LRR)
	Using library routine retention
	Library routine retention and preinitialization
	CEELRR macro — Initialize or terminate Language Environment library routine retention

	Assembler macros
	CEEENTRY macro— Generate a Language-Environment-conforming prolog
	CEETERM macro — Terminate a Language Environment-conforming routine
	CEECAA macro — Generate a CAA mapping
	CEEDSA macro — Generate a DSA mapping
	CEEPPA macro — Generate a PPA
	CEELOAD macro — Dynamically load a Language Environment-conforming routine
	CEEFETCH macro — Dynamically load a routine
	CEEFTCH macro — Generate a FTCHINFO mapping
	CEEGLOB macro — Extract Language Environment product information
	CEERELES macro — Dynamically delete a routine
	CEEPCALL macro — Pass control to control sections at specified entry points
	CEEPDDA macro — Define a data item in the writeable static area (WSA)
	CEEPLDA macro — Returns the address of a data item defined by CEEPDDA
	Example of assembler main routine
	Example of an assembler main calling an assembler subroutine
	DSPARM subroutine example

	Invoking callable services from assembler routines
	System Services available to assembler routines
	Using the ATTACH macro
	Sharing resources
	z/OS affinity aspects
	Concurrency aspects
	Termination order
	COBOL considerations

	Using the SVC LINK macro

	Chapter 30. Using preinitialization services
	Using preinitialization
	Using the PreInit table
	C considerations
	C++ considerations
	COBOL considerations
	Fortran considerations
	PL/I considerations
	Macros that generate the PreInit table
	CEEXPIT
	CEEXPITY
	CEEXPITS

	Reentrancy considerations
	PreInit XPLINK considerations
	Creating an XPLINK environment versus a non-XPLINK environment

	User exit invocation
	Stop semantics

	Preinitialization interface
	Initialization
	(init_main) — initialize for main routines
	Return codes
	Usage notes
	XPLINK considerations

	(init_main_dp) — initialize for main routines (multiple environment)
	Return codes
	Usage notes
	XPLINK considerations
	Nested main_dp environment considerations

	(init_sub) — initialize for subroutines
	Return codes
	Usage notes
	XPLINK considerations

	(init_sub_dp) — initialize for subroutine (multiple environment)
	Return codes
	Usage notes
	XPLINK considerations

	Application invocation
	(call_main) — invocation for main routine
	Return codes
	Usage notes

	(call_sub) — invocation for subroutines
	Return codes
	Usage notes

	(call_sub_addr) — invocation for subroutines by address
	Return codes
	Usage notes

	(end_seq) — end a sequence of calls
	Return codes
	Usage notes

	(start_seq) — start a sequence of calls
	Return codes
	Usage notes

	(term) — terminate environment
	Return codes
	Usage notes

	(add_entry) — add an entry to the PreInit table
	Return codes
	Usage notes

	(delete_entry) — delete an entry from the PreInit table
	Return codes
	Usage notes

	(identify_entry) — identify an entry in the PreInit table
	Return codes
	Usage notes

	(identify_environment) — identify the environment in the PreInit table
	Return codes

	(identify_attributes) — identify the program attributes in the PreInit table
	Return codes

	(set_user_word) -- set value to be used to initialize CAA user word
	Return codes
	Usage notes

	(get_user_word) -- get value to be used to initialize CAA user word
	Return codes
	Usage notes

	Service routines
	An example program invocation of CEEPIPI
	HLLPIPI examples

	Chapter 31. Using nested enclaves
	Creating child enclaves
	XPLINK considerations
	COBOL considerations
	PL/I considerations

	Determining the behavior of child enclaves
	Creating child enclaves with EXEC CICS LINK or EXEC CICS XCTL
	How runtime options affect child enclaves
	How conditions arising in child enclaves are handled

	Creating child enclaves by calling a second main program
	How runtime options affect child enclaves
	How conditions arising in child enclaves are handled

	Creating child enclaves using SVC LINK
	How runtime options affect child enclaves
	Child enclave has a C, C++, Fortran, PL/I, or Language Environment-conforming assembler main routine
	Child enclave has a COBOL main program

	How conditions arising in child enclaves are handled
	Child enclave has a C, C++, or Language Environment-conforming assembler main routine
	Child enclave has a COBOL main program
	Child enclave has a Fortran or PL/I main routine

	Creating child enclaves using the C system() function
	z/OS UNIX considerations
	How conditions arising in child enclaves are handled
	TRAP(ON | OFF) effects for enclaves created by system()

	Creating child enclaves containing a PL/I fetchable main
	How runtime options affect child enclaves
	How conditions arising in child enclaves are handled
	Special fetch and call considerations

	Other nested enclave considerations
	What the enclave returns from CEE3PRM and CEE3PR2
	Finding the return and reason code from the enclave
	Assembler user exit
	Message file
	COBOL multithreading considerations
	C/C++ multithreading considerations
	z/OS UNIX considerations
	AMODE considerations

	Chapter 32. Restrictions under SRB mode

	Appendix A. Prelinking an application
	Which programs need to be prelinked
	What the prelinker does
	Prelinking process
	References to currently unresolved symbols (unresolved external references)
	Processing the prelinker automatic library call

	Language Environment prelinker map
	Control statement processing
	IMPORT control statement
	INCLUDE control statement
	LIBRARY control statement
	RENAME control statement
	Usage notes

	Mapping L-Names to S-Names
	Starting the prelinker under batch and TSO/E
	Under batch
	Under TSO/E
	Examples

	Using the CXXBIND EXEC under TSO/E
	Using the CXXMOD EXEC under TSO/E

	Prelinker options

	Appendix B. EXEC DLI and CALL IMS Interfaces
	Appendix C. Guidelines for writing callable services
	Appendix D. Operating system and subsystem parameter list formats
	C and C++ parameter passing considerations
	C PLIST and EXECOPS interactions
	C++ PLIST and EXECOPS interactions
	Case sensitivity under TSO
	Parameter passing considerations with XPLINK C and C++

	COBOL parameter passing considerations
	PL/I main procedure parameter passing considerations

	Appendix E. Object library utility
	Creating an object library
	Under batch
	Under TSO

	Object library utility map

	Appendix F. Using the systems programming environment
	Building freestanding applications
	Special considerations for reentrant modules
	Notes

	Building system exit routines
	Building persistent C environments
	Building user-server environments
	Summary of types

	Appendix G. Sort and merge considerations
	Invoking DFSORT directly
	Using the COBOL SORT and MERGE verbs
	User exit considerations
	Condition handling considerations
	Program interrupts
	Language Environment-signaled conditions
	Abends

	Using the PL/I PLISRTx interface
	User exit considerations
	Condition handling considerations
	Program interrupts and Language Environment-signaled conditions
	Abends

	Appendix H. Running COBOL programs under ISPF
	Appendix I. Language Environment macros
	Appendix J. PL/I macros that activate variables
	Appendix K. Accessibility
	Notices
	Terms and conditions for product documentation
	IBM Online Privacy Statement
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Trademarks

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

